# 地下水汚染の効果的な未然防止対策の在り方について (答申案)

# 1. はじめに

# (地下水の特徴)

水循環系の構成要素の一つである地下水は、一般に水質が良好で、水温の変化が少ないこと等から、我が国では、古来、身近にある貴重な淡水資源として広く利用されてきた。平成19年度においては、都市用水(生活用水及び工業用水)の使用量のうち、約25%を地下水に依存している。上水道を例にすれば、全国の1,556の上水道事業の約7割で地下水を一部または全部の水源として利用し、そのための井戸の本数は約9,000本に達しているほか、災害時用として約4,500箇所で井戸が確保されている状況にあるなど、貴重な淡水資源として利用されている。また、近年の気候変動による降雨の変化等を踏まえれば、将来的にも淡水資源としての重要性は高まると考えられる。

さらに地下水は、地域によっては住民の生活や文化、生態系とも関わりを有しており、水循環の過程で地下水が地表に現れた湧水が、住民に安らぎの場を提供したり、環境学習の場や観光資源として活用されたりすることもある。

このような地下水の価値を認識し、その恩恵を現在及び将来の世代の人間が享受できるよう保全に努めていかなければならない。

しかし、一般に流動が緩やかで、汚染物質の希釈が期待できないという地下水の特徴から、いったん汚染されると、多くの場合は、自然の浄化作用による水質の改善、回復は困難である。人為的に水質の改善を行う場合でも、一般に多額の費用と時間を要するという困難さを伴うことから、将来にわたって地下水の水質を効果的、効率的に保全していくためには、汚染を未然に防止することが重要である。

#### (水濁法改正の経緯と今回の検討の必要性)

国においては、昭和45年に、公共用水域の水質の汚濁の防止を図り、もって国民の健康を保護及び生活環境を保全することを目的に水質汚濁防止法(以下「水濁法」という。)を制定した。その後、トリクロロエチレン等の有機塩素系化合物による広範な地下水汚染が明らかになったこと等を踏まえ、地下水汚染の未然防止を図るため、平成元年に水濁法を一部改正し、目的規定に「地下水の水質の汚濁の防止を図る」ことを明記するとともに、有害物質使用特定施設に係る汚水等を含む水の地下浸透規制や地下水質の常時監視等の規定を整備した。また平成8年には、有害物質により汚染された地下水に係る浄化措置命令や油に係る事故時の措置に関する規定を整備するなど、地下水汚染対策を進めてきた。

こうした施策の実施にもかかわらず、環境省が平成21年度に地方公共団体の協

力を得て実施した地下水汚染の実態調査結果によれば、近年においても、工場・事業場が原因と推定される有害物質による地下水汚染事例が毎年継続的に確認されている。それらについて詳細に調査したところ、水濁法により地下浸透規制制度が導入された平成元年度以降も、地下水汚染の原因となる行為等が継続していることが確認された。これらは、施設の床面が有害物質の地下浸透を防止できる構造になっていなかったこと、施設・設備の劣化等による有害物質の漏洩や地下浸透を事業者が発見できなかったこと、有害物質の地下への浸透を未然に防止するための取組が行われていなかったこと等が、その原因として考えられる。

一方で、平成21年の「土壌汚染対策法の一部を改正する法律案に対する附帯決議」(平成21年4月16日、参議院環境委員会)において、「土壌汚染の現状にかんがみ、未然防止措置について早急に検討を進めるとともに、工場等の操業中の段階から計画的に土壌汚染対策に取り組むための措置を検討すること」とされた。また、平成22年の「大気汚染防止法及び水質汚濁防止法の一部を改正する法律案に対する附帯決議」(平成22年4月27日、参議院環境委員会)においても、水質事故に関して「事故そのものの減少を図るため、効果的な未然防止対策の在り方を検討すること」とされるなど、地下水・土壌汚染の未然防止対策の必要性について指摘されているところである。

これまで確認されている地下水汚染の原因物質は、長期的に摂取した場合に健康影響を生じさせる有害物質であることが多く、地下水汚染が確認された場合でも、速やかに周辺住民に対して飲用を控えるなどの指導が行われている。このことから、地下水汚染事例が直ちに人の健康への影響を顕在化させているわけではないものの、飲用に供されている地下水を含めて汚染の実態がある以上、人に対する健康影響リスクが存在する。また、地下水の汚染が改善されるまでの間、地下水の利用目的の制限あるいは利用する際の浄化等の費用の発生等、生活環境上の影響が生じることも考えられる。このように有害物質による地下水の汚染は、水濁法の目的である国民の健康の保護及び生活環境の保全に支障を生じさせるものである。

さらに、有害物質による地下水汚染が発生した場合には、一般に事業者が負担すべき浄化対策等の事後対策に要する費用は、未然防止の措置に要する費用に比べて膨大である。予め未然防止のための措置を講じることは、事業者が負担すべき費用の軽減や安定した事業の継続につながるものである。

これらのことから、国民の健康及び生活環境への影響を防止し、将来にわたって地下水の良好な水質を維持・保全する観点から、地下水汚染の未然防止対策を着実に実施するため、早急に追加的な制度を構築することが必要である。

なお、本答申においては、工場・事業場の日常の業務において発生する有害物質の 漏洩や地下への浸透を未然に防止する対策を検討したものであり、災害に伴い発生す る有害物質の漏洩を未然に防止する対策を検討したものではない。

# 2. 工場・事業場が汚染原因と推定される地下水汚染の現状

平成20年度末までに全国で確認された地下水汚染事例のうち、工場、事業場が原因と推定される地下水汚染事例(1,234 事例)の汚染原因等について、環境省が平成21年度に地方公共団体の協力を得て調査を行った。

その結果、地下水汚染の原因施設等まで推定できた事例 626 件のうち、汚染原因行為等の終了時期が平成元年度以降である事例(以下「平成元年度以降終了事例」という。)が約4割(252件)あり、水濁法改正により地下浸透規制制度等が導入された平成元年度以降も汚染原因となった行為や事象があることが明らかとなった。

この平成元年度以降終了事例においては、約4割で地下水汚染の範囲が工場・事業場の敷地外に広がっており、約3割で周辺の井戸水の飲用中止の指導を行うなど、地下水汚染の周辺への影響が認められた。また、それぞれの事例について汚染原因行為等が終了し、一部では汚染された地下水の浄化対策等が実施されているが、改善まで至っていない事例が多くある。

平成元年度以降終了事例の原因施設等をみると、約6割が水濁法の規制対象である特定施設(主な施設:洗浄設備、表面処理施設、電気めっき施設等)に係るもの、約3割が特定施設以外の施設(主な施設:貯油施設、洗浄設備、貯蔵設備、貯蔵場所等)に係るものであり、このほかに施設以外(浸透防止策がとられていない場所での作業等)に係るものが原因の事例もあった。

これらの事例に係る汚染経路としては、有害物質を取り扱う各種生産施設・設備の本体又は付帯する配管等から漏洩し、床面を経由して地下に浸透した事例、有害物質を含む液体の貯蔵設備の本体又は付帯する配管等から漏洩し、床面を経由して地下へ浸透した事例、廃液等の貯蔵場所・作業場所で漏洩し、床面を経由して地下に浸透した事例、排水系統で漏洩(一部生産設備での漏洩を含む)し、直接地下に浸透した事例、地下貯蔵設備から漏洩し、直接地中へ浸透した事例が確認された。

漏洩原因としては、施設・設備に係るものでは、生産設備や貯蔵設備の本体に付帯する配管部つなぎ目、パッキン等の劣化、破損による漏洩があり、まれに設備本体からの漏洩も確認された。また、廃液等の貯蔵場所における保管容器の劣化、破損等による漏洩等が確認された。作業に係るものとしては、不適切な設備の操作や有害物質の不適切な取り扱いによる漏洩、通常の作業工程中の漏洩(滴り落ち等)、溶剤や廃液等の移し替え作業時の漏洩等が確認された。

地下への浸透原因としては、生産設備や貯蔵設備の設置場所、貯蔵場所での浸透では、設置場所の床面の劣化等による亀裂等からの浸透、土間等の浸透性のある床からの浸透等によるものが確認された。排水系統での浸透では、排水溝、排水貯留設備等の亀裂等から地下に浸透するものが確認された。地下貯蔵設備では、貯蔵設備本体又は付帯する配管等の亀裂等から漏洩し、直接地中へ浸透するものが確認された。貯蔵

場所・作業場所での浸透では、貯蔵場所等の床の劣化等による亀裂等からの浸透、表面被覆されていない場所での作業中に漏洩したものがそのまま浸透したものが確認された。

漏洩原因等が確認された事例では、施設の破損等により、短時間で多量の有害物質が漏洩したような突発的な事例は少なく、施設・設備に付帯する配管部のつなぎ目等からの漏洩や、日常的、継続的な作業における漏洩など比較的少量の漏洩が長い期間継続することにより、地下水汚染に至った事例が多く確認された。

事業者が行った再発防止対策としては、施設・設備に係るものでは、不具合箇所の修繕(部品交換、溶接、再塗装等)、劣化・破損等している施設・設備の更新、施設設置場所等の床面の浸透防止の強化(不浸透性塗装の採用等)、地下に設置している施設の地上への移設等があった。また、点検・管理に係るものでは、原因物質の使用中止や代替物質への転換、施設や物質に係る点検の強化、運転の適正化(運転マニュアルの見直し等)等があった。

# 3. 地下水汚染の未然防止に係る対策・取組の現状

### (水濁法による地下浸透規制の現状)

全国的に地下水汚染が確認されたこと等を踏まえ、地下水汚染を防止するために平成元年に地下水質の常時監視、有害物質の地下浸透規制、事故時の措置に関する規定を導入するため水濁法が改正された。さらに、平成8年には浄化措置命令の規定、事故時の措置が拡充され、平成22年には虚偽記録等に係る罰則規定、事業者の責務規定、汚水流出事故時の措置の規定が整備された。

これらの規定に基づき、現時点において26項目の有害物質について地下への浸透を禁止等の措置を実施している。規定の対象となる有害物質を使用、製造又は処理する特定施設を設置する有害物質使用特定事業場数は、平成20年度末現在で14,272である。

水濁法による地下水の水質保全対策の概要は、以下のとおりである。

- 1) 有害物質使用特定事業場における、有害物質を含む排水の地下への浸透の禁止。
- 2) 有害物質を含まない排水を地下に浸透させる場合の届出の義務(平成20年度 末現在9事業場)、当該排水の汚染状態の測定、記録、都道府県知事及び水濁法 の事務の実施を委任されている市の市長(以下「都道府県知事等」という。)に よる計画変更命令及び改善命令。
- 3)特定事業場、指定事業場、貯油事業場等の事故時における応急措置の実施、都 道府県知事等による届出義務等の措置を講じていない場合の応急措置命令。
- 4) 有害物質の地下浸透により、人の健康に係る被害が生じ、又は生ずるおそれがあるときの、都道府県知事等による特定事業場の設置者に対する地下水の浄化措置命令。

5) 都道府県知事等による地下水の水質の状況の常時監視とその結果の公表。このように現行の水濁法では、有害物質を含む排水の地下への浸透が規制されている一方で、確認されている地下水汚染事例の多くは意図しない状況で地下に浸透した結果によるものと推定されている。したがって、結果的にこのような非意図的な地下浸透の未然防止には十分な効果が上がっていないと考えられる。

### (条例による地下浸透規制の現状)

全国の都道府県及び水濁法の事務の実施を委任されている市(平成22年11月現在108市)において、有害物質の地下浸透の未然防止のために施設の構造や点検・管理に関する措置を定めている条例は22ある。それらは、有害物質の地下浸透の禁止、施設設置時の届出義務または許可、施設の構造に関する基準(コンクリート床面、防液堤、受け皿、不浸透性被覆等)、点検・管理に関する基準(点検頻度、点検記録の保存、有害物質の管理等)等を定めている。これらの規定の多くが平成11年度以降に新たに設けられている。

これらの条例を定めている地方公共団体における地下水汚染の未然防止に対する効果に関しては、施設の設置前の事前協議や設置後の立入時等において、条例に規定する基準遵守の徹底が、条例という明確な根拠に基づいて指導でき、有害物質の地下浸透の未然防止が図れるという効果がみられた。

### (他法令による有害物質の漏洩防止に関する規制の現状)

消防法においては、可燃性や引火性を有する危険物を貯蔵する施設に対し、構造及び設備の技術上の基準(タンク室内に設置する鋼製タンク、二重殻タンク、危険物の漏れを防止する措置を講じたタンクについての設置条件、タンクの構造、タンクの外面保護、配管等に係る構造及び設備の基準を規定)、施設設置時の許可、施設の点検に係る基準(定期点検、点検記録の保存)、廃止の届出などを定めている。

なお、毒物及び劇物取締法等のその他の法律等においても、水濁法に定める有害物質の取扱いについての規制を定めているが、有害物質を直接製造、使用、処理、または貯蔵する施設に対する構造や点検・管理に係る基準やそれらの遵守義務を法令レベルで定めているものはない。

# (業界における地下浸透防止の取組)

工場・事業場においても、個別に、または業界全体として、地下水汚染を未然に防止するための様々な取組が自主的に行われている。当審議会において聞き取り調査をしたところ以下のとおりであった。

クリーニング業界では、「テトラクロロエチレン適正使用マニュアル」により、ハード面では、コンクリート等不浸透性材料の床面や耐溶剤性の合成樹脂で被覆するこ

とや受け皿、防液堤、側溝、溜めます等の設置、ソフト面では、溶剤使用に係る保守 点検管理表等を定めて、全国のクリーニング関係者を指導している。

石油業界では、消防法を遵守するため、日常管理について独自に作成した「SS施設安全点検記録帳」や「SS土壌環境セーフティーブック」等を全国のガソリンスタンドに配布し、定期点検の実施等を指導している。(SS:サービスステーション)

電気めっき業界では、ハード面では、床面対策としてコンクリートと耐薬品性塗装、排水路の強化、液漏れ対策、めっき槽の改善、ソフト面では、床面、側溝、ピットの日常定期点検、作業手順の遵守等を実施している。また、「電気めっき事業者のための土壌汚染対策ガイドライン策定事業報告書」等を公開しハード対策及びソフト対策を事業者に対し指導している。

化学関係の企業では、有害物質の漏洩対策として、ハード面では、設備の密閉化、装置の床をコンクリートで覆った上で防液堤の設置、床への回収設備の設置等を行っており、ソフト面では、床及び地下埋設設備・配管の定期点検、補修並びに取り扱いに関する教育等を実施している。

# 4. 今後の地下水汚染の効果的な未然防止対策の在り方について

### (1) 基本的な方針

地下水汚染の実態調査結果において、地下水汚染を引き起こすこととなった事業場等における有害物質の漏洩原因として、施設・設備の劣化・破損による漏洩等の施設・設備に係るものと、不適切な作業や設備の操作による漏洩等の作業や操作に係るものが確認された。

また、漏洩場所や地下浸透の原因を調べた結果から、地上の生産設備や貯蔵設備の本体に付帯する配管等や貯蔵場所・作業場所等から有害物質の漏洩が起こり、床面が地下浸透を防止できる構造になっていないために地下に浸透していることが確認された。生産設備本体、貯蔵設備本体からの有害物質の漏洩についても、まれに確認されている。さらには、地下の貯蔵設備や地下配管から有害物質の漏洩が起こり、そのまま地中に浸透していることが確認された。

したがって、これらを踏まえると、地下水汚染を未然に防止するためには、現行の水濁法に基づく地下浸透規制に加え、有害物質を取り扱う施設・設備や作業において漏洩を防止するとともに、漏洩が生じたとしても地下への浸透を防止し地下水の汚染に至ることのないよう、施設設置場所等の構造に関する措置や点検・管理に関する措置が必要である。

一部の事業者や業界団体においては、これらの地下水汚染を未然に防止するための 措置を自主的に、または一部は他法令に基づき地下水汚染の未然防止に資する措置を 実施している。しかしながら、依然として各地で発生している地下水汚染を未然に防 止するためには、法令に基づく制度として位置付けることが必要である。

#### (2) 地下水汚染の効果的な未然防止のための措置

### ① 施設設置場所等の構造に関する措置

### ア) 有害物質を取り扱う施設の設備本体に付帯する配管等における漏洩防止

有害物質を取り扱う施設の生産設備や貯蔵設備の本体に付帯する配管部の継ぎ目や配管の腐食部から漏洩し、地下へ浸透して地下水汚染に至った事例が認められる。このことから、有害物質を取り扱う施設の設備本体に付帯する配管等は、例えば目視で確認できるよう床面から離して設置するか、漏洩を検知する設備を設ける等、漏洩があった場合に漏洩を確認できる構造とすることが必要である。

また、有害物質を取り扱う地下貯蔵設備や付帯する地下配管から漏洩し、地中へ直接浸透して地下水汚染に至る事例が認められる。これらは地下に設置され、一たび劣化、破損して漏洩すると直ちに地下水の汚染につながることから、地下貯蔵設備等は、例えば可燃性液体の場合には、内側が鋼製、外側が強化プラスチック製の二重殻タンクにする等、有害物質の漏洩を防止できる材質及び構造とするか、漏洩を検知する設備を設ける等、漏洩があった場合に漏洩を確認できる構造とすることが必要である。

# イ) 有害物質を取り扱う施設設置場所の床面、周囲等における地下浸透防止

有害物質を取り扱う生産設備や貯蔵設備の本体に付帯する配管等から有害物質が漏洩、流出し、床面の亀裂等から地下へ浸透し地下水汚染に至った事例が認められる。このことから、施設等から漏洩があった場合でも、直ちに地下に浸透しないよう、有害物質を取り扱う施設設置場所の床面は、例えばコンクリート製で表面を耐性のある材料で被覆する等、有害物質の地下浸透を防止できる材質及び構造とすることが必要である。

また、有害物質を取り扱う施設設置場所の周囲は、有害物質が漏洩した場合でも有害物質が周囲に流出して地下水汚染を引き起こさないよう、例えば液体が外側に流れ出るのを防止する防液堤を設ける等、流出を防止できる構造とすることが必要である。

さらに、有害物質を含む汚水等が排水溝、排水貯留設備等の排水系統の亀裂等から地下へ浸透し、地下水汚染に至った事例が認められる。このことから、有害物質を含む汚水等が排水溝等から地下に浸透しないよう、排水溝等は、例えば排水が漏れないコンクリート製とする等、有害物質の地下浸透を防止できる材質及び構造とすることが必要である。

#### ② 点検・管理に関する措置

#### ア)点検の実施

有害物質を取り扱う設備本体に付帯する配管等の劣化、破損等による有害物質の漏洩、保管容器の亀裂等からの漏洩、床面の亀裂等からの地下浸透、排水系統の亀裂等からの地下浸透により地下水汚染に至った事例が認められる。このことから、有害物質を取り扱う設備本体及びそれに付帯する配管等や設置場所の床の破損状況、排水系統の設備の破損状況、有害物質の漏洩状況、地下浸透の状況等について、定期的な点検及び検査を実施し、その記録を一定期間保存することが必要である。

また、点検等により異常が確認された場合には、直ちに補修等の必要な措置を講ずることが必要である。

### イ) 適正な作業・運転の実施

不適切な作業や設備の操作、有害物質の不適切な取扱いによる漏洩等により地下水汚染に至った事例が認められる。このことから、有害物質を取り扱う設備に係る作業や施設・設備の運転は、例えば有害物質の補給状況や設備の作動状況を確認する等、有害物質が地下に浸透したり、周囲に飛散したり、流出したりしないような方法で行うことが必要である。また、万一漏洩した場合には、当該漏洩した有害物質を適正に処分することが必要である。

### (3) 対象施設等

地下水汚染の発生事例を踏まえ、水濁法に定める有害物質をその工場・事業場内で使用する施設等からの漏洩・浸透事例が多いことに鑑み、水濁法に規定されている有害物質使用特定施設を上記(2)の措置の対象施設とすることが必要である。また、それに加え、有害物質の貯蔵施設からの漏洩・地下浸透の事例が見られることから、それらについても対象とすることが必要である。

なお、施設以外の有害物質の貯蔵場所や作業場所については、漏洩・地下浸透の事例が見られるものの、場所は施設と異なりその特定が困難であることから、今回の措置の対象施設には含まないものとするが、貯蔵場所や作業場所からの有害物質の漏洩及び地下浸透を防止する取組を促進することが必要である。また、消防法の適用を受けるガソリン等油類の貯蔵施設についても、地下水汚染の原因となった事例が見られるものの、既に消防法において(2)と同等の措置が規定され、その結果として有害物質の漏洩・地下浸透を防止する効果が期待されることを踏まえ、今回の措置の対象施設には含まないものとする。

# (4) その他

(2) の措置の対象となる施設については、都道府県知事等への届出義務を課すことにより、実態を把握できるようにすることが必要である。あわせて、施設設置場所等の構造、点検・管理の方法等について、一定の基準に適合するよう設置・維持する

ことを義務づけた上で、都道府県等による立入検査や、基準に適合していない施設に 対する改善命令ができるよう措置することが必要である。また、改善命令に従わない 施設に対しては、罰則を設けることにより、その実効性を担保することが必要である。

(2) ①の施設設置場所等の構造に関する措置の適用に関し、今回の取組は地下水の未然防止のためのものであり、新規施設・既存施設問わず取り組むべきものであるが、既設施設はその対応に一定の期間が必要であることから、猶予期間を設けた上で適用することが必要である。

なお、猶予期間の対象となる既存の施設については、構造に関する措置を適用するまでの間、構造に関する措置に代替する措置として、(2)②の定期的な点検の頻度の増加等を義務づける措置を講ずることが必要である。

# 5. 今後の課題と留意事項

1)「4.今後の地下水汚染の効果的な未然防止対策の在り方について」に示した措置の具体的な内容については、本答申を基本として、さらなる検討の場を設け、関係業界の意見も十分に反映しながら決めていく必要がある。その際、多くの地下水汚染事例が、有害物質の漏洩や地下浸透を防止できる構造になっていない施設・設備を有する、または不適切な作業や設備の操作を行っている事業場で発生していることに鑑み、新たに導入する措置の内容については、業種や事業者の規模、施設内容により差異はみられるものの、既に講じられている事業者の地下水汚染の未然防止対策を十分に踏まえて決定する必要がある。

また、措置の具体的な内容は、既存施設における実施可能性にも配慮して定めること、及び業種や事業場毎に施設等の実態が異なること等を踏まえ、必要な性能を定めることを基本として検討する必要がある。

- 2) 本答申に基づく制度の施行に際し、例えば環境省及び地方公共団体において、中小規模の事業者が対応できるようわかりやすいマニュアル等を作成することにより措置の内容の周知徹底を図る等、中小規模の事業者の取組に配慮する必要がある。一方、中小規模の事業者の団体をはじめ関係者においては、中小規模の事業者の業種、業態に応じて適切に対応できるよう、積極的な役割を果たすことが期待される。また、構造や点検・管理に関する措置の遵守状況に応じて、事業者に何らかのインセンティブを付与するような方策をはじめとする支援策について検討する必要がある。
- 3) 4. に示した措置を導入するに当たっては、届出等の事務手続きに要する事業者の負担を可能な限り軽減する必要がある。
- 4) 都道府県等の水濁法担当部局において消防部局等他法令の担当部局と十分連携し、 今回の措置の対象外の施設等が原因となって地下水汚染が発生した場合の対応や、 施設の廃止後の適切な対応が図られるよう取り組む必要がある。

- 5) 地下貯蔵設備等からの有害物質の地下浸透を低コストで検知できる技術、汚染された後において低コストで浄化する技術等について、引き続き研究、技術開発が促進されるよう努める必要がある。
- 6) 地下水を汚染する可能性のある有害物質の処理や公共用水域への排出の状況等に関し、それらの製造、使用、貯蔵等を行う事業者や関係行政機関において、地域住民との一層のリスクコミュニケーションが進められるとともに、地下水汚染が発生した場合に速やかな情報提供が行われるよう努める必要がある。

### 6. おわりに

地下水質の調査結果において、毎年度新たな地下水汚染の事例が確認されていることから、人の健康や生活環境への影響を防止するために、地下水汚染の未然防止対策を実施する緊急性は高く、上記の措置が円滑に実施されることによって、有害物質による地下水汚染事例が減少することが期待される。

政府においては、本報告を踏まえ、早急に必要な措置を講じることが必要である。