3.1.2 海域の流動・水質・底質モデル

3.1.2.1 流動モデル

瀬戸内海における気候変動の影響評価・将来予測のための海域モデルには、数十年スケールの長期 間予測が可能であること、影響プロセスが陽に解析できること、きめ細かな海域の影響評価に耐えられる 空間解像度(水平方向1 km 程度)を有すること、適応策検討のための施策効果評価が可能であることが 求められている。具体的には、(a) 陸域からの淡水・汚濁負荷流出、(b) 海面の運動・熱フラックス、(c) 外洋との海水交換の3つのプロセスの気候変動影響が瀬戸内海の流動・水質・底質や生物・生態系に伝 播するようなモデル化(図B-4、図B-5、図B-6)を進めるとともに、長期計算の実施に向けたプログラムの最 適化を図る必要がある。

図 B-4 流動モデルが解析する現象

図 B-5 水質モデルが解析する現象

図 B-6 底質モデルが解析する現象

本業務に用いた海域モデルは、国立環境研究所がこれまで東京湾・伊勢湾・東シナ海等を対象に検 証・改良を進め、長期シミュレーションの使用実績がある、3 次元モデルである(東ら, 2009; 東ら, 2011; 東ら, 2013; Higashi et al., 2015)。

【基礎方程式】

流動モデルは、水量(水深・海面水位)、流速、水温(ポテンシャル水温)、塩分、および密度・圧力を予 測変数とし、静水圧・ブシネスク近似を適用した基礎方程式(B-27)~(B-32)で構成されている。数値解法 には、コロケート格子・レベル座標系の有限差分法を用い、自由水面の追跡には VOF 法(Hirt and Nichols, 1981)を採用している。

[連続式]
$$\frac{\partial \phi}{\partial t} + \frac{\partial (u\phi)}{\partial x} + \frac{\partial (v\phi)}{\partial y} + \frac{\partial (w\phi)}{\partial z} = S_{\phi}$$
(B-27)

[運動方程式]
$$\frac{\partial \phi u}{\partial t} + \frac{\partial u \phi u}{\partial x} + \frac{\partial v \phi u}{\partial y} + \frac{\partial w \phi u}{\partial z} = -\frac{\phi}{\rho_0} \left(\frac{\partial P}{\partial x}\right) + \frac{\partial}{\partial z} \left(\phi K_M \frac{\partial u}{\partial z}\right) + F'_u + \phi f v$$
 (B-28)

$$\frac{\partial \phi v}{\partial t} + \frac{\partial u \phi v}{\partial x} + \frac{\partial v \phi v}{\partial y} + \frac{\partial w \phi v}{\partial z} = -\frac{\phi}{\rho_0} \left(\frac{\partial P}{\partial y}\right) + \frac{\partial}{\partial z} \left(\phi K_M \frac{\partial v}{\partial z}\right) + F_v - \phi f u \qquad (B-29)$$

$$\frac{\partial P}{\partial z} = -\rho g \tag{B-30}$$

[熱輸送方程式]
$$\frac{\partial(\phi\theta)}{\partial t} + \frac{\partial(u\phi\theta)}{\partial x} + \frac{\partial(v\phi\theta)}{\partial y} + \frac{\partial(w\phi\theta)}{\partial z} = \frac{\partial}{\partial z} \left(\phi K_H \frac{\partial\theta}{\partial z}\right) + F_{\theta} + \phi S_{\theta}$$
 (B-31)

[塩分輸送方程式]
$$\frac{\partial(\phi s)}{\partial t} + \frac{\partial(u\phi s)}{\partial x} + \frac{\partial(v\phi s)}{\partial y} + \frac{\partial(w\phi s)}{\partial z} = \frac{\partial}{\partial z} \left(\phi K_H \frac{\partial s}{\partial z}\right) + F_s + \phi S_s$$
 (B-32)

ここに、*φ*: 格子中の水深(m)、*u*, *v*, *w*: それぞれ*x*, *y*, z方向の流速 (m s⁻¹)、*θ*, *C*: それぞれ温位 (°C)、 塩分 (無次元)、*f*: コリオリ係数 (s⁻¹)、*ρ*, *ρ*₀: それぞれ海水の現場密度 (kg m⁻³)と平均密度 (= 1025 kg m⁻³)、*P*: 圧力 (kg m⁻¹ s⁻²)、*K_M*: 鉛直渦動粘性係数(m² s⁻¹)、*K_H*: 鉛直渦拡散係数(m² s⁻¹)、*g*: 重力加速 度(= 9.8 m s⁻²)、*S_φ*, *S_θ*, *S_s*: それぞれ水・熱・塩分の生成(外部からの流入)量(s⁻¹, °C s⁻¹, s⁻¹)である。

【水平渦粘性·渦拡散】

水平渦粘性項 Fu', Fv' (m² s⁻²)は Smagorinsky (1963)のパラメタリゼーションを用いて算定する。

$$F_{u}^{'} = \frac{\partial}{\partial x} \left(2\phi A_{M} \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left\{ \phi A_{M} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right\}$$
(B-33)

$$F_{v}' = \frac{\partial}{\partial x} \left\{ \phi A_{M} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right\} + \frac{\partial}{\partial y} \left(2\phi A_{M} \frac{\partial v}{\partial y} \right)$$
(B-34)

ここに、A_M:水平渦動粘性係数(m² s⁻¹)であり、次式で表される。

$$A_{M} = \max\left[C_{M}\Delta_{grid}\sqrt{\left(\frac{\partial u}{\partial x}\right)^{2} + 0.5\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^{2} + \left(\frac{\partial v}{\partial y}\right)^{2}}, v_{\min}\right]$$
(B-35)

ここに、*C_M*: 定数(=0.10~0.20)、Δ_{grid}: 水平方向の格子面積(m²)、*v*_{min}: 水平渦動粘性係数の最小値(バ ックグラウンド値)である。

熱、塩分の水平渦拡散項 F_{θ} (°C s⁻¹), F_s (s⁻¹)はそれぞれ以下の式で表わされる。

$$F_{\theta} = \frac{\partial}{\partial x} \left(\phi A_{H} \frac{\partial \theta}{\partial x} \right) + \frac{\partial}{\partial y} \left(\phi A_{H} \frac{\partial \theta}{\partial y} \right)$$
(B-36)

$$F_{s} = \frac{\partial}{\partial x} \left(\phi A_{H} \frac{\partial s}{\partial x} \right) + \frac{\partial}{\partial y} \left(\phi A_{H} \frac{\partial s}{\partial y} \right)$$
(B-37)

ここに、A_H:水平渦拡散係数(m² s⁻¹)であり、次式で表される。

$$A_{H} = \max\left[C_{H}A_{M}, D_{\min}\right] \tag{B-38}$$

ここに、C_H: 定数(=0.2 程度)、D_{min}: 水平渦拡散係数の最小値(バックグラウンド値)である。

【鉛直渦動粘性·渦拡散】

鉛直渦動粘性係数 K_Mおよび鉛直渦拡散係数 K_Hの算定については Furuichi et al.(2012)のパラメタリ ゼーションを採用する。Furuichi et al.(2012)では乱流エネルギーを次式によって求める。

$$\frac{\partial (\phi k)}{\partial t} + \frac{\partial (u\phi k)}{\partial x} + \frac{\partial (v\phi k)}{\partial y} + \frac{\partial (w\phi k)}{\partial z} = \frac{\partial}{\partial z} \left(\phi K_k \frac{\partial k}{\partial z} \right) + F_k + \phi S_k$$
(B-39)

$$S_{k} = K_{M} \left\{ \left(\frac{\partial u}{\partial z} \right)^{2} + \left(\frac{\partial v}{\partial z} \right)^{2} \right\} + \frac{g}{\rho_{0}} K_{H} \frac{\partial \rho_{B}}{\partial z} - \varepsilon$$
(B-40)

ここに、k: 乱流エネルギー(= $q^2/2$, m² s⁻²)、 K_k : 乱流の鉛直渦拡散係数(m² s⁻¹)、 ρ_B : ポテンシャル密度(kg m⁻³) である。sは乱流エネルギー散逸率(m² s⁻³)であり、次式で表される。

$$\varepsilon = \alpha q^3 / l \tag{B-41}$$

ここに、α: 定数(=0.060)である。*l*は乱流の長さスケール(m)であり、診断方程式(Furuichi et al., 2012; 東 ら, 2017)を用いて算定される。*K_M*, *K_H*, *K_k*は、Mellor(2001)と同様、*k*と*l*を用いて求められる安定度関数よ り導かれる。

【圧力・密度】

圧力 P 及び海水の密度 pについては、水深、水温、塩分を用いて UNESCO(1981)の状態方程式で算 定される。

【海底の境界条件】

海底における境界条件には海底摩擦を与え、水・熱・塩分の出入はないものとする。

$$K_M \frac{\partial u}{\partial z} = \frac{\tau_{bx}}{\rho_0} = C_D u_b \sqrt{u_b^2 + v_b^2}$$
(B-42)

$$K_M \frac{\partial v}{\partial z} = \frac{\tau_{by}}{\rho_0} = C_D v_b \sqrt{u_b^2 + v_b^2}$$
(B-43)

$$\frac{\partial \theta}{\partial z} = 0$$
 (B-45)

$$\frac{\partial s}{\partial z} = 0 \tag{B-46}$$

ここに、*u_b*, *v_b*: それぞれ最下層における *u*, *v*、*C_D*: 流速の対数分布則より求められる摩擦係数(無次元) である。

【海面の境界条件】

海面の境界条件に与える運動量・熱・水蒸気フラックスは Kondo(1975)のモデルを用いて算定される。 流速の境界条件は以下の式で表わされる。

$$K_{M} \frac{\partial u}{\partial z} = \frac{\tau_{ax}}{\rho_{0}} = \frac{\rho_{a}}{\rho_{0}} C_{M} U_{a} \sqrt{U_{a}^{2} + V_{a}^{2}}$$
(B-47)

$$K_M \frac{\partial v}{\partial z} = \frac{\tau_{ay}}{\rho_0} = \frac{\rho_a}{\rho_0} C_M V_a \sqrt{U_a^2 + V_a^2}$$
(B-48)

ここに、 ρ_a : 大気の密度(kg m⁻³)、 U_a , V_a : それぞれ x, y方向の海面より高さ10mの風速(m s⁻¹)、 C_M : 運動 量のバルク輸送係数(無次元)である。海面における熱収支は次式で表わされる。

$$Q_{n} = S_{d} - S_{u} + L_{d} - L_{u} - H - l_{w}E$$
(B-49)

ここに、 Q_n : 正味の熱流入フラックス($J m^2 s^1$)、 S_d , S_u : それぞれ下向き、上向きの短波放射フラックス($J m^2 s^1$)、 L_d , L_u : それぞれ下向き、上向きの長波放射フラックス($J m^2 s^1$)、H: 顕熱フラックス($J m^2 s^1$)、 $l_w E$: 潜熱フラックス($J m^2 s^1$)である。これらのうち $S_d \ge L_d$ は再解析データや気候変動予測実験など大気 モデルの出力値が入力条件として与えられる。 S_u は海面に入射した S_d が海面で反射したものであり、次 式で求められる。

$$S_u = (1 - ref)S_d \tag{B-50}$$

ここに、ref: アルベード(無次元)である。残りの短波放射は、海水に吸収されつつ下層に透過するが、本 モデルではそれを表現するために海面からの深さz。における短波放射量 Qsを次式で算定する。

$$Q_s = (S_d - S_u) \exp(-\alpha_s z_s) \tag{B-51}$$

ここに、*a*s:光の消散係数(m⁻¹)であり、一般に海水の水質によって変化することが知られている。本モデルでは、東シナ海の観測値より求めた Koshikawa et al. (2015)の経験式を参考にして、次式で*a*sを算定する

$$\alpha_{\rm s} = -0.41s + 0.021Chl.a + 110SS + 1.423 \tag{B-52}$$

ここに、s: 塩分(無次元)、Chl.a: 植物プランクトンのクロロフィル a 濃度(mg/m³)、SS: 懸濁粒子濃度(kg m⁻³)であり、後者 2 つは後述の水質・底質・生態系モデルの予測変数になっている。なお、上式では塩分 が説明変数となっているが、これは塩分と CDOM(蛍光性溶存有機物)に負の相関があるためであり、塩 分が低いほど CDOM 濃度が高くなり、光が透過しにくいことを表している。一方、海面に入射する長波放 射はそのほとんどが海水表層において吸収される。上向きの長波放射フラックスは次式を用いて算定さ れる。

$$L_u = \varepsilon \sigma_s \left(273.15 + T_s \right)^4 \tag{B-53}$$

ここに、σ. 黒体度(無次元)、σ_s: Stefan-Boltzmann 定数(=5.67×10⁻⁸ J m⁻² s⁻¹ K⁻⁴)、T_s: 海面水温(°C)である。

顕熱・潜熱フラックスはそれぞれ以下の式を用いて算定される.

$$H = \rho_a c_{pa} C_H W_a \left(T_s - T_a \right) \tag{B-54}$$

$$l_w E = l_w \rho_a C_E W_a \left(q_s - q_a \right) \tag{B-55}$$

ここに、*c_{pa}*: 空気の定圧比熱(J kg⁻¹ K⁻¹), *l_w*: 水の気化潜熱(J kg⁻¹), *W_a*, *q_a*, *T_a*: それぞれ海面より高さ 10mの風速(m s⁻¹), 比湿(g kg⁻¹), 気温(°C), *q_s*: 海面直上の飽和比湿(g kg⁻¹), *C_E*, *C_H*: それぞれ潜熱, 顕熱のバルク輸送係数(無次元)である。

3.1.2.2 水質モデル

水質・底質モデルは、海水・海底における炭素(C) - 窒素(N) - リン(P) - 酸素(O)の生化学循環(図 B-5、 図 B-6)を解析するものであり、図 B-7の構造になっている。C、N、P についてはそれぞれ植物プランクトン 態、懸濁(デトリタス)有機態、溶存有機態および溶存無機態(C を除く)の形態変化を考慮している。なお、 本業務の計算においてケイ素(Si)は、広域総合水質調査(環境省)等の観測値を見る限り、珪藻類の一次 生産を阻害するほどの濃度低下が確認されなかったため、計算の対象外とした。

水質モデルの予測変数を表 B-4 に示す。植物プランクトンは、平成 27~30 年度業務および今年度業務において培養実験を行った Eucampia zodiacus と Skeletonema marinoi-dohrnii complex (以降、それぞれ E 型珪藻、S 型珪藻と記す)、およびその他の種として過去に国立環境研究所(2016)が培養実験にて増殖パラメータ(未発表)を取得した渦鞭毛藻の計 3 種とした。懸濁態有機物および溶存態有機物は、分解速度の違いを考慮し、分解速度が比較的速い易分解性、遅い難分解性に分画している。溶存酸素は、海面における再曝気と植物プランクトンの光合成による供給と、有機物の好気分解、硝化および酸素消費物質(ODU: Oxygen Demand Unit)の酸化による消費を考慮している。なお、ODU は、有機物の嫌気分解に伴って生成される鉄、マンガン、硫化水素等の還元物質を一纏めにしたものに相当し、COD と同様、ODU の酸化に必要な酸素量で評価した濃度指標である(Sohma et al., 2008)。ODU の酸化速度は他のプロセスよりも速く、ODU は負の DO と読み替えることができるため、モデル上でもそのように取り扱っている(ODU を予測変数として設定せず、DO が正値のときは溶存酸素、負値のときは ODU と解釈する)。

各物質の海水中での輸送は、いずれも移流拡散方程式(図 B-56)を用いて解析される。

$$\frac{\partial (\phi C_M)}{\partial t} + \frac{\partial (u\phi C_M)}{\partial x} + \frac{\partial (v\phi C_M)}{\partial y} + \frac{\partial \{(w - w_{pM})\phi C_M\}}{\partial z} = \frac{\partial}{\partial z} \left(\phi K_H \frac{\partial C_M}{\partial z}\right) + F_M + \phi S_M \quad (\boxtimes B-56)$$

ここに、 C_M :物質Mの水中濃度(例えば mgL^{-1})、 w_{pM} :物質Mの沈降速度(ms^{-1})である。 S_M は物質Mの生成項(例えば $mgL^{-1}s^{-1}$)であり、図 B-7 に記された物質間の各パスが次のように定式化されており、それらに基づいて計算格子ごとに算定される。

図 B-7 水質・底質モデルの構造

表 B-4 水質モデルの予測変数

名称		表記	単位	名称		表記	単位
植物プラ	S型珪藻	C_{plw}	mg-C L ⁻¹	溶存	易分解 DOC	C_{docf}	mg-C L ⁻¹
ンクトン態	E 型珪藻	C_{plc}	mg-C L ⁻¹	有機態	難分解 DOC	C_{docs}	mg-C L ⁻¹
	P型渦鞭毛藻	C_{pls}	mg-C L ⁻¹		易分解 DON	C_{donf}	mg-N L ⁻¹
懸濁	易分解 POC	Cpocf	mg-C L ⁻¹		難分解 DON	C_{dons}	mg-N L ⁻¹
有機態	難分解 POC	C_{pocs}	mg-C L ⁻¹		易分解 DOP	C_{dopf}	mg-P L ⁻¹
	易分解 PON	C_{ponf}	mg-N L ⁻¹		難分解 DOP	C_{dops}	mg-P L ⁻¹
	難分解 PON	Cpons	mg-N L ⁻¹	無機態	NO ₃ -N	C_{dino}	mg-N L ⁻¹
	易分解 POP	C_{popf}	mg-P L ⁻¹	栄養塩	NH4-N	C_{dinh}	mg-N L ⁻¹
	難分解 POP	C_{pops}	mg-P L ⁻¹		DIP	C_{dip}	mg-P L ⁻¹
懸濁粒子	シルト・泥	C_{sps}	mg L ⁻¹		吸着態 P	C_{adp}	mg-P L ⁻¹
(鉱物)	砂	C_{spl}	mg L ⁻¹	溶存酸素	DO	C_{dox}	mg-O ₂ L ⁻¹

図 B-7 の植物プランクトンには C、N、P が記されているが、その構成比(C:N:P)は一定と仮定 している。そのため、植物プランクトン態の予測変数は、表 B-4 に示してあるとおり、C のみと なっており、N と P は設定した C:N:P 比を用いて算定する仕組みになっている。植物プランクト ンのモデル基礎式およびモデルパラメータを表 B-5~表 B-8 に示す。

	関数	単位	パラメータ			
植物プランクトン (pl=pl	植物プランクトン (pl = plw: S 型珪藻, plc: E 型珪藻:, pls: P 型渦鞭毛藻)					
新增加量	$S_{i} = Gp_{i} - Exc_{i} - Mor_{i}$	mg-C				
	$\sim pl$ $\circ p$ pl $\sim pl$ pl $\sim pl$	L-1 s-1				
絋 米合成 量	$Gp := \mu_{r} \cdot f_{r} \cdot f_{r} \cdot C$	mg-C	$\mu_{Tpl}, f_{Npl},$			
	P pl PIJ Npl J Ipl Pl	L-1 s-1	f_{Ipl}			
細胞从浸出	$F_{xc} = \gamma G p$	mg-C	24.5			
が回加して行くし」	$Exc_{pl} = \gamma_{pl} OP_{pl}$	L-1 s-1	Ypl			
白伏死, 墙合	$Mor = \beta Gp$	mg-C	R			
日 ///// 1用 民	$p_{l} = p_{pl} o p_{pl}$	L-1 s-1	$ ho_{pl}$			

表 B-5 植物プランクトンのモデル基礎式

表 B-6	植物プランクトンモデルの栄養塩影響関数(無次元)
-------	--------------------------

	関数	パラメータ
植物プランクトン (pl = plw: S	型珪藻, plc :E 型珪藻:, pls: P 型渦鞭毛藻)	
栄養塩影響関数	$f_{Npl} = \min(f_{DINpl}, f_{DIPpl})$	
DIN 影響関数	$f_{DINpl} = \min(1, f_{NHpl} + f_{NOpl})$	
NH4-N 影響関数	$f_{NHpl} = \frac{C_{dinh}}{K_{NHpl} + C_{dinh}}$	K_{NHpl}
NO3-N 影響関数	$f_{NOpl} = \frac{C_{dino}}{K_{NOpl} + C_{dino}}$	K_{NOpl}
DIP 影響関数	$f_{DIPpl} = \frac{C_{dip}}{K_{DIPpl} + C_{dip}}$	K _{DIPpl}

表 B-7 植物プランクトンモデルの光影響関数(無次元)

	関数	パラメータ
S 型珪藻の 光影響関数	$f_{Iplw} = \frac{I - I_{0plw}}{\left(K_{Iplw} - I_{0plw}\right) + \left(I - I_{0plw}\right)}$	K _{Iplw} , I _{0plw}
E 型珪藻の 光影響関数	$f_{lplc} = \frac{I - I_{0plc}}{\left(K_{lplc} - I_{0plc}\right) + \left(I - I_{0plc}\right)}$	K _{Iplc} , I _{0plc}
P 型珪藻の 光影響関数	$f_{lpls} = \frac{0.5(I - I_{0pls})}{(K_{1lpls} - I_{0pls}) + (I - I_{0pls})} + \frac{0.5 \max(0, I - I_{1pls})}{(K_{2lpls} - I_{1pls}) + (I - I_{1pls})}$	$K_{1lpls}, I_{0pls},$ K_{2lpls}, I_{1pls}

I: 光量子密度(μmol m² s⁻¹)であり、モデルで使用する放射照度(J m⁻² s⁻¹)との関係式には 1 J m⁻² s⁻¹= 1.96 μmol m² s⁻¹ (Thimijan and Heins, 1983)を用いた。

				-	
	主部	S型珪藻	E 型珪藻	P型渦鞭毛藻	畄⇔
		(pl=plw)	(pl=plc)	(pl=pls)	中世
比増殖速度	μ_{Tpl}	図 5-3 ¹⁾	図 5-3 1)	2.4 3)	day-1
NH4-N半飽和定数	K _{NHpl}	0.090 4)	0.133 4)	0.063 4)	µmol L ⁻¹
NO ₃ -N半飽和定数	K _{NOpl}	表 4-16 ²⁾	表 4-21 ²⁾	0.19 5)	µmol L ⁻¹
DIP 半飽和定数	KDIPpl	0.10 7)	0.15 6)	0.070 7)	µmol L ⁻¹
半半的和字粉	K_{Ipl}	₩ 5 2 1)	図 5 2 1)	$K_{1Ipls} = 50^{-3}$	μmol
几千配相足数		凶 3-5 1	因 3-3 7	$K_{2Ipls} = 525^{-3}$	m ⁻² s ⁻¹
	<i>I</i>	図 5 2 1)	₩ 5 2 1)	$I_{0Ipls} = 0.0^{-3}$	μmol
怖頂儿里	10pl	凶 3-5	凶 3-3 1	$I_{1Ipls} = 500^{-3}$	m ⁻² s ⁻¹
細胞外浸出係数	Ypl	0.135 8)	0.135 8)	0.135 8)	無次元
比減少速度	eta_{pl}	0.45 9)	0.34 9)	0.24 9)	day-1
C.N.D. Tult	<i>Rdf_{NC}</i>	106.16.1 10)	106.16.1 10)	106.16.1 10)	無次二
	<i>Rdf_{PC}</i>	100:10:1	100:10:1	100:10:1	無伏兀

表 B-8 植物プランクトンのモデルパラメータ(今年度モデル)

1)本編第5章参照、2)平成30年度報告書参照、3)既存の培養実験の値(越川,未発表データ)、4) 調整値(NO₃-Nの半飽和定数の0.7倍程度)、5)調整値(S型珪藻の0.7倍程度)、6)西川(2011)のDIP 半飽和定数に[本業務のNO₃-N半飽和定数(平均値)]/[西川(2011)のNO₃-N半飽和定数]を乗じた値、7) 6)で求めた E型のDIP半飽和定数に[S型、P型のNO₃-N半飽和定数(平均値)]/[E型のNO₃-N半飽和 定数(平均値)]を乗じた値、8)標準的な値(例えば、Sohma et al., 2008)、9)調整値、10) Redfield(1958)。

【懸濁有機態・溶存有機態】

懸濁有機態、溶存有機態のモデル基礎式をそれぞれ表 B-9、表 B-10 に示す。また、モデルパラメータを表 B-15 に示す。

整濁有機態 C: 易分解 POC 35 C # DPM POC (poci, i = f: 易分解, s: 難分呼) Image C mg-C mg-C L' s · 1 Image C Image C L' s · 1 Image C		関数	単位	パラメータ		
純増加量 $S_{pecl} = \sum_{pl} Sbs_{pl \rightarrow pocl} - Dpd_{pocl} - Dpi_{pocl}$ mg-C L ¹ s ⁻¹ 植物ブランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow pocl} = R_{pl \rightarrow l}Mor_{pl}$ mg-C L ¹ s ⁻¹ $R_{pl \rightarrow l}$ 溶存有機能C への細 粒化 $Dpd_{pocl} = Vpd_{0l} \exp(k_DT)C_{pocl}$ mg-C L ¹ s ⁻¹ Vpd_{0v}, k_D 無機態C への分解消 滅 $Dpl_{pocl} = Vpi_{l7}C_{pocl}$ (詳細は表 B-11) mg-C L ¹ s ⁻¹ Vpd_{0v}, k_D 無機態C への分解消 減 $Dpi_{pocl} = Vpi_{l7}C_{pocl}$ (詳細は表 B-11) mg-C L ¹ s ⁻¹ Vpd_{0v}, k_D $Spml = \sum_{pl} Sbs_{pl \rightarrow poul} - Dpd_{ponl} - Dpi_{ponl}$ mg-N L ¹ s ⁻¹ $R_{pl \rightarrow h}$ $Spml = \sum_{pl} Sbs_{pl \rightarrow poul} - Dpd_{ponl} - Dpi_{ponl}$ mg-N L ⁻¹ s ⁻¹ $R_{pl \rightarrow h}$ $Sbs_{pl \rightarrow poul} = R_{pl \rightarrow l}Rdf_{NC}Mor_{pl}$ mg-N L ⁻¹ s ⁻¹ $R_{pl \rightarrow h}$ $Sbs_{pl \rightarrow poul} = Vpd_{0l} \exp(k_D T)C_{ponl}$ mg-N L ⁻¹ s ⁻¹ $R_{pl \rightarrow h}$ $Dpd_{ponl} = Vpi_{l1}C_{ponl}$ mg-N L ⁻¹ s ⁻¹ $R_{pl \rightarrow h}$ $Sbs_{pl \rightarrow ponl} = Vpi_{nl}(C_{ponl} - Dpl_{ponl} - Dpl_{ponl})$ mg-N L ¹ s ⁻¹ $R_{pl \rightarrow h}$	懸濁有機態 C: 易分解 POC および難分解 POC (poci, i = f: 易分解, s: 難分解)					
即日日加量per I_{pl} per I_{pl} per I_{pl} per I_{pl} per I_{pl} I_{rl} 植物プランクトン自然 死・捕食による増加 $Sbs_{pl\rightarrowpeci} = R_{pl\rightarrow i}Mor_{pl}$ $mg-C$ L ⁻¹ s ⁻¹ R_{pl-i} 溶存有機態 C ~00細 粒化 $Dpd_{peci} = Vpd_{0i} \exp(k_DT)C_{peci}$ $mg-C$ L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 無機態 C ~00分解消 滅 $Dpi_{peci} = Vpt_{fl}C_{peci}$ (詳細は表 B-11) $mg-C$ L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 無機態 N: 易分解 PON および難分解 PON (poni, i = f. 易分解, s: 難分解) $mg-C$ L ⁻¹ s ⁻¹ R_{pl-i} 純増加量 $S_{poni} = \sum_{pl} Sbs_{pl\rightarrow poni} - Dpd_{poni} - Dpi_{poni}$ $mg-N$ L ⁻¹ s ⁻¹ R_{pl-i} Rdfsc液存有機態 N 粒化 $Dpd_{poni} = Vpd_{0i} \exp(k_DT)C_{poni}$ $mg-N$ L ⁻¹ s ⁻¹ R_{pl-i} Rdfsc酸港 $Sbs_{pl\rightarrow poni} = Vpd_{0i} \exp(k_DT)C_{poni}$ $mg-N$ L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 物理物量 $Spe_{poni} = Vpd_{0i} \exp(k_DT)C_{poni}$ $mg-N$ L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 物量物量 $Spe_{poni} = Vpd_{0i} \exp(k_DT)C_{poni}$ $mg-N$ L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 熱増加量 $Spe_{poni} = Vpd_{0i} \exp(k_DT)C_{poni}$ $mg-N$ L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 熱増加量 $Spe_{poni} = Vpd_{0i} Rdf_{PC}Mor_{pl}$ $mg-P$ L ⁻¹ s ⁻¹ R_{pl-ib} Rdfrc範増加量 $Spe_{poni} = \sum_{pl} Sbs_{pl\rightarrow poni} - Dpd_{poni} - Dpi_{poni}$ $mg-P$ L ⁻¹ s ⁻¹ R_{pl-ib} Rdfrc範増加量 $Spe_{poni} = \sum_{pl} Sbs_{pl\rightarrow poni} - Dpd_{poni} - Dpi_{poni}$ $mg-P$ L ⁻¹ s ⁻¹ R_{pl-ib} Rdfrc範 $Sbs_{pl\rightarrow poni} = R_{pl\rightarrow i}Rdf_{PC}Mor_{pl}$ $mg-P$ L ⁻¹ s ⁻¹ R_{pl-	<u> </u>	$S_{noci} = \sum Sbs_{nl \rightarrow noci} - Dpd_{noci} - Dpi_{noci}$	mg-C			
植物プランクトン自然 死・捕食による増加 $Sbs_{pl\topoci} = R_{pl\toi}Mor_{pl}$ $mg-CL^{-1}s^{-1}$ $R_{pl\toi}$ 溶存有機態C への細 粒化 $Dpd_{poci} = Vpd_{0i} \exp(k_DT)C_{poci}$ $mg-CL^{-1}s^{-1}$ Vpd_{0v, k_D} 無機態C への分解消 滅 $Dpi_{poci} = Vpi_{Ti}C_{poci}$ (詳細は表 B-11) $mg-CL^{-1}s^{-1}$ Vpd_{0v, k_D} 懸濁有機態N: 易分解 PON * はび難分解 PON (poni, i = f: 易分解, s: 難分解) $mg-N$ L ⁻¹ s ⁻¹ $mg-N$ $L^{-1}s^{-1}$ 純増加量 $S_{poni} = \sum_{pl} Sbs_{pl\toponi} - Dpd_{poni} - Dpi_{poni}$ $mg-N$ L ⁻¹ s ⁻¹ $R_{pl\toi}$ 植物プランクトン自然 死・捕食による増加 $Sbs_{pl\toponi} = R_{pl\toi}Rdf_{Nc}Mor_{pl}$ $mg-N$ L ⁻¹ s ⁻¹ $R_{pl\toi}$ 撤售版 N (NH_4 N)^{-0} $Dpd_{poni} = Vpd_{0i} \exp(k_DT)C_{poni}$ $mg-N$ L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 動力 Popiponi $p_{poni} = Vpi_{Ti}C_{poni}$ $mg-N$ L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 勉強化 $Dpl_{poni} = Vpi_{Ti}C_{poni}$ $mg-N$ L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 熱増的 T PO V Pole Mu Pont $Sbs_{pl\topopi} - Dpl_{popi} - Dpl_{popi}$ $mg-P$ L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 熱増 Pont $Sbs_{pl\topopi} = R_{pl\to i}Rdf_{Pc}Mor_{pl}$ $mg-P$ L ⁻¹ s ⁻¹ Vpd_{0i}, k_D Not $Sbs_{pl\topopi} = R_{pl\to i}Rdf_{Pc}Mor_{pl}$ mg		$pi \qquad pi \rightarrow poci \qquad i poci \qquad i poci$	L-1 s-1			
死・捕食による増加 $Sbs_{pl \rightarrow pocl} = R_{pl \rightarrow l} Mor_{pl}$ $L^{-1} s^{-1}$ $R_{pl \rightarrow i}$ 溶存有機態 C ~ の細 粒化 $Dpd_{pocl} = Vpd_{0i} \exp(k_D T) C_{pocl}$ $mg \cdot C_{L^{-1} s^{-1}}$ Vpd_{0i}, k_D 無機態 C ~ の分解消 滅 $Dpi_{pocl} = Vpi_{Ti}C_{pocl}$ (詳細は表 B-11) $mg \cdot C_{L^{-1} s^{-1}}$ Vpd_{0i}, k_D 懸濁有機態 N: 易分解 PON および難分解 PON (poni, i = f: 易分解, s: 難分解) $mg \cdot N_{L^{-1} s^{-1}}$ $mg \cdot N_{L^{-1} s^{-1}}$ 極物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow poni} = Dpd_{poni} - Dpd_{poni} - Dpi_{poni}$ $mg \cdot N_{L^{-1} s^{-1}}$ $R_{pl \rightarrow i}, Rdf_{NC}$ 粒化 $Dpd_{poni} = Vpd_{0i} \exp(k_D T) C_{poni}$ $mg \cdot N_{L^{-1} s^{-1}}$ $R_{pl \rightarrow i}, Rdf_{NC}$ 整得有機態 N (NH_4 N)^{-0} $Dpd_{poni} = Vpd_{0i} \exp(k_D T) C_{poni}$ $mg \cdot N_{L^{-1} s^{-1}}$ Vpd_{0i}, k_D 懸濁有機態 P: 易分解 POP および難分解 POP (popi, i = f: 易分解, s: 難分解) $mg \cdot P_{L^{-1} s^{-1}}$ $mg \cdot P_{L^{-1} s^{-1}}$ ½ $Min_{D} L^{-1} S^{-1} P_{poni} = R_{pl \rightarrow i}Rdf_{PC}Mor_{pl} - Dpl_{pool}$ $mg \cdot P_{L^{-1} s^{-1}}$ $R_{pl \rightarrow i}, Rdf_{PC}$ $Min_{D} L^{-1} S^{-1} P_{poni} = R_{pl \rightarrow i}Rdf_{PC}Mor_{pl} - Dpl_{pool}$ $mg \cdot P_{L^{-1} s^{-1}}$ Vpd_{0i}, k_D $Min_{D} L^{-1} S^{-1} P_{popi} = R_{pl \rightarrow i}Rdf_{PC}Mor_{pl}$ $mg \cdot P_{L^{-1} s^{-1}}$	植物プランクトン自然		mg-C			
溶存有機態 C への細 粒化 $Dpd_{poci} = Vpd_{0i} \exp(k_D T)C_{poci}$ mg-C L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 無機態 C への分解消 滅 $Dpi_{poci} = Vpi_{Ti}C_{poci}$ (詳細は表 B-11)mg-C L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 懸濁有機態 N: 易分解 PON および難分解 PON (poni, i = f: 易分解, s: 難分解)純増加量 $S_{poni} = \sum_{pl} Sbs_{pl \rightarrow poni} - Dpd_{poni} - Dpi_{poni}$ mg-N L ⁻¹ s ⁻¹ 植物ブランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow poni} = R_{pl \rightarrow i}Rdf_{NC}Mor_{pl}$ mg-N L ⁻¹ s ⁻¹ 整酒有機態 N (NH4-N)へ の分解回帰 $Dpd_{poni} = Vpd_{0i} \exp(k_D T)C_{poni}$ mg-N L ⁻¹ s ⁻¹ 懸濁有機態 P: 易分解 POP および難分解 POP (popi, i = f: 易分解, s: 難分解) Vpd_{0i}, k_D 範増加量 $Spori = \sum_{pl} Sbs_{pl \rightarrow poni} - Dpd_{popi} - Dpi_{popi}$ mg-N L ⁻¹ s ⁻¹ 極物ブランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow popi} = Vpi_{Ti}C_{poni}$ (詳細は表 B-11)mg-P L ⁻¹ s ⁻¹ 範増加量 $Spori = \sum_{pl} Sbs_{pl \rightarrow popi} - Dpd_{popi} - Dpi_{popi}$ mg-P L ⁻¹ s ⁻¹ 極物ブランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow popi} = R_{pl \rightarrow i}Rdf_{PC}Mor_{pl}$ mg-P L ⁻¹ s ⁻¹ 植物ブランクトン自然 死・捕食による増加 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹ 植物ブランクトン自然 死・捕食による増加 $Dpd_{popi} = R_{pl \rightarrow i}Rdf_{PC}Mor_{pl}$ mg-P L ⁻¹ s ⁻¹ 植物ブランクトン自然 死・捕食による増加 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹ 旋化 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹ 旋化 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹ 約 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹	死・捕食による増加	$Sbs_{pl \to poci} = R_{pl \to i}Mor_{pl}$	L ⁻¹ s ⁻¹	$R_{pl \rightarrow i}$		
福村宇育被語 C < 0.5 和 粒化 $Dpd_{poci} = Vpd_{0i} \exp(k_D T)C_{poci}$ $\operatorname{ing-C}_{L^{-1} \operatorname{s}^{-1}}$ Vpd_{0i}, k_D 無機態 C < 0.05 解消 滅 $Dpi_{poci} = Vpi_{Ti}C_{poci}$ (詳細は表 B-11) $\operatorname{mg-C}_{L^{-1} \operatorname{s}^{-1}}$ $\operatorname{mg-C}_{L^{-1} \operatorname{s}^{-1}}$ 懸濁有機態 N: 易分解 PON および難分解 PON (poni, i = f: 易分解, s: 難分解) $\operatorname{mg-N}_{L^{-1} \operatorname{s}^{-1}}$ $\operatorname{mg-N}_{L^{-1} \operatorname{s}^{-1}}$ 純増加量 $S_{poni} = \sum_{pl} Sbs_{pl \rightarrow poni} - Dpd_{poni} - Dpi_{poni}$ $\operatorname{mg-N}_{L^{-1} \operatorname{s}^{-1}}$ $\operatorname{Rel-ib}_{r}$ 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow poni} = R_{pl \rightarrow i}Rdf_{NC}Mor_{pl}$ $\operatorname{mg-N}_{L^{-1} \operatorname{s}^{-1}}$ Rdf_{NC} 溶存有機態 N < 00 細 粒化 $Dpd_{poni} = Vpd_{0i} \exp(k_D T)C_{poni}$ $\operatorname{mg-N}_{L^{-1} \operatorname{s}^{-1}}$ Vpd_{0i}, k_D 整濁有機態 N (NH4-N) の分解回帰 $Dpi_{poni} = Vpd_{0i} \exp(k_D T)C_{poni}$ $\operatorname{mg-N}_{L^{-1} \operatorname{s}^{-1}}$ Vpd_{0i}, k_D 懸濁有機態 P: 易分解 POP および難分解 POP (popi, i = f: 易分解, s: 難分解) $\operatorname{mg-N}_{L^{-1} \operatorname{s}^{-1}}$ Vpd_{0i}, k_D 純増加量 $S_{popl} = \sum_{pl} Sbs_{pl \rightarrow popl} - Dpd_{popl} - Dpi_{popl}$ $\operatorname{mg-P}_{L^{-1} \operatorname{s}^{-1}}$ 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow popl} = R_{pl \rightarrow l}Rdf_{PC}Mor_{pl}$ $\operatorname{mg-P}_{L^{-1} \operatorname{s}^{-1}}$ 影響 (W C) $Dpl_{popl} = Vpd_{0i} \exp(k_D T)C_{popl}$ $\operatorname{mg-P}_{L^{-1} \operatorname{s}^{-1}}$ が増加量 $Dpd_{popl} = Vpd_{0i} \exp(k_D T)C_{popl}$ $\operatorname{mg-P}_{L^{-1} \operatorname{s}^{-1}}$ 水増物 $Dpd_{popl} = Vpd_{0i} \exp(k_D T)C_{popl}$ $\operatorname{mg-P}_{L^{-1} \operatorname{s}^{-1}}$ 水均00 $Dpd_{popl} = Vpd_{0i} \exp(k_D T)C_{popl}$ $\operatorname{mg-P}_{L^{-1} \operatorname{s}^{-1}}$ 水均00 $Dpd_{popl} = Vpd_{0i} \exp(k_D T)C_{popl}$ $\operatorname{mg-P}_{L^{-1} \operatorname{s}^{-1}}$			ma C			
福地市 レ・s Constraint Del soci PVpi _{Ti} C _{poci} (詳細は表 B-11) mg-C L ⁻¹ s ⁻¹ 感濁有機態 N: 易分解 PON および難分解 PON (poni, i = f: 易分解, s: 難分解) mg-N L ⁻¹ s ⁻¹ mg-N Rpl-i, Rdf _{NC} mg-N L ⁻¹ s ⁻¹ mg-N Rpl-i, Rdf _{NC} mg-N Rpl-i, Rdf _{NC} mg-N Rpl-i, Rdf _{NC} mg-N Rpl-i, Rdf _{NC} mg-N Rpl-i, Rdf _{NC} mg-N M位化 Dpd _{poni} = Vpd _{0i} exp(k _D T)C _{poni} mg-N L ⁻¹ s ⁻¹ mg-N Rpl-i, Rdf _{NC} mg-M Mu ^d 加量 Dpi _{poni} = Vpi ₁ C _{poni} mg-N L ⁻¹ s ⁻¹ mg-N L ⁻¹ s ⁻¹ mg-M Mu ^d mage S_popl = 2 pl SbS pl-popl SbS pl-popl mg-P L ⁻¹ s ⁻¹ L ⁻¹ s ⁻¹ md-is ⁻¹ Rdf _{PC}	俗行有機悪し、の神	$Dpd_{poci} = Vpd_{0i} \exp(k_D T)C_{poci}$	I -1 c-1	Vpd_{0i}, k_D		
加快 Dpi _{poci} = Vpi _{Ti} C _{poci} (詳細は表 B-11) ngcc L ¹ s ⁻¹ 懸濁有機態 N: 易分解 PON および難分解 PON (poni, i = f: 易分解, s: 難分解) mg-N 純増加量 $S_{poni} = \sum_{pl} Sbs_{pl \rightarrow poni} - Dpd_{poni} - Dpi_{poni}$ mg-N 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow poni} = R_{pl \rightarrow l}Rdf_{NC}Mor_{pl}$ mg-N 溶存有機態 N への細 粒化 $Dpd_{poni} = Vpd_{0i} \exp(k_DT)C_{poni}$ mg-N 無機態 N (NH4-N)へ の分解回帰 $Dpi_{poni} = Vpd_{0i} \exp(k_DT)C_{poni}$ mg-N 熊猶有機態 P: 易分解 POP および難分解 POP (popi, i = f: 易分解, s: 難分解) Vpd_{0i}, k_D 純増加量 $S_{popl} = \sum_{pl} Sbs_{pl \rightarrow popl} - Dpd_{popl} - Dpi_{popl}$ mg-N 熱増加量 $S_{popl} = \sum_{pl} Sbs_{pl \rightarrow popl} - Dpd_{popl} - Dpi_{popl}$ mg-N 熱増加量 $S_{popl} = \sum_{pl} Sbs_{pl \rightarrow popl} - Dpd_{popl} - Dpi_{popl}$ mg-P 熱増加量 $S_{popl} = \sum_{pl} Sbs_{pl \rightarrow popl} - Dpd_{popl} - Dpi_{popl}$ mg-P 熱増加量 $S_{popl} = \sum_{pl} Sbs_{pl \rightarrow popl} - Dpd_{popl} - Dpi_{popl}$ mg-P 減 L^1 s ⁻¹ rd 熱増加量 $Dpd_{popl} = Vpd_{0i} \exp(k_DT)C_{popl}$ mg-P 点 L^1 s ⁻¹ L^1 s ⁻¹ Rdf_{PC} 輸増加量 $Dpd_{popl} = Vpd_{0i} \exp(k_DT)C_{popl}$ mg-P L^1 s ⁻¹ 「1	 毎機能Cへの分解消					
画体DD	減	$Dpi_{poci} = Vpi_{Ti}C_{poci}$ (詳細は表 B-11)	$L^{-1} s^{-1}$			
純増加量 $S_{ponl} = \sum_{pl} Sbs_{pl \rightarrow ponl} - Dpd_{ponl} - Dpi_{ponl}$ mg-N L ⁻¹ s ⁻¹ 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow ponl} = R_{pl \rightarrow l}Rdf_{NC}Mor_{pl}$ mg-N L ⁻¹ s ⁻¹ $R_{pl \rightarrow l}$, Rdf_{NC} 溶存有機態N ~ の細 粒化 $Dpd_{ponl} = Vpd_{0l} \exp(k_DT)C_{ponl}$ mg-N L ⁻¹ s ⁻¹ Vpd_{0l}, k_D 無機態N (NH4-N)~ の分解回帰 $Dpi_{ponl} = Vpi_{Tl}C_{ponl}$ mg-N L ⁻¹ s ⁻¹ Vpd_{0l}, k_D 懸濁有機態 P: 易分解 POP 地量 $Spopl = \sum_{pl} Sbs_{pl \rightarrow popl} - Dpd_{popl} - Dpi_{popl}$ mg-P L ⁻¹ s ⁻¹ $R_{pl \rightarrow l}, R_{pl \rightarrow l},$		 N および難分解 PON (<i>poni</i> , <i>i</i> = f: 易分解, s: 難分)	<u>上</u> 。 解)			
純増加量 $S_{poni} - \sum_{pl} SDS_{pl \rightarrow poni} = Dpu_{poni} = Dpu_{poni}$ $L^{-1} s^{-1}$ 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow poni} = R_{pl \rightarrow i} Rdf_{NC} Mor_{pl}$ $mg-N$ $L^{-1} s^{-1}$ $R_{pl \rightarrow i}, Rdf_{NC}$ 溶存有機態 N $\sim coat地化Dpd_{poni} = Vpd_{0i} \exp(k_D T)C_{poni}mg-NL^{-1} s^{-1}Vpd_{0i}, k_D無機態 N (NH4-N)の分解回帰Dpi_{poni} = Vpi_{Ti}C_{poni}mg-NL^{-1} s^{-1}Vpd_{0i}, k_D懸濁有機態 P: 易分解 POP および難分解 POP (popi, i = f: 易分解, s: 難分解)mg-NL^{-1} s^{-1}Mg-PL^{-1} s^{-1}極物プランクトン自然死・捕食による増加Sbs_{pl \rightarrow popi} - Dpd_{popi} - Dpi_{popi}mg-PL^{-1} s^{-1}R_{pl \rightarrow i}, Rdf_{PC}植物プランクトン自然死・捕食による増加Sbs_{pl \rightarrow popi} = R_{pl \rightarrow i}Rdf_{PC}Mor_{pl}mg-PL^{-1} s^{-1}R_{pl \rightarrow i}, Rdf_{PC}植物プランクトン自然死・捕食による増加Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}mg-PL^{-1} s^{-1}Rdf_{PC}極物プランクトン自然死・捕食による増加Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}mg-PL^{-1} s^{-1}Rdf_{PC}海球内機態 P (DIP) \sim co分解回帰Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}mg-PL^{-1} s^{-1}Vpd_{0i}, k_D$		$S = \sum Shs = Dnd = Dni$	mg-N			
植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow poni} = R_{pl \rightarrow i}Rdf_{NC}Mor_{pl}$ mg-N L ⁻¹ s ⁻¹ $R_{pl \rightarrow i}$ Rdf_NC溶存有機態N ~ の細 粒化 $Dpd_{poni} = Vpd_{0i} \exp(k_D T)C_{poni}$ mg-N L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 無機態N (NH4-N)~ の分解回帰 $Dpi_{poni} = Vpi_{Ti}C_{poni}$ (詳細は表 B-11)mg-N L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 懸濁有機態 P: 易分解 POP および難分解 POP (popi, i = f: 易分解, s: 難分解)mg-P L ⁻¹ s ⁻¹ $K_{pl \rightarrow popi}$ mg-P Kt ⁻¹ s ⁻¹ 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow popi} = R_{pl \rightarrow i}Rdf_{PC}Mor_{pl}$ mg-P L ⁻¹ s ⁻¹ $R_{pl \rightarrow b}$ Rdf _{PC} 溶存有機態 P ~ の細 粒化 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹ $R_{pl \rightarrow b}$ Rdf _{PC} 機態 P (DIP)~の 分解回帰 $Dpi_{popi} = Vpi_{Ti}C_{popi}$ (詳細は表 B-11)mg-P L ⁻¹ s ⁻¹ Vpd_{0i}, k_D	純増加量	$S_{poni} - \sum_{pl} SOS_{pl \rightarrow poni} - Dpu_{poni} - Dpi_{poni}$	L ⁻¹ s ⁻¹			
福祉物 アウシウトシ 日本 死・捕食による増加Sbs $p_{l \rightarrow poni} = R_{pl \rightarrow i} Rdf_{NC} Mor_{pl}$ Ing-N L ¹ s ⁻¹ Rdf_{NC} 溶存有機態 N への細 粒化 $Dpd_{poni} = Vpd_{0i} \exp(k_D T)C_{poni}$ mg-N L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 無機態 N (NH4-N)へ の分解回帰 $Dpi_{poni} = Vpi_{Ti}C_{poni}$ (詳細は表 B-11)mg-N L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 懸濁有機態 P: 易分解 POP および難分解 POP (popi, i = f: 易分解, s: 難分解) $mg-P$ L ⁻¹ s ⁻¹ $mg-P$ L ⁻¹ s ⁻¹ 極地加量 $S_{popi} = \sum_{pl} Sbs_{pl \rightarrow popi} - Dpd_{popi} - Dpi_{popi}$ mg-P L ⁻¹ s ⁻¹ 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow popi} = R_{pl \rightarrow i}Rdf_{PC}Mor_{pl}$ mg-P L ⁻¹ s ⁻¹ 溶存有機態 P への細 粒化 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹ 無機態 P (DIP)への 分解回帰 $Dpi_{popi} = Vpi_{Ti}C_{popi}$ (詳細は表 B-11)mg-P L ⁻¹ s ⁻¹	は 協力 ランカトン 白 伏		ma N	D		
アビード ReferencePE * 3Ray溶存有機態 N への細 粒化 $Dpd_{poni} = Vpd_{0i} \exp(k_D T)C_{poni}$ mg-N L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 無機態 N (NH4-N)へ の分解回帰 $Dpi_{poni} = Vpi_{Ti}C_{poni}$ (詳細は表 B-11)mg-N L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 懸濁有機態 P: 易分解 POP および難分解 POP (popi, i = f: 易分解, s: 難分解)mg-N L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 純増加量 $S_{popi} = \sum_{pl} Sbs_{pl \rightarrow popi} - Dpd_{popi} - Dpi_{popi}$ mg-P L ⁻¹ s ⁻¹ 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow popi} = R_{pl \rightarrow i}Rdf_{PC}Mor_{pl}$ mg-P L ⁻¹ s ⁻¹ 縮物プランクトン自然 死・捕食による増加 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹ 縮地 物化 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹ 海機態 P (DIP)への 分解回帰 $Dpi_{popi} = Vpi_{Ti}C_{popi}$ (詳細は表 B-11)mg-P L ⁻¹ s ⁻¹	11100 ノンクトン 日然	$Sbs_{pl \to poni} = R_{pl \to i} Rdf_{NC} Mor_{pl}$	I -1 e-1	$R_{pl \to i},$		
溶存有機態Nへの細 粒化 $Dpd_{poni} = Vpd_{0i} \exp(k_D T)C_{poni}$ mg-N L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 無機態N (NH4-N)へ の分解回帰 $Dpi_{poni} = Vpi_{Ti}C_{poni}$ (詳細は表 B-11)mg-N L ⁻¹ s ⁻¹ U^{-1} s ⁻¹ 懸濁有機態 P: 易分解 POP および難分解 POP (popi, i = f: 易分解, s: 難分解) $Mg-P$ L ⁻¹ s ⁻¹ U^{-1} s ⁻¹ 純増加量 $S_{popi} = \sum_{pl} Sbs_{pl \rightarrow popi} - Dpd_{popi} - Dpi_{popi}$ mg-P L ⁻¹ s ⁻¹ 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow popi} = R_{pl \rightarrow i}Rdf_{PC}Mor_{pl}$ mg-P L ⁻¹ s ⁻¹ 縮物プランクトン自然 死・捕食による増加 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹ 擬態 P (DIP)への 分解回帰 $Dpd_{popi} = Vpi_{Ti}C_{popi}$ (詳細は表 B-11)mg-P L ⁻¹ s ⁻¹				RUJNC		
粒化 I point L · I s · I I view L 無機態 N (NH4-N)へ の分解回帰 $Dpi_{poni} = Vpi_{Ti}C_{poni}$ (詳細は表 B-11) mg-N L · I s · I mg-N L · I s · I 懸濁有機態 P: 易分解 POP および難分解 POP (popi, i = f: 易分解, s: 難分解) mg-P L · I s · I mg-P L · I s · I 純増加量 $S_{popi} = \sum_{pl} Sbs_{pl \rightarrow popi} - Dpd_{popi} - Dpi_{popi}$ mg-P L · I s · I mg-P L · I s · I 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow popi} = R_{pl \rightarrow i} Rdf_{PC} Mor_{pl}$ mg-P L · I s · I Rdf_{PC} 溶存有機態 P への細 粒化 $Dpd_{popi} = Vpd_{0i} \exp(k_DT)C_{popi}$ mg-P L · I s · I Vpd_{0i}, k_D 無機態 P (DIP)への 分解回帰 $Dpi_{popi} = Vpi_{Ti}C_{popi}$ (詳細は表 B-11) mg-P L · I s · I Vpd_{0i}, k_D	溶存有機態Nへの細	$Dpd_{powi} = Vpd_{oi} \exp(k_D T)C_{powi}$	mg-N	Vpd_{0i}, k_D		
無機態 N (NH4-N)へ の分解回帰 $Dpi_{poni} = Vpi_{Ti}C_{poni}$ (詳細は表 B-11)mg-N L ⁻¹ s ⁻¹ 懸濁有機態 P: 易分解 POP および難分解 POP (popi, i = f: 易分解, s: 難分解)純増加量 $S_{popi} = \sum_{pl} Sbs_{pl \rightarrow popi} - Dpd_{popi} - Dpi_{popi}$ mg-P L ⁻¹ s ⁻¹ 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow popi} = R_{pl \rightarrow i}Rdf_{PC}Mor_{pl}$ mg-P L ⁻¹ s ⁻¹ 縮物プランクトン自然 校化 $Dpd_{popi} = Vpd_{0i} \exp(k_DT)C_{popi}$ mg-P L ⁻¹ s ⁻¹ 振機態 P (DIP)への 分解回帰 $Dpi_{popi} = Vpi_{Ti}C_{popi}$ (詳細は表 B-11)mg-P L ⁻¹ s ⁻¹	粒化		L-1 s-1	1		
の分解回帰 L ⁻¹ point L ⁻¹ point L ⁻¹ point L ⁻¹ s ⁻¹ 懸濁有機態 P: 易分解 POP および難分解 POP (popi, i = f: 易分解, s: 難分解) 純増加量 $S_{popi} = \sum_{pl} Sbs_{pl \rightarrow popi} - Dpd_{popi} - Dpi_{popi}$ mg-P L ⁻¹ s ⁻¹ 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow popi} = R_{pl \rightarrow i}Rdf_{PC}Mor_{pl}$ mg-P L ⁻¹ s ⁻¹ Rdf_{PC} 溶存有機態 P への細 粒化 $Dpd_{popi} = Vpd_{0i} \exp(k_DT)C_{popi}$ mg-P L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 無機態 P (DIP)への 分解回帰 $Dpi_{popi} = Vpi_{Ti}C_{popi}$ (詳細は表 B-11) mg-P L ⁻¹ s ⁻¹	無機態 N (NH4-N)へ	$Dpi_{noni} = Vpi_{Ti}C_{noni}$ (詳細は表 B-11)	mg-N			
懸濁有機態 P: 易分解 POP および難分解 POP (popi, i = f: 易分解, s: 難分解) 純増加量 $S_{popi} = \sum_{pl} Sbs_{pl \rightarrow popi} - Dpd_{popi} - Dpi_{popi}$ mg-P L ⁻¹ s ⁻¹ 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow popi} = R_{pl \rightarrow i} Rdf_{PC} Mor_{pl}$ mg-P L ⁻¹ s ⁻¹ 溶存有機態 P への細 粒化 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹ 無機態 P (DIP)への 分解回帰 $Dpi_{popi} = Vpi_{Ti}C_{popi}$ mg-P L ⁻¹ s ⁻¹	の分解回帰		L ⁻¹ s ⁻¹			
純増加量 $S_{popi} = \sum_{pl} Sbs_{pl \rightarrow popi} - Dpd_{popi} - Dpi_{popi}$ mg-P L ⁻¹ s ⁻¹ 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow popi} = R_{pl \rightarrow i} Rdf_{PC} Mor_{pl}$ mg-P L ⁻¹ s ⁻¹ $R_{pl \rightarrow i, b}$ Rdf_{PC}溶存有機態 P への細 粒化 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 無機態 P (DIP)への 分解回帰 $Dpi_{popi} = Vpi_{Ti}C_{popi}$ (詳細は表 B-11)mg-P L ⁻¹ s ⁻¹	懸濁有機態 P: 易分解 POP	・および難分解 POP (popi, i = f: 易分解, s: 難分解	₹)	1		
plL ⁻¹ s ⁻¹ 植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow popi} = R_{pl \rightarrow i} Rdf_{PC} Mor_{pl}$ mg-P L ⁻¹ s ⁻¹ $R_{pl \rightarrow i},$ Rdf _{PC} 溶存有機態 P への細 粒化 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 無機態 P (DIP)への 分解回帰 $Dpi_{popi} = Vpi_{Ti}C_{popi}$ (詳細は表 B-11)mg-P L ⁻¹ s ⁻¹	純増加量	$S_{popi} = \sum Sbs_{pl \to popi} - Dpd_{popi} - Dpi_{popi}$	mg-P			
植物プランクトン自然 死・捕食による増加 $Sbs_{pl \rightarrow popi} = R_{pl \rightarrow i}Rdf_{PC}Mor_{pl}$ mg-P L ⁻¹ s ⁻¹ $R_{pl \rightarrow i}, Rdf_{PC}$ 溶存有機態 P への細 粒化 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 無機態 P (DIP)への 		pl	L ⁻¹ s ⁻¹			
死・捕食による増加 $SOS_{pl \rightarrow popi} = R_{pl \rightarrow i} RdJ_{PC} MOr_{pl}$ $L^{-1} s^{-1}$ Rdf_{PC} 溶存有機態 P への細 粒化 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ $mg-P$ $L^{-1} s^{-1}$ Vpd_{0i}, k_D 無機態 P (DIP)への 分解回帰 $Dpi_{popi} = Vpi_{Ti}C_{popi}$ (詳細は表 B-11) $mg-P$ $L^{-1} s^{-1}$	植物プランクトン自然		mg-P	$R_{pl ightarrow i}$,		
溶存有機態 P への細 粒化 $Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ mg-P L ⁻¹ s ⁻¹ Vpd_{0i}, k_D 無機態 P (DIP)への 分解回帰 $Dpi_{popi} = Vpi_{Ti}C_{popi}$ (詳細は表 B-11)mg-P L ⁻¹ s ⁻¹	死・捕食による増加	$SOS_{pl \to popi} = R_{pl \to i} Raj_{PC} NOr_{pl}$	L-1 s-1	Rdf_{PC}		
地化Dpd popi = Vpd i exp(k_DT)C popiIIIg-1Vpd i, k_D粒化L ⁻¹ s ⁻¹ Dpd popi = Vpi C popiIIIg-1Vpd i, k_D無機態 P (DIP)への 分解回帰Dpi popi = Vpi C popi(詳細は表 B-11)mg-P			mo-P			
無機態 P (DIP)への 分解回帰 $Dpi_{popi} = Vpi_{Ti}C_{popi}$ (詳細は表 B-11) $mg-P$ L ⁻¹ s ⁻¹	粉化	$Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$	L ⁻¹ s ⁻¹	Vpd_{0i}, k_D		
$Dpi_{popi} = Vpi_{Ti}C_{popi} $ (詳細は表 B-11) 分解回帰 L ⁻¹ s ⁻¹			mg_P			
	分解回帰	$Dpi_{popi} = Vpi_{Ti}C_{popi}$ (詳細は表 B-11)	L ⁻¹ s ⁻¹			

表 B-9 懸濁有機態のモデル基礎式

	関数	単位	パラメータ		
溶存有機態 C: 易分解 DOC および難分解 DOC (doci, i = f: 易分解, s: 難分解)					
純増加量	$S_{doci} = \sum_{pl} Sbs_{pl \to doci} + Dpd_{poci} - Ddi_{doci}$	mg-C L ⁻¹ s ⁻¹			
植物プランクトン 細胞外浸出	$Sbs_{pl \to doci} = R_{pl \to i} Exc_{pl}$	mg-C L ⁻¹ s ⁻¹	$R_{pl \to i}$		
懸濁有機態 C の 分解	$Dpd_{poci} = Vpd_{0i} \exp(k_D T)C_{poci}$ (表 B-9 に既出)	mg-C L ⁻¹ s ⁻¹	Vpd_{0i}, k_D		
無機態 C への分 解消滅	$Ddi_{doci} = Vdi_{T_i}C_{doci}$ (詳細は表 B-12)	mg-C L ⁻¹ s ⁻¹			
溶存有機態 N: 易分解 I	DON および難分解 DON (doni, i = f: 易分解, s: 難分	解)			
純増加量	$S_{doni} = \sum_{pl} Sbs_{pl \to doni} + Dpd_{poni} - Ddi_{doni}$	mg-N L ⁻¹ s ⁻¹			
植物プランクトン 細胞外浸出	$Sbs_{pl \to doni} = R_{pl \to i} Rdf_{NC} Exc_{pl}$	mg-N L ⁻¹ s ⁻¹	$R_{pl ightarrow i},$ Rdf_{NC}		
懸濁有機態 N の 分解	$Dpd_{poni} = Vpd_{0i} \exp(k_D T)C_{poni}$ (表 B-9 に既出)	mg-N L ⁻¹ s ⁻¹	Vpd_{0i}, k_D		
無 機 態 N (NH4-N)への分解 回帰	$Ddi_{doni} = Vdi_{Ti}C_{doni}$ (詳細は表 B-12)	mg-N L ⁻¹ s ⁻¹			
溶存有機態 P: 易分解 I	OOP および難分解 DOP (dopi, i = f: 易分解, s: 難分解	解)			
純増加量	$S_{dopi} = \sum_{pl} Sbs_{pl \to dopi} + Dpd_{popi} - Ddi_{dopi}$	mg-P L ⁻¹ s ⁻¹			
植物プランクトン 細胞外浸出	$Sbs_{pl \to dopi} = R_{pl \to i} Rdf_{PC} Exc_{pl}$	mg-P L ⁻¹ s ⁻¹	$R_{pl ightarrow i},$ Rdf_{PC}		
懸濁有機態 P の 分解	$Dpd_{popi} = Vpd_{0i} \exp(k_D T)C_{popi}$ (表 B-9 に既出)	mg-P L ⁻¹ s ⁻¹	Vpd_{0i}, k_D		
無機態 P (DIP)へ の分解回帰	$Ddi_{dopi} = Vdi_{Ti}C_{dopi}$ (詳細は表 B-12)	mg-P L ⁻¹ s ⁻¹			

表 B-9 および表 B-10 では、懸濁有機態から無機態、溶存有機態から無機態への分解がそれぞれ 1 つの式で表されているが、それには好気分解、準嫌気分解(脱窒)、嫌気分解が含まれている(表 B-11 および表 B-12)。好気分解では溶存酸素を、準嫌気分解では硝酸を有機態炭素の分解量に応じてそれぞれ消費する。

	関数	パラメータ
比分解速度	$Vpi_{Ti} = Vpi_{0i} \exp(k_D T) = Vpi_{oxi} + Vpi_{sbi} + Vpi_{ani}$	Vpi_{0i}, k_D
好気分解速度	$Vpi_{oxi} = Vpi_{Ti} \left\{ \frac{\max(C_{dox}, 0)}{K_{Dox} + C_{dox}} \right\}$	K _{Dox}
準嫌気分解(脱 窒)速度	$Vpi_{sbi} = Vpi_{Ti} \left\{ 1 - \frac{\max\left(C_{dox}, 0\right)}{K_{Dox} + C_{dox}} \right\} \left(\frac{C_{dino}}{K_{Dsb} + C_{dino}} \right)$	K _{Dox} , K _{Dsb}
嫌気分解速度	$Vpi_{ani} = Vpi_{Ti} \left\{ 1 - \frac{\max\left(C_{dox}, 0\right)}{K_{Dox} + C_{dox}} \right\} \left(1 - \frac{C_{dino}}{K_{Dsb} + C_{dino}} \right)$	K _{Dox} , K _{Dsb}

表 B-11 懸濁有機態から無機態への分解の構成

Τ水温(℃)(浅海域では温位θとほぼ同値)

表 B-12 溶存有機態から無機態への分解の構成

	関数	パラメータ
比分解速度	$Vdi_{Ti} = Vdi_{0i} \exp(k_D T) = Vdi_{oxi} + Vdi_{sbi} + Vdi_{ani}$	$V di_{0i}, k_D$
好気分解速度	$Vdi_{oxi} = Vdi_{Ti} \left\{ \frac{\max \left(C_{dox}, 0 \right)}{K_{Dox} + C_{dox}} \right\}$	K _{Dox}
準嫌気分解(脱 窒)速度	$Vdi_{sbi} = Vdi_{Ti} \left\{ 1 - \frac{\max\left(C_{dox}, 0\right)}{K_{Dox} + C_{dox}} \right\} \left(\frac{C_{dino}}{K_{Dsb} + C_{dino}} \right)$	K _{Dox} , K _{Dsb}
嫌気分解速度	$Vdi_{ani} = Vdi_{Ti} \left\{ 1 - \frac{\max\left(C_{dox}, 0\right)}{K_{Dox} + C_{dox}} \right\} \left(1 - \frac{C_{dino}}{K_{Dsb} + C_{dino}} \right)$	K _{Dox} , K _{Dsb}

*T*水温(℃)(浅海域では温位*θ*とほぼ同値)

【無機態栄養塩】

無機態栄養塩のモデル基礎式を表 B-13 に示す。また、モデルパラメータを表 B-15 に示す。本 モデルでは、DIP と懸濁粒子の吸脱着が考慮されており、吸着は好気時、脱着は嫌気分解発生時 に発生するようにしてある。なお、モデルの簡素化のため吸脱着は最細粒径の懸濁粒子とのみ生 じるものとし、吸着量の上限(吸着能)を設けてある。

	関数	単位	パラメータ
NH ₄ -N			
<u> </u>	$S_{dinh} = -\sum Cns_{dinh \rightarrow pl} + \sum Dpi_{papi} + \sum Ddi_{dani} - Nit$	mg-N	
	pl poni doni	L-1 s-1	
植物プランクトン	$C_{NS} = -\frac{\min(f_{NHpl}, f_{DIPpl})}{Rdf} Rdf G_{DP}$	mg-N	Rdfuc
による吸収	$f_{Npl} = f_{Npl}$	L ⁻¹ s ⁻¹	RUJNC
懸濁有機態 N		mg-N	
の分解回帰	$Dpl_{poni} = Vpl_{Ti}C_{poni}$ (表 B-9 に既出)	L-1 s-1	
溶存有機態 N	$Ddi_{dott} = Vdi_{T}C_{dott}$ (表 B-10 に既出)	mg-N	
の分解回帰		L-1 s-1	
	Nit Nit and $(k, T) \int \max(C_{dox}, 0) \Big _C$	mg-N	Nito, k _{nit} ,
4月1七	$IVII = IVII_0 \exp(\kappa_{nit}I) \left\{ \frac{K_{nit} + C_{dox}}{K_{nit} + C_{dox}} \right\}^C C_{dinh}$	L ⁻¹ s ⁻¹	K _{nit}
NO ₃ -N			
	$S_{dim} = -\sum Cns_{dim} + Denit + Nit$	mg-N	
祁山省川里	$ano \sum_{pl} ano \rightarrow pl$	L-1 s-1	
植物プランクトン	$C_{NR} = - \min \left(f_{DINpl} - f_{NHpl}, f_{DIPpl} \right)_{Pdf} G_{P}$	mg-N	Ddf
による吸収	$C_{NS_{dino} \rightarrow pl} = \frac{f_{Npl}}{f_{Npl}} K_{MJ_{NC}} O_{pl}$	L-1 s-1	Kaj _{NC}
準嫌気分解に	Denit – R $\left(\sum V_{Di} C + \sum V_{di} C \right)$	mg-N	Pug
伴う消費(消滅)	$\sum_{poci} r_{NCan} \left(\sum_{poci} r_{sbi} c_{poci} + \sum_{doci} r_{usbi} c_{doci} \right)$	L-1 s-1	R _N Can
硝化	$Nit = Nit \exp(k T) \left\{ \frac{\max(C_{dox}, 0)}{\sum} \right\} C \qquad (\mathbb{K}\mathbb{H})$	mg-N	Nito, k _{nit} ,
	$K_{nit} + C_{dox}$	L ⁻¹ s ⁻¹	Knit
DIP			1
	$S_{dip} = -\sum Cns_{dip \rightarrow pl} - Adsr + Dsr$	mg-P	
		L-1 s-1	
植物プランクトン	$Cns_{1} = Rdf_{pc}Gp$	mg-P	Rdfpc
による吸収	$dip \rightarrow pl$ $dip \rightarrow pl$ $dif pc \circ r pl$	L ⁻¹ s ⁻¹	majre
SS への吸着	$Adsr = \min\left\{V_{a,b}C_{a,c} \frac{\max\left(C_{dox}, 0\right)}{C_{a,c}}C_{a,c} \frac{CapC_{sps} - C_{adp}}{C_{adp}}\right\}$	mg-P	$V_{adp}, K_{adp},$
(好気時)	$\begin{bmatrix} adp - sps \\ K_{adp} + C_{dox} \end{bmatrix} \Delta t$	L-1 s-1	Cap
SS からの脱着	$Dsr = \min \left\{ R_{rot} \left\{ \sum Vpi \cdot C + \sum Vdi \cdot C \right\} \right\}$	mg-P	Rpcdar
(嫌気時)	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	L ⁻¹ s ⁻¹	recase

表 B-13 無機態栄養塩のモデル基礎式

Δt: 計算の時間ステップ(sec)

【溶存酸素】

溶存酸素のモデル基礎式を表 B-14 に示す。また、モデルパラメータを表 B-15 に示す。溶存酸素については海面における再曝気を考慮してあり、境界条件として与えられる。

	関数	単位	パラメータ
DO			
純増加量	$S_{dox} = \sum_{pl} Spl_{pl \to dox} - Oxdec - Andec - Nit_{dox} (+Rrt_{dox})$	mg-O ₂ L ⁻¹ s ⁻¹	
植物プランクトン光合 成による供給	$Spl_{pl \to dox} = R_{OC}Gp_{pl}$	mg-O ₂ L ⁻¹ s ⁻¹	R _{OC}
有機物の好気分解に よる DO 消費	$Oxdec = R_{OC} \left(\sum_{poci} Vpi_{oxi} C_{poci} + \sum_{doci} Vdi_{oxi} C_{doci} \right)$	mg-O ₂ L ⁻¹ s ⁻¹	R _{OC}
有機物の嫌気分解に よる ODU 生成	Andec = $R_{OC}\left(\sum_{poci} Vpi_{ani}C_{poci} + \sum_{doci} Vdi_{ani}C_{doci}\right)$	mg-O ₂ L ⁻¹ s ⁻¹	R _{OC}
硝化に伴う消費	$Nit_{dox} = R_{ON}Nit$	mg-O ₂ L ⁻¹ s ⁻¹	R _{ON}
再曝気量(大気からの 供給、海面格子のみ)	$Rrt_{dox} = 0.31 V_{air}^2 \left(Sc / 660 \right)^{-0.5} \frac{DO_{sat} - C_{dox}}{\Delta h_s} 1$	mg-O ₂ L ⁻¹ s ⁻¹	

表 B-14 溶存酸素のモデル基礎式

1) Wanninkhof (1992)。 *Vair*: 風速(m sec⁻¹)、 *Sc*: 溶存酸素の Schmit 数、 *DOsat*: 海面における飽和溶存酸素量(mg-O₂ L⁻¹)、 *Δhs*: 表層厚(m)。

	表記	値	単位	備考
植物プランクトン態有機物の易分解性の割合	$R_{pl \rightarrow f}$	0.95	無次元	1)
同 難分解性の割合	$R_{pl \rightarrow s}$	0.05	無次元	1)
易分解性の懸濁→溶存有機態の細粒化速度	Vpd _{0f}	0.0050	day-1	2)
難分解性の懸濁→溶存有機態の細粒化速度	Vpd_{0s}	0.0001	day-1	2)
易分解性の懸濁有機態→無機態の比分解速度	Vpi _{0f}	0.0450	day-1	2)
難分解性の懸濁有機態→無機態の比分解速度	Vpi _{0s}	0.0000	day-1	2)
易分解性の溶存有機態→無機態の比分解速度	Vdi _{0f}	0.0500	day-1	2)
難分解性の溶存有機態→無機態の比分解速度	Vdi _{0s}	0.0005	day-1	2)
有機物分解の温度係数	<i>k</i> _D	0.0693	°C-1	1) ($Q_{10} = 2.0$)
好気分解に関わる DO の半飽和定数	K _{Dox}	0.10	mg-O ₂ L ⁻¹	1)
準嫌気分解に関わるNO3-Nの半飽和定数	K_{Dsb}	0.16	mg-N L ⁻¹	1)
単位炭素量の好気分解に要する DO 量	R_{OC}	2.67	g-O ₂ g-C ⁻¹	理論値
単位炭素量の準嫌気分解に要する NO3-N 量	R_{NC}	0.933	g-N g-C ⁻¹	理論値
硝化速度	Nit ₀	0.024	day-1	1)
硝化の温度係数	Knit	0.0693	°C-1	1) ($Q_{10} = 2.0$)
硝化に関わる DO の半飽和定数	<i>k</i> _{nit}	0.032	$mg-O_2 L^{-1}$	1)
単位窒素量の硝化に要する DO 量	RON	4.57	g-O ₂ g-N ⁻¹	理論値
DIP の吸着速度	V_{adp}	0.0010	m ³ kg ⁻¹ day ⁻¹	3)
DIP 吸着に関わる DO の半飽和定数	Kadp	0.10	mg-O ₂ L ⁻¹	調整値
SSのDIP 吸着能	Cap	0.52	g-P kg-SS ⁻¹	4)

表 B-15 水質モデルの懸濁有機態・溶存有機態・無機態栄養塩・溶存酸素に関するパラメータ

Sohma et al. (2008)に基づいて調整した値、2) 東京湾で採取した海水を用いた分解実験の結果
 (国立環境研究所, 2010)に基づいて調整した値、3) Shinohara et al. (2017)に基づいて調整した値、
 4) Suzumura et al. (2004)等に基づいて調整した値。

3.1.2.3 底質モデル

底質モデルは、Higashi et al. (2015)の放射性セシウム137動態モデルをベースとして、それをC-N-P-O 循環に置き換えたものである。底質モデルの予測変数を表 B-16 に記す。

図 B-7 に記された物質間の各パスに与えるモデルの基礎式については、植物プランクトン態が存在しないことと、有機物分解や硝化の速度をシルト・泥分の含有率に応じて変化させていることを除けば、基本的には水質モデルと同じ表 B-9~表 B-14を使用している。本業務で用いた底質モデルのモデルパラメータを表 B-17 に示す。

底質モデルにおける海底堆積物中の物質の移動は水平方向を無視した鉛直1次元の輸送方程式で 解析され、海底表層は堆積・巻上げ(懸濁粒子・懸濁有機態)および拡散溶出(溶存有機態・無機態栄養 塩・溶存酸素)を介して水質モデルの底層とオンラインで接続されている。その方法については3.1.2.4章 にて記す。

名称		表記	単位	名称		表記	単位
懸濁粒子	シルト・泥	C_{sps}	g m ⁻³	溶存	易分解 DOC	C_{docf}	g-C m ⁻³
(鉱物)	砂	C_{spl}	g m ⁻³	有機態	難分解 DOC	C_{docs}	g-C m ⁻³
懸濁	易分解 POC	Cpocf	g-C m ⁻³		易分解 DON	C_{donf}	g-N m ⁻³
有機態	難分解 POC	C_{pocs}	g-C m ⁻³		難分解 DON	C_{dons}	g-N m ⁻³
	易分解 PON	C_{ponf}	g-N m ⁻³		易分解 DOP	C_{dopf}	g-P m ⁻³
	難分解 PON	C_{pons}	g-N m ⁻³		難分解 DOP	C_{dops}	g-P m ⁻³
	易分解 POP	C_{popf}	g-P m ⁻³	無機態	NO ₃ -N	C_{dino}	g-N m ⁻³
	難分解 POP	C_{pops}	g-P m ⁻³	栄養塩	NH4-N	C_{dinh}	g-N m ⁻³
溶存酸素	DO	C_{dox}	g-O ₂ m ⁻³		DIP	C_{dip}	g-P m ⁻³
				吸着態 P	C_{adp}	g-P m ⁻³	

表 B-16 底質モデルの予測変数

単位のm-3はバルク(土粒子+空隙)の体積

	表記	値	単位	備考	
シルト・粘土					
易分解性の懸濁→溶存有機態の細粒化速度	Vpd _{0f}	0.00167	day-1	1)	
難分解性の懸濁→溶存有機態の細粒化速度	Vpd_{0s}	0.00003	day-1	1)	
易分解性の懸濁有機態→無機態の比分解速度	Vpi _{0f}	0.01500	day-1	1)	
難分解性の懸濁有機態→無機態の比分解速度	Vpi _{0s}	0.00000	day-1	1)	
易分解性の溶存有機態→無機態の比分解速度	Vdi _{0f}	0.01667	day-1	1)	
難分解性の溶存有機態→無機態の比分解速度	Vdi _{0s}	0.00017	day-1	1)	
有機物分解の温度係数	<i>k</i> _D	0.1335	°C-1	2) ($Q_{10} = 3.8$)	
硝化速度	Nit ₀	0.008	day-1	1)	
硝化の温度係数	K _{nit}	0.1335	°C-1	2) ($Q_{10} = 3.8$)	
DIP の吸着速度	V_{adp}	0.0010	m ³ kg ⁻¹ day ⁻¹	3)	
DIP 吸着に関わる DO の半飽和定数	K _{adp}	0.10	mg-O ₂ L ⁻¹	3)	
SS の DIP 吸着能	Сар	0.52	g-P kg-SS ⁻¹	3)	
砂					
易分解性の懸濁→溶存有機態の細粒化速度	Vpd _{0f}	0.00500	day-1	1)	
難分解性の懸濁→溶存有機態の細粒化速度	Vpd_{0s}	0.00010	day-1	1)	
易分解性の懸濁有機態→無機態の比分解速度	Vpi _{0f}	0.04500	day-1	1)	
「難分解性の懸濁有機態→無機態の比分解速度	Vpi _{0s}	0.00000	day-1	1)	
易分解性の溶存有機態→無機態の比分解速度	Vdi _{0f}	0.05000	day-1	1)	
難分解性の溶存有機態→無機態の比分解速度	Vdi _{0s}	0.00050	day-1	1)	
有機物分解の温度係数	k_D	0.0693	°C-1	2) ($Q_{10} = 2.0$)	
硝化速度	Nit ₀	0.024	day-1	1)	
硝化の温度係数	Knit	0.0693	°C-1	2) ($Q_{10} = 2.0$)	
共通(シルト・粘土・砂)					
好気分解に関わる DO の半飽和定数	K _{Dox}	0.10	$mg-O_2 L^{-1}$	3)	
準嫌気分解に関わるNO3-Nの半飽和定数	K _{Dsb}	0.16	mg-N L ⁻¹	3)	
硝化に関わる DO の半飽和定数	<i>k</i> _{nit}	0.032	mg-O ₂ L ⁻¹	3)	
単位炭素量の好気分解に要する DO 量	Roc	2.67	g-O ₂ g-C ⁻¹	理論値	
単位炭素量の準嫌気分解に要する NO3-N 量	R_{NC}	0.933	g-N g-C ⁻¹	理論値	
単位窒素量の硝化に要する DO 量	R_{ON}	4.57	g-O ₂ g-N ⁻¹	理論値	

表 B-17 底質モデルの懸濁有機態・溶存有機態・無機態栄養塩・溶存酸素に関するパラメータ

1) Sohma et al. (2008)および Fossing et al. (2004)に基づいて調整した値、2) Fossing et al. (2004)、3) 水質モデルと同じ値。

3.1.2.4 水質モデルと底質モデルの接続

【粒子状物質の沈降・堆積速度】

懸濁粒子、植物プランクトン、懸濁有機物などの粒子状物質は水中を沈降して海底に堆積する。また、 強い底層流によって海底面が攪乱されると、粒子状物質は巻上げられ、海水の流れに従って輸送・拡散 されつつ、再び海底に堆積する。

水中の沈降に関しては移流拡散方程式(B-56)の wpM にて表され、底層水からの沈降量が海底への堆積量となる。本モデルでは表 B-18 のように沈降速度 wpMを与えた。植物プランクトンの沈降速度に関しては、種による違いはもちろんのこと、栄養塩制限下で珪藻の沈降速度が増加するなど生理状態にも左右されることが報告されている(小野ら, 2006)ため、それを考慮した関数を作成して与えたものの、妥当性の検証は行っておらず、不確実性が残されている。

	関数・値 (m day ⁻¹)	備考
S型珪藻	$w_{pplw} = \begin{cases} 0.54 & (f_{Nplw} \ge 0.5) \\ 0.54 + 4.0(1 - 2f_{Nplw}) & (f_{Nplw} < 0.5) \end{cases}$	1)
E 型珪藻	$w_{pplc} = \begin{cases} 0.12 & (f_{Nplc} \ge 0.5) \\ 0.12 + 5.0(1 - 2f_{Nplc}) & (f_{Nplc} < 0.5) \end{cases}$	1)
P型渦鞭毛藻	$w_{ppls} = egin{cases} -20.0 & \left(f_{Npls} \geq 0.5 ight) \ 20.0 & \left(f_{Npls} < 0.5 ight) \end{cases}$	2)
懸濁粒子(シルト・泥)	w _{psps} = 30 (固定值)	3)
懸濁粒子(砂)	$w_{pspl} = 400$ (固定值)	3)
懸濁態有機物	w _{pM} = 20 (固定值)	調整値

表 B-18 水質モデルに用いた植物プランクトン、懸濁粒子、懸濁態有機物の沈降速度

1) 小野ら(2006)のデータを参考に定式化、2) マイクロコズム実験の結果(国立環境研究所, 2016) を参考に定式化、3) 内山(2017)を参考に調整した値。

【海底堆積物の巻上】

海底に堆積した懸濁粒子の巻上は底層流による底面せん断応力が粒子の限界せん断応力を超えた ときに発生するものとしてモデル化した。

$$sus_{M} = \max\left[0, E_{M} \frac{C_{bM}}{\sum_{j} C_{bj}} (\tau_{b} / \tau_{crM} - 1)\right]$$
(B-57)

ここに、sus_M: 懸濁粒子 M の巻上フラックス (kg m⁻² s⁻¹)、E_M: 巻上げ係数(kg m⁻² s⁻¹)、τ_{crM}: 限界せん断

応力(N m⁻²)、 ₇₆:底面せん断応力(N m⁻²)、 C_{bM}:海底表層グリッドにおける懸濁粒子 M の濃度(kg m⁻³)である。表 B-19 に解析に用いた懸濁粒子の巻上げ係数および限界せん断応力を示す。

表 B-19 解析に用いた懸濁粒子の巻上げ係数および限界せん断応力

	巻上げ係数(kg m ⁻² s ⁻¹)	限界せん断応力(Nm ⁻²)	備考
懸濁粒子(シルト・泥)	2.0×10 ⁻⁴	0.36	1)
懸濁粒子(砂)	1.0×10-3	0.50	1)

1) 内山(2017)を参考に調整した値。

懸濁態有機物の巻上については、モデル化に関する知見が乏しいため、ここでは懸濁粒子と巻上率 (海底表層グリッドにおける現存量に対する巻上量)が同じと仮定して算定した。なお、植物プランクトンに ついては、海底堆積時に直ちに死亡し、懸濁有機物に変わるものとした。

【海底堆積物中における物質の鉛直移動】

実際には懸濁粒子の堆積・巻上げに伴って海底面の位置が変動するが、その位置を逐次追跡する移動境界を考慮したモデル化を行うと計算量が著しく膨大になる。それを避けるため、海底堆積物中における物質の鉛直移動モデルには鉛直座標の原点を海底面に常に固定した相対空間の輸送方程式(B-58)を採用している(Higashi et al., 2015)。

$$\frac{\partial C_M}{\partial t} + w_s \frac{\partial C_M}{\partial z'} = D_{bM} \frac{\partial^2 C_M}{\partial z'^2} + S_M$$
(B-58)

ここに、 C_M :物質 Mの海底中のバルク濃度(例えば g m⁻³)、 D_{bM} :物質 Mの拡散係数(m² s⁻¹)、 S_M :物質 Mの生成項(例えば g m⁻³ s⁻¹)、z':海底面を 0 とした鉛直座標(上向きを正)である。 w_s は海底面の下降速 度(m s⁻¹)、すなわち巻上速度であり、式(B-57)で求めた懸濁粒子の巻上量(kg m⁻² s⁻¹)を堆積物のバルク 密度(kg m⁻³)で除すことにより算定される。なお、本モデルではバルク密度をモデルパラメータとして取り 扱い、シルト・泥には 0.83×10³ (真比重 2.76、間隙率 0.70)、砂には 1.66×10³ kg m⁻² s⁻¹(真比重 2.76、間隙率 0.40)を与えた。

堆積物中の拡散係数 D_{bM}については、粒子状物質(懸濁粒子、懸濁有機態および無機態栄養塩の吸 着態 P)には 0 を、他の溶存物質については 3.5×10⁻¹⁰ m² s⁻¹を与えた。後者の溶存物質については、こ の拡散係数に従って、水質モデルの底層水と底質モデルの表層における物質交換が行われる。

3.2 海域流動・水質・底質モデルの再現性(環境省広域総合水質調査 2007~2014 年1、5、7、10 月の観測値と計算値の月平均値の比較)

3.2.1 表層水温

図 B-8 表層水温の計算値(月平均値)と観測値(環境省広域総合水質調査)の比較

図 B-8(続き) 表層水温の計算値(月平均値)と観測値(環境省広域総合水質調査)の比較

図 B-8(続き) 表層水温の計算値(月平均値)と観測値(環境省広域総合水質調査)の比較

図 B-8(続き) 表層水温の計算値(月平均値)と観測値(環境省広域総合水質調査)の比較

図 B-9 表層 TN の計算値(月平均値)と観測値(環境省広域総合水質調査)の比較

図 B-9(続き) 表層 TN の計算値(月平均値)と観測値(環境省広域総合水質調査)の比較

図 B-9(続き) 表層 TN の計算値(月平均値)と観測値(環境省広域総合水質調査)の比較

図 B-9(続き) 表層 TN の計算値(月平均値)と観測値(環境省広域総合水質調査)の比較

図 B-10 表層 Chl. a の計算値(月平均値)と観測値(環境省広域総合水質調査)の比較

図 B-10 (続き) 表層 Chl. a の計算値(月平均値)と観測値(環境省広域総合水質調査)の比較

図 B-10 (続き) 表層 Chl. a の計算値(月平均値)と観測値(環境省広域総合水質調査)の比較

図 B-10 (続き) 表層 Chl. a の計算値(月平均値)と観測値(環境省広域総合水質調査)の比較