(iii) 定置漁業権

苫小牧漁業協同組合および鵡川漁業協同組合に免許されているさけ定置に関する 定置漁業権は,第3.4-10表に示すとおりである。原簿謄本が閲覧できなかったため, 2019年版 水産関係人名鑑を資料に用いた。

苫小牧漁業協同組合に5件,鵡川漁業協同組合に3件の定置漁業権が設定されている。

第3.4-10表 定置漁業権の内容

組合名	苫小牧	鵡川	漁業の時期	存続期間
漁業種類	漁業協同組合	漁業協同組合	(操業期間)	
さけ定置	5	3	8月 1日 ~12月15日	2014年 2月 1日 ~2023年12月31日

【2018年8月現在】

資料: 『2019 年版 水産関係人名鑑』(株式会社水産北海道協会, 2018 年)

iii)許可漁業

苫小牧漁業協同組合と鵡川漁業協同組合における許可漁業の許可件数は,第3.4-11 表に示すとおりである。

苫小牧漁業協同組合の許可漁業の許可件数は,かれい固定式刺し網漁業が最も多く, 次いで小型機船底びき網漁業のほっきがいけた網漁業が多い。鵡川漁業協同組合の許 可件数は,手繰第2種のししゃもこぎ網漁業が最も多く,次いで小型機船底びき網漁 業のほっきがいけた網漁業が多い。

第3.4-11表 許可漁業の許可件数(2017年1月~12月)

(単位:件)

	組合名	苫小牧漁業	鵡川漁業	合計
漁業種類		協同組合	- 筋同組合	
	中型さけます流し網漁業	美		0
大臣許可	遠洋かつお・まぐろ漁業	矣		0
	沖 合 底 び き 網 漁 業	Ě		0
	北太平洋さんま漁業	Ě		0
	かじき等流し網漁業	ξ		0
大臣届出	小型するめいか釣り漁業	養 4	1	5
	沿岸まぐろはえ縄漁業	養 1		1
	太平洋小型さけ・ます流し網漁業	養 3		3
	すけとうだら固定式刺し網漁業(10トン以上)	3		3
知事許可	え び か ご 漁 賞	卷 4		4
(本庁)	手 繰 第 2 種 ししゃもこぎ網 漁業	美 13	37	50
	毛がにかご漁業(特別採捕)			0
	毛がにかご漁業	美 16	2	18
	めぬけ固定式刺し網漁業	美 2		2
	すけとうだら固定式刺し網漁業(10トン未満)	27	18	45
	つぶかご漁	美 38	2	40
	かれい固定式刺し網漁業	養 43	9	52
	いかつり漁業	美 10	12	22
	潜水器 漁 🕴	卷 4		4
知事許可	くりがにかご漁	美		0
(振興局)	た こ 漁 美	美 4		4
	↓ 刑 ₩ 10 ほっきがいけた網漁賞	義 41	33	74
	小 空 機 船 底 び き 網 漁 業 ほたてがいけた網漁業	俟	2	2
	とし と 柄 広 未 なまこけた網 漁 美	Ŕ		0
	さんま棒受け網漁業(えりも以東海域)	1		1
	さんま流し網漁業(えりも以東海域)	3	2	5
	さんま棒受け網漁業(オホーツク海海域)			0
	かじき等流し網漁業(北海道海区)			0
海区承認	かじき等流し網漁業(宮城県海区)			0
	沿岸くろまぐろ漁業(広域漁調)	10	6	16
	合計	227	124	351
-			【2019年10月	月現在】

資料:『平成 30 年版胆振の水産』(北海道胆振総合振興局, 2019 年)

iv) 遊漁船

苫小牧市および厚真町における至近5年間(2007~2011年)の「遊漁船業の適正化 に関する法律」(昭和63年法律第99号)に基づく遊漁船業の登録数は,苫小牧市で57 業者,59隻,厚真町で12業者,12隻である。

b. 漁業種類別漁獲量

「北海道農林水産統計年報(水産編)平成19~30年」(農林水産省北海道農政事務所統計部,2009~2020年)による苫小牧市および厚真町の海面漁業の至近11年間(2006~2016年)の漁業種類別漁獲量は,第3.4-3(1)(2)図に示すとおりである。

苫小牧市の総漁獲量は,非公表分を除きおおむね5,000~10,000トンで推移している。漁業種類別の漁獲量はその他の刺網漁業,さけ定置網漁業,小型底びき網漁業が大部分を占めており,その他の刺し網漁業が最も多い。

厚真町の総漁獲量は,非公表分を除きおおむね90~400トンで推移している。漁業種類別の漁獲量は小型底びき網漁業とその他の刺網漁業のみとなっており,2013年を除いて小型底びき網漁業が多い。

注: さけ・ます流し網漁業, さんま棒受網漁業および沿岸いか釣り漁業の統計データは, 全部または一部が 非公表のため, 本図には含まれていない。

> 資料:『北海道農林水産統計年報(水産編)平成19~30年』 (農林水産省北海道農政事務所統計部,2009~2020年)

第3.4-3(1)図 漁業種類別漁獲量(苫小牧市)【2006~2016年:至近11年間】

注:沿岸いか釣漁業,採貝・採藻およびその他の漁業の統計データは,全部または一部が非公表のため,本 図には含まれていない。

> 資料:『北海道農林水産統計年報(水産編)平成19~30年』 (農林水産省北海道農政事務所統計部,2009~2020年)

第3.4-3(2)図 漁業種類別漁獲量(厚真町)【2006~2016年:至近11年間】

c. 漁期・漁場

i) 漁期

苫小牧市および厚真町地先海域で行われている主要沿岸漁業の操業期間と盛漁期は, 第3.4-12表に示すとおりである。

操業期間	盛漁期
9~12 月	9~12 月
10~3 月	12~1 月
9~7 月	12~2 月
7~8 月	7~8 月
3~11 月	3~4 月
4~10月	4~6月
6~1 月	8~9 月
通年	4~6月
10~11 月	10~11 月
7~4月	7~9月・12~2月
	操業期間 9~12月 10~3月 9~7月 7~8月 3~11月 4~10月 6~1月 通年 10~11月 7~4月

第3.4-12表 主要沿岸漁業の操業期間と盛漁期

注:1. 漁業種類の名称は、『平成30年版 胆振の水産』(北海道胆振総合振興局,2019年)に準拠した。

2. かれい刺し網漁業は、苫小牧港湾区域内に限り北海道知事から通年操業が許可されている。

資料:『平成 30 年版 胆振の水産』(北海道胆振総合振興局, 2019 年)

ii) 漁場

当該水域における各種漁業の漁場について,第 3.4-4(1)~(10)図にとりまとめた。 既存資料の整理のほかに,苫小牧漁業協同組合へのヒアリング(2020年8月18日 実施)を行った。

資料:『苫小牧港を中心とする海域の各種漁業操業状況』(一般財団法人胆振東部日高海域漁業操業安全基金協会, 2014年,2017年,2020年)(海上保安庁航海用海図 W1030に記載)

第3.4-4(1)図 「さけ定置網漁業」の漁場

資料:『苫小牧港を中心とする海域の各種漁業操業状況』(一般財団法人胆振東部日高海域漁業操業安全基金協会, 2014年, 2017年, 2020年)(海上保安庁航海用海図 W1030に記載)

第3.4-4(2)図 「すけとうだら刺し網漁業」の漁場

資料:『苫小牧港を中心とする海域の各種漁業操業状況』(一般財団法人胆振東部日高海域漁業操業安全基金協 会,2014年,2017年,2020年)(海上保安庁航海用海図 W1030に記載)

第3.4-4(3)図 「かれい刺し網漁業」の漁場

資料:『苫小牧港を中心とする海域の各種漁業操業状況』(一般財団法人胆振東部日高海域漁業操業安全基金協会, 2014年, 2017年, 2020年)(海上保安庁航海用海図 W1030に記載)

第3.4-4(4)図 「かにかご漁業」の漁場

資料:『苫小牧港を中心とする海域の各種漁業操業状況』(一般財団法人胆振東部日高海域漁業操業安全基金協会, 2014年, 2017年, 2020年)(海上保安庁航海用海図 W1030に記載)

第3.4-4(5)図 「えびかご漁業」の漁場

資料:『苫小牧港を中心とする海域の各種漁業操業状況』(一般財団法人胆振東部日高海域漁業操業安全基金協会, 2014年, 2017年, 2020年)(海上保安庁航海用海図 W1030に記載)

第3.4-4(6)図 「つぶかご漁業」の漁場

(2020 年 8 月 18 日現在, 苫小牧漁業協同組合よりヒアリングによる)(海上保安庁航海用海図 W1030 に記載) 第 3.4-4(7)図 「いかつり漁業」の漁場

資料:『苫小牧港を中心とする海域の各種漁業操業状況』(一般財団法人胆振東部日高海域漁業操業安全基金協会, 2014年, 2017年, 2020年)(海上保安庁航海用海図 W1030に記載)

第3.4-4(8)図 「たこ漁業」の漁場

(2020 年 8 月 18 日現在, 苫小牧漁業協同組合よりヒアリングによる)(海上保安庁航海用海図 W1030 に記載) 第 3. 4-4 (9) 図 「ししゃもこぎ網漁業」の漁場

(2020 年 8 月 18 日現在,苫小牧漁業協同組合よりヒアリングによる)(海上保安庁航海用海図 W1030 に記載) 第 3. 4-4 (10)図 「ほっきがいけた網漁業」の漁場

() 北海道海面漁業調整規則等による規制状況

苫小牧市および厚真町地先海域における北海道海面漁業調整規則による規制状況は第 3.4-13 表,まつかわの資源保護に係る胆振海区漁業調整委員会指示の概要は第 3.4-14 表, さくらます船釣りライセンス制に係る胆振海区漁業調整委員会指示の概要は第 3.4-15 表に 示すとおりである。

	体長等による 制限又は禁止	禁止区域・期間	漁具・漁法の制限
さけ・ます	全長 25cm未満	河口付近等の 一定区域(下表)	遊漁者が自由に行うこと のできる漁具・漁法
えぞあわび	殻長6.5cm未満	7月16日~ 9月30日	1.手釣·竿釣
まだかあわび	殻長 12cm未満	9月21日~11月20日	2. たも網
ほっきがい	殼長7.5cm未満	5月 1日~ 6月30日	(網口及び網の長さの最
ほたてがい	殼長8.2cm未満		長部が40cm未満のもの)
えぞばふんうに	殻径 4cm未満	9月 1日~10月31日	3. 徒手採捕
きたむらさきうに	殻径 5cm未満	9月15日~10月31日	
あさり		7月16日~ 9月30日	
なまこ		6月21日~ 8月20日	
けがに	雌:全面禁止 雄:甲長8cm未満		
はなさきがに	雌:全面禁止 雄:甲長8cm未満		
にしん	放産卵(振り子を除く)		

第3.4-13表 主要沿岸漁業の操業期間と盛漁期

注:河口付近におけるさけ・ます採捕禁止

資料:『平成 30 年度 胆振の水産』(北海道胆振総合振興局, 2019 年)

++	河川名	河川口沿岸		沖合方位		沖合	林山、田田田
П		上 海出()	<i>十</i> 次日日()	左方	右方	距離	祭正期间
		左海岸(m)	石碑厈(m)	(真方位:度・分)	(真方位:度・分)	(m)	
世山府士	錦多峰川	300	200	157.38	157.38	200	9月1日~12月10日
古小权山	安平川	標柱の位置	標柱の位置	192.05	192.05	500	5月1日~ 9月30日

資料:『平成 30 年版 胆振の水産』(北海道胆振総合振興局, 2019 年)

第3.4-14表 主要沿岸漁業の操業期間と盛漁期

指示期間	2019年8月8日~2020年8月7日
指示内容	全長35cm未満のまつかわを採捕した場合は、速やかに海中に還元しなければならない。
	【2019 年 10 月現在】

資料:北海道胆振総合振興局ウェブサイト^[1]

[1] 『胆振海区漁業調整委員会指示第1号』

(http://www.iburi.pref.hokkaido.lg.jp/ss/sis/reiwagannnenndomatukawaiinnkaishizi.pdf, 2019/10/30 アクセス)

第 3. 4-15 表	さくらます船釣りライセンス制に係る胆振海区漁業調整委員会指示の概要

1	制限期間	2019年12月15日~2020年	F 3月15日								
9	~~ ¬¬¬¬>>¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	船舶ごとの委員会承認									
2	/书 前心	承認対象船舶:遊漁船,	・プレジャーボート(原	〔則総トン	⁄数20	トン	未満)			
		ライセンス海域	海域図参照								
0	承認船の	釣獲時間	A海域	日の出た	ь 614	:00 3	まで				
3	遵守事項		B海域	日の出な	いら正	午ま	で				
		その他	承認旗の掲揚・釣果報	告の提出	1						
		漁具および漁法の制限	竿釣りに限定。なお、	同時に使	可用で	きる	竿数	は1	人1本	: (た	だ
			し、プレジャーボート	に乗船し	、て行	う場	合を	除く)		
	垂帆本の	釣獲尾数制限	め座」 セナファしみ	マキフィ	- / >	++)よ1 Г	1 1 1	100	рињ	•
4	来船有の		到獲し,持することが	いさるる	:55	より	111	11人	10)毛	以内	10
	退丁争惧	その他	放流する場合を除く銃	」獲魚の孱	「棄の	禁止					
			釣獲魚の販売等の禁止	-0							
			【ただし, 全長20cm未	満は採捕	İ禁止]					
	指示に従わ	指示に従わない提合け	舣岶承認の取り沿し▽	いけ次同の	承該	た行	わた	い笙	の世	害た	. L
5	ない者への	日小に伝わない物日は、		いび回り	ノナヘロい	£11	イント	۰.4	マノ1日	回.2	<u> </u>
	措置	ふ 。									
		遊漁専業船	¥33,000								
6	協力金額	遊漁兼業船	¥33,000								
		プレジャーボート	¥ 7,000								
海	域図										
			the History	「厚真町	点		緯度	1		経度	
十個家田	the	· BET CAR	a in the second		名	度	分	秒	度	分	秒
~	h 2.	John Log	0	R	1	42	27	15	141	54	56
	登別市			~ 4	2	42	18	41	141	49	08
-	2×11.	2	А海域		3	42	22	14	141	35	50
_	52 32	6			4	42	09	29	141	15	00
The	室間市	日海域	3	1	5	42	13	04	141	00	40
3	hand a				6	42	21	51	141	13	15
			2		7	42	30	16	141	28	46
[5 <				8	42	32	53	141	39	09
		A海域…1-8-	-7-6-5	の各点を	イ	42	21	53	141	51	18
		4 順次:	結んだ線によって囲まれ	れた海域	П	42	30	00	141	30	00
	, ste	日海域・・・イーロー 結んが	-ハー4-3-2-1の谷点 だ線によって囲まれた海	Rを順次 国域	ハ	42	17	17	141	09	09
	S S S	4-L17 07	0	30 km	11	42	10	50	141	09	35

【2019 年 10 月現在】

資料:北海道胆振総合振興局ウェブサイト^{[1],[2],[3]}

^{[1] 『}胆振海区漁業調整委員会指示第2号』

 ⁽http://www.iburi.pref.hokkaido.lg.jp/ss/sis/kaiku/17sakura/sizi.htm, 2019/10/30 アクセス)
 [2] 『胆振管内さくらます船釣りライセンス制について』
 (http://www.iburi.pref.hokkaido.lg.jp/ss/sis/R1sakuramasusyuutibunnsho.pdf, 2019/10/30 アクセ

⁽http://www.iburi.pref.hokkaido.lg.jp/ss/sis/R1sakuramasusyuutibunnsho.pdf, 2019/10/30 アクセス)

^[3] 『平成 30 年度事業報告収支決算等報告』 (http://www.iburi.pref.hokkaido.lg.jp/ss/sis/H30syuushikessannhoukoku.pdf, 2019/10/30 アクセス)

④ 主要な航路としての利用状況

主要な航路としての利用状況として,苫小牧市および厚真町地先海域周辺の航路について 整理した。北海道南岸沖の航路を,第3.4-5 図に示す。苫小牧港は主要航路の発着港として 重要であり,圧入井および圧入プルームが近接して位置する。

第3.4-5 図 北海道南岸の航路(上)と圧入井および CO2 プルーム(下)との位置関係

^[1]「特定二酸化炭素ガスの海底下廃棄に関する実施計画に係る事項」の第4.5-60図(20190130産第4号「特定 二酸化炭素ガスの海底下廃棄変更許可申請書」の添付書類「特定二酸化炭素ガスの海底下廃棄に関する実施 計画に係る事項」の第4.5-86図参照)

^[2]「特定二酸化炭素ガスの海底下廃棄に関する実施計画に係る事項」の第4.5-41図(溶解 CO₂量分布(P10)モデル(圧力上昇量が高くなる確率が10%以下のモデル))

⑤ 港湾区域および港域に関する情報

苫小牧市および厚真町には、「港湾法施行令」による国際拠点港、「港則法施行令」による 特定港である苫小牧港がある。同港の港湾区域および港域に関する情報等について整理した。 なお、苫小牧市および厚真町には、「漁港漁場整備法施行令」における漁港は存在しない。 苫小牧港の情報は第3.4-16(1)~(4)表、同港の概要は第3.4-6回、至近11年間(2008~ 2018年)の入港船舶を船舶乗降人員の推移はそれぞれ第3.4-17表と第3.4-18表、至近11 年間(2008~2018年)の海上出入貨物の推移は第3.4-19表に示すとおりである。

項目	情 報
港湾の種類	 ・国際拠点港湾(港湾法,2011年 4月 1日指定) 1963年 4月 1日(重要港湾) 1981年 5月26日(特定重要港湾) ・特定港(港則法,1967年) ・外国貿易港(関税法,1966年) ・検疫港(検疫法,1967年) ・植物検疫港(植物防疫法,1972年) ・指定検疫物(骨粉等)の輸入港(家畜伝染予防法,1992年) ・指定検疫物(動物等)の輸入港(家畜伝染予防法,2005年)
港湾法 による 港湾区域	鵡川地区浜三角点(6.35m)(北緯42度35分07秒東経141度53分37秒)から264度52 分1,200mの地点,同地点から200度25分5,000mの地点まで引いた線,同地点から280 度42分30秒21,640mの地点まで引いた線,同地点から353度59分に引いた線及び陸岸 により囲まれた海面(1974年12月25日認可)。
港 則 法 施 行 令 に よ る 港 域	真小牧三角点(6.7m)(北緯42度37分52秒東経141度39分16秒)から263度5,410m の地点から174度5,000mの地点まで引いた線,同地点と苫小牧港東港東防波堤灯台 (北緯42度34分49秒東経141度46分17秒)から120度30分7,840mの地点とを結んだ 線,同地点から20度30分に引いた線及び陸岸により囲まれた海面。

第3.4-16(1)表 苫小牧港の情報

資料:国土交通省北海道開発局ウェブサイト^[1]

『港湾法施行令』(昭和 26 年 1 月 19 日政令第 4 号,平成 29 年 9 月 27 日第 253 号) 『港則法施行令』(昭和 40 年 6 月 22 日政令第 219 号,最終改正:平成 29 年 10 月 25 日第 266 号) 『苫小牧港港湾区域』(昭和 50 年 1 月 4 日苫小牧港管理組合告示第 1 号) 『北海道沿岸水路誌』(海上保安庁,2008 年) 『北海道沿岸水路誌 対補第 5』(海上保安庁,2013 年) 『北海道沿岸水路誌』(海上保安庁,2019 年)

^{[1] 『}苫小牧港(とまこまいこう)』

⁽https://www.hkd.mlit.go.jp/zigyoka/z_kowan/bayport/profile/tomakomai.html, 2019/10/23 アクセス)

第3.4-16(2)表 苫小牧港の情報

項目	情 報
概要	勇払平野を掘り込んで築造された我が国最初の掘込式港湾である。港湾内は第1~4区 の4港区に分かれている。第1~3区及び第4区西部を西港、第4区の東部を東港と称してい る。 全道港湾貨物量の1/2、また、内航貨物の取扱量は全国1であり、近年外貨コンテナの 増加が著しい。苫小牧港は、北海道における大規模工業地帯として、また、流通拠点と しても整備が進められている。 港内の波浪は、年間を通して南向きの頻度が高い。
気 象	この地方の気候は道内では比較的温和で、降雪期間も短い。
潮汐	大潮期の潮差の平均は0.9m、小潮期の潮差の平均は0.3mである。
潮流	流速は、港内外ともに弱く、最大0.3kn程度であるが、港内と港外では流況を異にする。
障害物	苫小牧港西防波堤灯台の南西方約1Mに水中障害物(42°36.8'N 141°36.1'E、コン クリート塊)がある。また、シーバースの周辺にも多数の水中障害物がある。
旧土砂捨場	苫小牧港西防波堤灯台の南西方約3.6M付近海域にある。
架空線	中央北ふ頭4号岸壁の東側から水路を横断する架空線(高さ55m)がある。
針路法	苫小牧港西部に入港する場合は、東防波堤西方にある幅約300m、水深約14mの水路を 通って港内に至る。港内において水路は2灯浮標で示されているが、水路を外れると急に 浅くなる所があるので注意を要する。なお、防波堤入り口付近で南~南南西方からの風 波が大きいときには、特に注意を要する。 苫小牧東部に入港する場合、掘下げ水路(水深14~17.5m)の中央を示す導標(2標一 線059°)および、北海道石油共同備蓄桟橋への水路を示す導標(2標一線082.7°)なら びに中央ふ頭への水路を示す導標(2標一線012.3°)が設置されているので、入港に際 しては、これらを利用するとよい。
入港上 の注意	苫小牧港は、旅客および貨物フェリーのほか、内航定期船等が多数就航しており、西 港区においては、総トン数500トン以上の船舶に対し管制信号を行っている。早朝および 夕方には出入港船が集中する傾向にあり、対象船舶以外であっても錨泊、入港、出航前 に信号所に通報することを指導している。 特に春先から夏にかけては濃霧の発生が多く、狭視界時においては、苫小牧海上交通 安全協議会の船舶の安全運航確保のための合意事項により入出港に制限がかかる場合が ある。
通信	 船舶と港長との間で、「ほっかいどうほあん」を介し無線電話による港務通信ができる。 呼出名称:ほっかいどうほあん HOKKAIDO COAST GUARD RADIO 周波数:16/12ch 運用時間:常時 連絡先:苫小牧海上保安署
水先	苫小牧水先区水先人会に要請する。

資料:『北海道沿岸水路誌』(海上保安庁,2008年) 『北海道沿岸水路誌 追補第5』(海上保安庁,2013年) 『北海道沿岸水路誌』(海上保安庁,2019年)

項	目	情 報					
		港則法施行規	則第11条の規定	定による針路の表示			
		目的地に関 する記号	信号	信文			
		С	2代・C	第1区の開発フェリーふ頭から中央北ふ頭1号東岸 壁に至る間の係留施設に向かって航行する。			
		Ν	2代・N	第1区の木材ドルフィン2号から丸一鋼管岸壁に至 る間の係留施設に向かって航行する。			
港	則	E	2代・E	第1区の勇払ふ頭から中央南ふ頭西岸壁に至る間の 係留施設に向かって航行する。			
		S	2代・S	第1区のホクレン用桟橋から苫小牧ふ頭に至る間の 係留施設に向かって航行する。			
		2E	2代・2・E	第2区の入船ふ頭から北ふ頭に至る間の係留施設に 向かって航行する。			
		2₩	2代・2・W	第2区の西ふ頭又は南ふ頭の係留施設に向かって航 行する。			
		苫小牧信号所	(42° 37.8' N	「 141° 37.4'E)および勇払信号所(42° 38.9'N			
		141° 40.3' E)	で,次表のとお	3り航行管制信号を行っている。			
		水路名	信号の方法	信号の意味			
			Iの文字 の点滅	入港船は,入港可 500t以上の出航船は,運転を停止して待機 500t未満の出航船は,出港可			
		古小秋小路 (中央北ふ頭 1号東岸壁東 端から中央南 ら頭西岸壁西	0の文字 の点滅	出港船は,出港可 500t以上の入港船は,水路外において出航船の進 路を避けて待機 500t未満の入港船は,入港可			
信	号	端まで引いた 線以西の第1 区および第2 区)	Fの文字 の点滅	500t以上の入港船は,水路外において出港船の進路を避けて待機 500t以上の出航船は,運転を停止して待機 500t未満の入出航船は,入出港可			
			Xの文字 の点灯	港長の指示船以外は,入出航禁止			
			Iの文字 の点滅	入港船は,入港可 500t以上の出航船は,運転を停止して待機 500t未満の出航船は,出港可			
		勇払水路 (苫小牧水路 を除いた第1	0の文字 の点滅	出港船は,出港可 500t以上の入港船は,運行を停止して待機 500t未満の入港船は,入港可			
		区)	Fの文字 の点滅	500t以上の入港船は,運行を停止して待機 500t未満の入出航船は,入出港可			
			Xの文字 の点灯	港長の指示船以外は,入出航禁止			

第3.4-16(3)表 苫小牧港の情報

資料:『北海道沿岸水路誌』(海上保安庁,2008年) 『北海道沿岸水路誌 追補第5』(海上保安庁,2013年) 『北海道沿岸水路誌』(海上保安庁,2019年)

第3.4-16(4)表 苫小牧港の情報

項目	情 報
航泊制限	港内において、石油類の引火による事故防止のため、一般船舶は港内に停泊中の 引火性危険物積載タンカー(タンク船を含む。)から30m以内の海面に立ち入ること が禁止されている。
錨泊制限	第1区及び第2区においては、係留施設に係留する船舶以外の船舶の錨泊が制限されている。
錨泊上の注意および避難勧告	錨泊は、第3区の検疫錨地付近と第4区シーバース付近が主な錨地となっている。また、南寄りの風にあっては、東港中防波堤の北側が唯一波浪を防げる錨地となっているが、いずれも走錨しやすく、南寄りの強風時、走錨による乗揚げ事故が発生している。このため、苫小牧海上保安署では、南寄りの風が風速15m/s以上に達したとき(達すると予想される場合も含む。)には、「走錨注意情報」(ほっかいどうほあんからch16で周知)を発表するとともに、港長から苫小牧港及び周辺海域に錨泊する船舶に対して抜錨のうえ避難するよう勧告を行っている。
錨 地	底質は主に砂、軽石等で錨かきは悪く、南寄りの風波が大きいときには走錨のお それがあり、錨泊には適さない。 検疫錨地は第3区の港界付近(42°36.4'N 141°36.0'E)にあり、危険物積載 船は第4区に錨泊しなければならない。
	苫小牧海上保安署(港長) TEL 0144-33-0118
	室蘭運輸支局苫小牧海事事務所 TEL 0144-32-5901
公本明体	苫小牧税関支署 TEL 0144-34-1953
御事関係	小樽検疫所 苫小牧出張所 (千歳空港検疫所支所 0123-45-7007へ連絡)
	植物防疫所室蘭・苫小牧出張所 TEL 0144-33-2913
	入国管理局苫小牧分室 TEL 0144-32-9012
	苫小牧港管理組合 TEL 0144-34-5551
	苫小牧市立総合病院 TEL 0144-33-3131
医療施設	苫小牧日翔病院 TEL 0144-72-7000
	王子総合病院 TEL 0144-32-8111
海上交通	八戸港、秋田船川港(秋田区)、仙台塩釜港(仙台区)、新潟港、敦賀港、大洗 港および名古屋港との間にカーフェリー便がある。

資料:『北海道沿岸水路誌』(海上保安庁,2008年) 『北海道沿岸水路誌 追補第5』(海上保安庁,2013年) 『北海道沿岸水路誌』(海上保安庁,2019年)

資料:『苫小牧港パンフレット』(苫小牧港管理組合, 2012年)

第3.4-6図 苫小牧港の概要

(単位:隻、トン)								
年次	外航商船		内航商船		漁船・避難船 及びその他船舶		計	
	隻数	総トン数	隻数	総トン数	隻数	総トン数	隻数	総トン数
2008年	989	16, 030, 968	10,063	61, 074, 115	3, 292	119,008	14, 344	77, 224, 091
2009年	996	14, 668, 766	9, 308	58, 565, 683	3, 232	62, 487	13, 536	73, 296, 936
2010年	1,031	14, 510, 457	9,395	59, 304, 230	3, 213	60, 509	13, 639	73, 875, 196
2011年	1,055	16,065,107	9,548	59, 965, 693	3, 242	255,068	13, 845	76, 285, 868
2012年	977	15, 667, 640	9,700	63, 384, 938	3,094	98,615	13, 771	79, 151, 193
2013年	973	16, 236, 068	10,015	65, 153, 654	3, 118	252, 233	14, 106	81,641,955
2014年	1,011	16, 619, 650	10, 208	67, 262, 613	3,070	101, 366	14, 289	83, 983, 629
2015年	1,004	17, 189, 966	10, 147	67,961,056	3,176	31,868	14, 327	85, 182, 890
2016年	977	17,044,042	10, 460	69, 458, 612	3, 218	42,662	14,655	86, 545, 316
2017年	1,023	18, 083, 685	10, 333	68, 919, 325	3, 283	85, 530	14, 639	87, 088, 540
2018年	1,019	18, 172, 136	10,012	69, 690, 327	3,402	123, 715	14, 433	87, 986, 178

	第 3. 4-17 表	苫小牧港における入港船舶の推移
--	-------------	-----------------

資料:『苫小牧港統計年報(平成24年港湾統計)』(苫小牧港管理組合,2013年) 『苫小牧港統計年報(平成30年港湾統計)』(苫小牧港管理組合,2019年)

第3.4-18表 苫小牧港における船舶乗降人員の推移

(単位:人)

年次	外国航路		内国航路		合計		
	乗込人員	上陸人員	乗込人員	上陸人員	乗込人員	上陸人員	計
2008年	—	-	440, 366	427,674	440, 366	427,674	868,040
2009年	—	-	435, 238	418, 338	435, 238	418, 338	853, 576
2010年	93	93	423,079	408, 786	423, 172	408, 879	832,051
2011年	—	-	409,922	394, 108	409,922	394, 108	804,030
2012年	_	-	456,070	440,121	456,070	440, 121	896, 191
2013年	—	-	448,653	437,694	448,653	437,694	886, 347
2014年	_	_	439,150	428,644	439, 150	428,644	867,794
2015年	6	177	449,375	437,046	449, 381	437, 223	886,604
2016年	10	10	437,710	432,731	437,720	432, 741	870, 461
2017年	3	3	424, 335	430, 363	424, 338	430, 366	854, 704
2018年	-	-	407, 429	418,247	407, 429	418, 247	825,676

資料:『苫小牧港統計年報(平成24年港湾統計)』(苫小牧港管理組合,2013年)

『苫小牧港統計年報(平成 30 年港湾統計)』(苫小牧港管理組合, 2019 年)

第3.4-19表 苫小牧港における海上出入貨物の推移

					(単位:トン)	
	外国	貿易	内国	(公言)		
平伏	輸出	輸入	移出	移入	术公司十	
2008年	1,036,215	18, 009, 639	41, 263, 931	41, 983, 260	102, 293, 045	
2009年	1,013,944	14, 764, 415	38, 539, 559	39, 734, 797	94, 052, 715	
2010年	1,035,227	14, 724, 642	38,905,651	40, 009, 567	94, 675, 087	
2011年	1,027,886	16, 733, 889	39, 430, 470	39, 265, 994	96, 458, 239	
2012年	871, 763	16, 090, 243	40, 846, 357	41, 599, 126	99, 407, 489	
2013年	1,016,712	16, 563, 116	42, 491, 627	43, 672, 306	103, 743, 761	
2014年	1,053,457	16, 228, 427	43, 983, 734	45, 035, 407	106, 301, 025	
2015年	1, 520, 120	17, 072, 647	43, 559, 454	43, 411, 012	105, 563, 233	
2016年	1,066,643	15, 965, 803	43, 798, 356	44, 771, 977	105, 602, 779	
2017年	1, 211, 269	17, 722, 171	44, 980, 912	45, 452, 257	109, 366, 609	
2018年	1, 282, 057	16, 267, 244	44, 544, 054	45, 350, 923	107, 444, 278	

資料:『苫小牧港統計年報(平成24年港湾統計)』(苫小牧港管理組合,2013年) 『苫小牧港統計年報(平成30年港湾統計)』(苫小牧港管理組合,2019年)

⑥ 海底ケーブルの敷設、海底資源の探査または掘削その他の海底の利用状況

7) 海底ケーブル等

苫小牧市および厚真町地先海域の海底ケーブル等の敷設状況について,『航海用海図 W1034 室蘭港至苫小牧港』(海上保安庁,2010年)および『航海用海図 W1033A 苫小牧港西 部』(海上保安庁,2013年) での記載情報を確認し,整理した。

海底ケーブル等の敷設状況は、第3.4-7図に示すとおりである。

苫小牧市および厚真町地先海域では、汀線から沖合方向に伸びる海底線および海底輸送管が4箇所に敷設されている。圧入井およびCO2プルームには、近接して海底ケーブル(図中では海底線)および海底油送管が認められる。

() 海底資源

海底資源として,海底鉱物資源である海底熱水鉱床,コバルトリッチクラスト,マンガン 団塊のほか,メタンハイドレート,石油・天然ガスが該当する。これら海底資源の分布状況 を整理し,苫小牧市および厚真町地先海域での海底資源の有無を確認した。

世界の海底鉱物資源の分布状況は第3.4-8 図,日本周辺海域におけるメタンハイドレートの存在の指標となる海底擬似反射面 (Bottom Simulating Reflector; BSR)の分布状況は第 3.4-9 図,石油・天然ガス賦存ポテンシャルの高いエリアは第3.4-10 図に示すとおりである。

苫小牧市および厚真町地先海域は,海底鉱物資源やメタンハイドレートの分布は確認され ていないものの,石油・天然ガス賦存ポテンシャルの高いエリアに該当しており,当該海域 には,民間会社により試掘権が設定されている。ただし,当該区域において,現時点で公開 されている開発計画はない。

^[1]「特定二酸化炭素ガスの海底下廃棄に関する実施計画に係る事項」の第4.5-60図(20190130産第4号「特定 二酸化炭素ガスの海底下廃棄変更許可申請書」の添付書類「特定二酸化炭素ガスの海底下廃棄に関する実施 計画に係る事項」の第4.5-86図参照)

^[2]「特定二酸化炭素ガスの海底下廃棄に関する実施計画に係る事項」の第4.5-41図(溶解CO2量分布(P10)モデル(圧力上昇量が高くなる確率が10%以下のモデル))

資料:独立行政法人石油天然ガス・金属鉱物資源機構ウェブサイト^[1]

第3.4-8図 世界の海底鉱物資源の分布状況

^[1] 『深海底鉱物資源の世界分布』(http://www.jogmec.go.jp/library/contents9_01.html, 2014/10/17 アクセス)

※BSR:地震探査で観測される海底擬似反射面(Bottom Simulating Reflector)の略。 メタンハイドレートの存在を示す指標として用いられる。

> 資料:『日本周辺海域におけるメタンハイドレート起源 BSR 分布図』 (メタンハイドレート資源開発研究コンソーシアム, 2009 年)

第3.4-9図 日本周辺海域におけるメタンハイドレート起源 BSR 分布状況

資料:『海洋エネルギー・鉱物資源開発計画』(経済産業省,2019年)

第 3.4-10 図 日本周辺海域における石油・天然ガス賦存ポテンシャルの高いエリア(堆積量 2,000m 以上の堆積盆)

当該特定二酸化炭素ガスが海洋に漏出したと仮定した場合に予測される潜在的海 洋環境影響項目に係る変化の程度及び当該変化の及ぶ範囲並びにその予測の方法

4.1 海洋環境の化学的な変化の予測の方法

MEC-CO₂二相流モデルを基にして、苫小牧沖を領域とするモデルを構築し、CO₂海中拡散シミ ュレーションを行った。

(1) シミュレーションモデル

MEC-CO₂二相流モデルは, MEC モデルに CO₂二相流モデルが結合された CO₂海中拡散シミュレ ーションモデルである。

① MECモデル

MEC モデルは日本船舶海洋工学会海洋環境研究委員会海洋モデル検討専門委員会によっ て開発された海洋循環モデルであり^[1],沿岸域や湾など比較的狭い海域のシミュレーション を目的とした f 平面モデルである。また,時間的にも比較的短い期間のシミュレーションを 想定している。このため,側面開境界に与える境界条件の水温,塩分データや流速データは, 時間的に一定値,あるいは潮汐を想定した一定の振動成分を与えるようになっている。また, 海面に与える気象データも,運動量のための風速ベクトルデータを除き,時間的にも空間的 にも一定値を与えるようになっている。風速ベクトルデータは,空間的には一定値だが,時 間的には変動可能である。

MEC モデルは、静水圧モデルと Full-3D(非静水圧)モデルの結合モデルである。モデル 領域の大部分は静水圧モデルで計算し、鉛直流が大きく静水圧近似が成り立たない部分を高 解像度の Full-3D モデルで計算することができる。静水圧モデルのセルサイズ(Δx , Δy , Δz)は空間的に変えることができる。Full-3D モデルは静水圧モデルの xy 平面上の1 セル にはめ込むことができるようになっている。Full-3D モデルのセルは、静水圧モデルの1 セ ルを任意のセル数に均等に分割して作るため、 Δx , Δy は一定である。

水平渦動粘性係数,水平渦動拡散係数は,Richardsonの4/3 乗則に従い,セル幅の関数 として決まる。鉛直渦動粘性係数,鉛直渦動拡散係数は成層化関数に従って決定される。

海面の熱フラックス (Q_r) は、短波放射 (Q_r) 、長波放射 (Q_b) 、顕熱フラックス (Q_b) 、 潜熱フラックス (Q_c) により、

 $Q_T = Q_r - (Q_b + Q_h + Q_e)$

と与えられる。顕熱,潜熱はバルク式で計算される。淡水フラックス(Q_s)は、海面塩分(S_s)、大気密度(ρ_a)、飽和蒸気圧(q_s)、比湿(q_a)、風速(W)、降水量(P_r)により、

$$Q_{s} = S_{s} \{ \rho_{a} C_{E} (q_{s} - q_{a}) W - P_{r} \}$$

^[1]日本造船学会海洋環境研究委員会, "MEC Ocean Model オペレーションマニュアル Version 1.1", (2003)

と与えられる。 C_{E} は蒸発係数である。淡水フラックスの計算に用いる風速(W)は、運動量フラックスのための風速データとは独立に与える。

モデル開境界の水位の境界条件として,潮汐の調和定数を与えることでモデル領域内に潮 汐を再現させることができる。また,河川からの淡水流入の効果も組み込むことができる。

CO₂二相流モデル

MEC-CO₂ 二相流モデルは, MEC モデルの Full-3D モデル部分に CO₂ 二相流モデルを組み込 んだものである^[1]。CO₂ 二相流モデルでは, CO₂は非溶存態(気相)と溶存態の二相で計算さ れ, 非溶存態 CO₂から溶存態 CO₂への変換(溶解)も計算される。気泡 CO₂の溶解しやすさ や気泡が上昇するときに受ける抵抗は,気泡の大きさや形状によって変わるため,このモデ ルでは,気泡の体積により形状効果が組み込まれている。気泡が受ける抵抗は,

$$\vec{f}_{D} = \frac{1}{2} C_{D} \frac{3}{2d_{e}} \rho_{c} |(\vec{u}_{d} - \vec{u}_{c})| (\vec{u}_{d} - \vec{u}_{c}),$$
気泡の溶解率は $\Gamma = \pi d_{e}^{2} k(C_{I} - C_{cell})$ で表される。こ

こで、 $\mathbf{C}_{\mathbf{D}}$ は抵抗係数、 d_e は気泡の直径(気泡が球形ではない場合は、同じ体積の球の直

径)、 ρ_c は海水密度、 \vec{u}_d 、 \vec{u}_c はそれぞれ海水、気泡の速度、kは溶解係数、 C_1 、 C_{cell} はそれぞれ気泡表面 CO₂ 濃度と気泡が存在するセルの溶存態 CO₂の濃度である。抵抗係数と溶解係数が気泡の大きさによって次のように定式化されている。

気泡体積が5×10⁻¹⁰m³以下の場合には、球モデルが適用される。

$$C_{\rm D} = 24(1 + 0.15Rn^{0.687}),$$

$$k = Dd_e^{-1}(2 + 0.6Rn^{1/2}Sc^{1/3})$$

気泡体積が 5×10⁻¹⁰m³以上, 3×10⁻⁶m³以下の場合には, 楕円体モデルが適用される。

$$\begin{split} \mathbf{C}_{\mathrm{D}} &= 48Rn^{-1}G(\chi)(1+H(\chi)Rn^{-1/2}), \\ G(\chi) &= \frac{1}{3}\chi^{3/4}(\chi^2-1)^{3/2}[(\chi^2-1)^{1/2}-(2-\chi^2)Se^{-1}(\chi)][\chi^2Se^{-1}(\chi)-(\chi^2-1)^{1/2}]^{-2}, \\ \chi &= 1+0.163E_0^{0.757}, \\ E_0 &= gd_e^2s^{-1}\Delta\rho, \\ k &= Dd_e^{-1}(2+0.6Rn^{1/2}Sc^{1/3})\chi^{1/6}[2\chi^{1/3}(\chi^2-1)^{1/2}][\chi(\chi^2-1)^{1/2}+\log(\chi+(\chi^2-1)^{1/2})]^{-1} \\ & \\ \bar{\chi}$$
泡体積が $3 \times 10^{-6}\mathrm{m}^3$ 以上の場合は冠球キャップモデルが適用される。

^[1] Kano, Y., T. Sato, J. Kita, S. Hirabayashi, S. Tabeta, 2010. Multi-scale modeling of CO₂ dispersion leaked from seafloor off the Japanese coast. Marine Pollution Bulletin, 60, pp. 215-224.

$$\begin{split} \mathbf{C}_{\mathrm{D}} &= \frac{8}{3} E_0 (E_0 + 4)^{-1}, \\ k &= [(kA)_F A_e^{-1} + (kA)_R A_e^{-1} \dots (Rn > 110) \\ (kA)_F A_e^{-1} &= \frac{2}{\sqrt{\pi}} (|\vec{u}_d - \vec{u}_c| D d_e^{-1})^{1/2} \\ (kA)_R A_e^{-1} &= \left(\frac{Sr \sin^3 \theta_w}{\pi f(\theta_w)} \right) (|\vec{u}_d - \vec{u}_c| D d_e^{-1})^{1/2} \\ f(\theta_w) &= 2 - 3 \cos \theta_w + \cos^3 \theta_w \\ \theta_w &= 50 + 190 \exp(-0.62Rn^{0.4}) \\ Sr &= 0.1C_D^{4.71} \dots (C_D \le 2), \quad 6.13 \times 10^{-3} C_D^{4.71} \dots (C_D > 2), \\ k &= (kA)_F A_e^{-1} [1 + (1 + V_F V_R^{-1})^{-1/2}] \dots (Rn \le 110) \\ (kA)_F A_e^{-1} &= \frac{2}{\sqrt{\pi}} (1 + V_R V_F^{-1} (|\vec{u}_d - \vec{u}_c| D d_e^{-1})^{1/2} \end{split}$$

上記式中のSeは secant 関数, Rnはレイノルズ数, Scはシュミット 数, E_0 はエトベス数, Sは気泡表面

の表面張力, g は重力加速度, D

は分子拡散係数である。エトベス数 中の $\Delta \rho$ は気泡と海水の密度差で ある。また、 $H(\chi)$ はMoore (1965)^[1] の表を参照している。下付添字 F, Rは冠球キャップの前方部、後

方部を意味しており, $V_R V_F^{-1}$ は0.2とした。

なお, MEC- CO₂ 二相流モデルでは海水に溶けた後の CO₂の解離は考慮していない。したが って, CO₂ を気相と溶存態の 2 つにしか区別していない。ここで溶存態 CO₂, あるいは溶存 CO₂ と表現しているものは,全炭酸(TCO₂)のことである。

(2) 苫小牧沖海中拡散シミュレーションモデル

① モデル領域

日高湾のおよそ北緯 42.4 度以北を静水圧モデル領域とし(第 2.1-1 図),解像度(Δx , Δy)を1km×1kmとした。x,yはそれぞれ東西,南北の座標である。ただし,CO₂二相流モ デルが結合された Ful1-3D モデルで計算する領域が2km×2kmになるように,そのセルが含 まれる x,yのみ, Δx , Δy をともに2kmにした。地形(水深)データはJODCの500mメッ シュ水深データを用い,モデルセル内に存在するデータを平均してモデル地形を作成した。 Ful1-3D モデル領域は2km×2kmの領域を80セル×80セルに分割した。したがって,Ful1-3D モデルの解像度は25m×25mである。鉛直方向の解像度(Δz)は深度24m までは2mとし, それ以深は Δz を徐々に大きくした。Ful1-3D モデルをはめ込むセルの水深は20mで,Ful1-3D モデル領域は全層に渡って Δz が2mである。

境界条件データ

モデルの海面境界条件データとして与える気象データ(全天日射量, 雲量, 降水量, 蒸気 圧, 風速, 気温)は, 気象庁ウェブサイト掲載の観測値(月平均値)を用いた。このうち, 降水量, 蒸気圧, 風速, 気温は苫小牧の観測値を用い, 全天日射量, 雲量は苫小牧の観測値 がなかったため室蘭の観測値を用いた。運動量計算用の風速ベクトルデータは, 一般財団法

^[1] Moore, D.W., 1965. The velocity of rise of distorted gas bubbles in a liquid of small viscosity. Journal of Fluid Mechanics, 23, pp.749-766.

人気象業務支援センターのアメダス 10 分値データの苫小牧のデータを用いた。気象データ はシミュレーションケースごとに一定値を用い,風速ベクトルデータは1か月分のデータを 繰り返し用いた。

モデル領域南境界(開境界)では放射境界条件を用い,水温,塩分,水位,流速を与えた。 水温,塩分については,JODCの水温統計,塩分統計の北緯42~43度,東経141~142度の 値をベースにしてチューニングを行った。

Rosa et al. (2009)^[1]によると日高湾は津軽暖流や親潮が流れ込む湾で、その流路や流量 は季節によって変わる。日高湾の沿岸では、冬季は季節風によって作られる時計回りの流れ が、少し沖側には親潮由来の反時計回りの流れが卓越し、夏季は津軽暖流の支流により反時 計回りの流れが卓越する。そこで、これらの流れの効果を模するため、Rosa et al. (2009)^[1] の結果を参考にして、冬季は西端陸棚域に 0.03m/s、東側斜面域に 0.1m/s の北上流を、夏 季は東端陸棚域に 0.075m/s の北上流をそれぞれ南境界の境界条件として与えた。

潮汐による水位変動については、日本近海の潮汐モデルである nao99b モデル^[2]の結果を 用いた。nao99b で求められた主要 16 分潮の調和定数を空間的に線形内挿して、モデル領域 南境界の各格子に与えた。

河川は、モデル領域内で比較的大きい沙流川,鵡川,安平川,厚真川,敷生川の5河川を 考慮した。河川流量は、国土交通省水文水質データベースおよび北海道建設部河川課のウェ ブサイトを参考にして与えた。

また,苫東厚真火力発電所の温排水の効果として,同発電所のセルに周囲より7℃高い流量 70m³/s の温水によって水温が変化する効果を与えた。

③ シミュレーションに用いたコンピュータ

シミュレーションは北海道大学情報基盤センターのスーパーコンピューター(HITACHI SR16000 モデル M1)で行った。

(3) 静水圧モデル単体での計算

MEC モデルは、静水圧モデルの 1 つのセルを Full-3D モデルで計算することができるモデ ルであるが、静水圧モデル単独で計算することもできる。ここでは、CO₂漏出シミュレーショ ンのスピンアップのためおよびモデルの再現性の検証のために、静水圧モデル単体での計算 を複数ケース行った。計算期間は 90 日間とした。初期条件として、水温、塩分は JODC の水 温統計、塩分統計の値を採用し、流速は0にした。

スピンアップは、CO₂の漏出を始める前に平衡状態にしておくための、いわば初期条件作成のための計算である。静水圧モデルの計算がおよそ平衡状態に達した後、Full-3Dモデルを結

^[1] Rosa A.L., Isoda, Y., Kobayashi, N., 2009. Seasonal variations of shelf circulation in Hidaka Bay, Hokkaidok, Japan, with an interpretation of the migration route of juvenile walleye Pollock. Journal of Oceanography, 65, pp.615-626.

^[2] Matsumoto, K., Takanezawa, T., Ooe, M., 2000. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. Journal of Oceanography, 56, pp. 567-581.

合し CO₂ 漏出シミュレーションを行った。第 4.1-1 図は, Full-3D モデルをはめ込むセルの水 温と塩分の時系列図である。

夏季は2008年8月、冬季は2003年2月の条件での計算結果である。夏季、冬季ともに10 日くらいまでは初期値から急激に変化しているが、その後はほぼ平衡に達している。点線は 風速ベクトルデータの繰り返し期間を表している。この時系列の変化から90日の計算期間は スピンアップとして十分な時間であることがわかる。よって、CO₂の漏出シミュレーションに おいては、この時系列の最後の状態を初期値として行った。

モデルの再現性を検証するために、観測データと比較することとし、観測データの年月に 合わせた気象条件で計算を行った。北海道大学水産学部付属練習船うしお丸による白老沖で の観測データを見ると、夏季に関しては 2008 年 7 月のデータが比較的多く、冬季に関しては 2003 年 1 月のデータが比較的多かったので、2008 年 7 月と 2003 年 1 月の境界条件データを 用いた。また、2004 年 7 月下旬から 8 月上旬、2005 年 1 月下旬から 2 月上旬に苫小牧港湾事 務所による苫小牧港潮流観測調査が行われたが、CO₂漏出点(圧入点)のごく近傍(St. 02)で 流速観測が行われていたため、2004 年 7 月、2005 年 1 月の境界条件データを使った計算も行 った。

注: 上が水温,下が塩分。左は夏季(2008 年 8 月)条件のモデル計算結果,右は冬季(2003 年 2 月) 条件のモデル計算結果。青,緑,赤,黒の順に 0~2m 層(最上層),8~10m 層,12~14m 層,18~ 20m 層(最深層)。点線は風速データの繰り返し期間を表している。

第4.1-1 図 静水圧モデルの Full-3D モデルをはめ込むセルの水温と塩分の時系列

(4) モデル計算結果と観測データの比較

本モデルが実際の海の状況を再現できるモデルかどうかを検討するために, 観測値とモデ ル計算結果を比較した。

前出の第 2.1-3 図に、観測データとモデル計算結果の水温と塩分の鉛直プロファイルを示 す。観測データは北海道大学水産学部付属練習船うしお丸で観測された白老周辺のデータと JODC から得られた統計値を用いた。また、モデル計算結果は観測データと同じ海域の計算デ ータを 2 週間平均したものを用いた。実線がうしお丸で観測されたデータである。7 月は 2003 年、2006 年、2008 年の観測データがあり、それを順に黒、赤、緑でプロットしている。1 月 は 2003 年、2008 年、2012 年の観測値があり、順に黒、赤、緑でプロットしている。水色の+ 印は JODC のそれぞれ 7 月と 1 月の統計値(北緯 42~43 度、東経 141~142 度の値)である。 青の*印がそれぞれ 2008 年 7 月、2003 年 1 月の条件で計算したモデル計算結果である。

夏季(7月)の観測値には、海面付近で高温、低塩分で、深くなるにつれて低温、高塩分に なるという成層構造が見られ、冬季(1月)は海面から海底まで水温、塩分とも変化が小さく ほぼ一定という構造が見られる。観測結果には年や場所によってある程度ばらつきがみられ るが、モデル計算結果はそのばらつきの範囲内に入っており、本モデルで夏季、冬季それぞれ の水温、塩分の分布、および成層状態が適切に表現できていることがわかる。 第4.1-2 図は水位偏差の図である。観測値(青線)は苫小牧西港験潮所の潮位データから 平均値を除いた偏差である。験潮所のデータは、1hPaの気圧低下(上昇)で1cmの水位上昇 (低下)が生じるという Inverted Barometer 応答(IB 応答)を仮定して、気圧の影響を除い ている^[1]。気圧補正には気象庁観測の苫小牧の気圧データを用いた。緑点がモデルの結果であ る。観測値とシミュレーション結果はほとんど一致しており、モデルで潮汐がよく再現され ていることが示されている。

なお、潮流については必ずしも十分に再現されているわけではない。しかし、潮流による物 質輸送流速 u と潮流の流速振幅 U の比 u/U を潮位変動の振幅 a と水深 h を用いて a/(2h)で見 積もると、 10^{-2} 程度となり潮流による輸送効果は小さいと考えられる。また、生物影響の予測 には ΔpCO_2 の 24 時間平均値あるいは 3 週間平均値を用いている。したがって、潮流が必ずし も十分に再現されていないことは生物影響の予測に大きな影響を与えないと考えられる。

注: 観測値(青)と苫小牧西港の位置のセルのモデル計算結果の水位(緑)。上は2008年7月の観測値と2008 年7月の条件で計算したモデル計算結果,下は2003年1月の観測値と2003年1月の条件で計算したモデ ル計算結果。なお,観測値はIB応答を仮定して気圧の影響を除去した。

CO₂漏出点(圧入点)の近傍の北緯42°36′59.022", 東経141°39′26.722"での流速観測 との比較を行った。流速観測は夏季の2004年7月22日~8月7日,冬季の2005年1月19日 ~2月7日に行われた(第2.1-2表参照)。観測は海面下5m層で行われた。観測期間の恒流 (観測期間のベクトル平均値)は夏季が4.19cm/sで流向はW(西向き),冬季が4.18cm/sで

第4.1-2 図 苫小牧西港験潮所の潮位データから平均値を除いた水位偏差図

^[1] 稲津大祐,木津昭一,花輪公雄,2005. 気圧変動に対する日本沿岸水位の応答.海の研究,14, pp.57-69.

流向は NE(北東向き)であった。第4.1-3 図はモデル計算結果の上記観測点を含むセルの流 速と流向の時系列であり,2004 年7月の境界条件データと2005 年1月の境界条件データを 使って計算した結果を観測期間に近い3週間で移動平均したものである。緑,赤,黒の実線 はそれぞれ2~4m層,4~6m層,6~8m層を示す。

流向については夏季が西向き,冬季が東~北東向きでモデル計算結果と観測結果がよく一 致している。流速については夏季,冬季とも観測値に比べて計算値はやや小さめではあるが, オーダーとしてのずれはなく,概ね観測された平均流が再現されている。

現地調査により得た夏季および冬季の表層(海面下 2m)の流況(第3.1-5(1)表のベースラ イン調査夏季および第3.1-5(2)表のベースライン調査冬季、参照)をみると、流向は夏季お よび冬季ともに海岸線に平行な流れを示す傾向が認められ、文献により把握した流況および シミュレーション結果の流況と一致している。流速をみると、全調査測点の平均流速は夏季 に10.0cm/s、冬に13.4cm/sを示しており、文献により把握した流況およびシミュレーション 結果の流況(第4.1-3 図参照)よりやや大きいが、これは現地調査における流速の測定期間 が短いためと考えられる。

注:緑が2~4m 層,赤が4~6m 層,黒が6~8m 層。流向の軸は下から上に向 かって北から時計回りになっている。N, E, S, Wがそれぞれ北向き, 東向き,南向き,西向きである。上が2004年7月条件,下が2005年1 月条件でそれぞれ計算した結果の3週間移動平均値。縦軸右端の矢印は 観測値を示す。

第4.1-3 図 流速観測点を含むセルのモデル計算結果の流速と流向の時系列

また,第4.1-4 図は,モデル領域表層の流れ場を示したものである。1 月は岸沿いに時計回 りの流れがあり,沖合に反時計回りの流れがある。一方,7 月は領域全体で反時計回りの流れ になっている。第2.1-8 図と比べると,シミュレーション結果は,定量的にも定性的にも日 高湾の流れ場の特徴を再現できていると言える。

(km)

注:1月(上)と7月(下)の表層の流れ場。計算期間での時間平均値。

第4.1-4 図 モデル領域表層の流れ場(計算結果)

以上より,本モデルは適切な境界条件(海面境界条件,側面開境界条件)を与えれば現実的 な流況や成層をおおむね再現できるモデルであることが確認された。

4.2 海洋環境の化学的な変化の予測-CO2漏出シミュレーション

(1) シミュレーション条件

CO₂漏出点は,2つの圧入点の直上と仮定した。圧入点は,滝ノ上層が北緯42°36'10.4807", 東経141°37'56.6067",萌別層が北緯42°36'44.0224",東経141°38'27.5915"である。 この2つの圧入点(漏出点)は海洋モデルの同じセルに含まれるので,ここでは2つの圧入 点を区別していない。

① CO2漏出量

 CO_2 漏出量については、「2.3 特定二酸化炭素ガスの海洋への漏出の位置及び範囲並びに漏 出量の予測」の結果を勘案し、次の2ケースを行った。また、Kano et al. (2010)^[1]が海底 から出てくる気泡 CO_2 の初期半径、0.5 cm、1 cm、2 cm のうち 1 cm の場合に海水中の pCO₂ が最 も高くなることを示していることから、気泡 CO_2 の初期半径はいずれのケースも 1 cm とした。

7) シナリオ2萌別層ケース(シナリオ2ケース)

地層中での CO_2 移行挙動シミュレーションにおけるシナリオ 2 は,想定外の事象で CO_2 圧 入期間中に貯留層から海底面付近まで達する断層が新たに発生し,この断層を通じて CO_2 が 漏出する極端なシナリオである。このシナリオによるシミュレーション結果(第4.2-1 図)は,気相 CO_2 フラックスの最大値が 0.0175kg/s (=551.88 トン/年),その時間付近の溶存 CO_2 フラックスの極大値が 12.4×10⁻⁴kg/s を示し,海中拡散シミュレーションではこれらの 値を与えた。

なお,前述のシナリオ 1 (弾性波探査の検出限界以下の小規模な断層/フラクチャを通じ て CO₂が移行するシナリオ)では,海底面までの CO₂漏出は起きないという結果が得られて いる。

^[1] Kano, Y., Sato, T., Kita, J., Hirabayashi, S., Tabeta, S., 2009. Model prediction on the rise of pCO₂ in uniform flows by leakage of CO₂ purposefully stored under the seabed. International Journal of Greenhouse Gas Control, 3, 617–625.

注:上が気相のフラックス,下が溶存態のフラックス。右は積算漏出量。赤矢印で示した極 大値がシナリオ2ケースで与えた漏出フラックス。

イ) 貯留量の1%が漏出するケース(1%漏出ケース)

CO₂の貯留予定量(60万トン)の1%が1年で漏出する場合を想定し,0.190kg/s(=6,000トン/年)の気相CO₂フラックスと4.611×10⁻³kg/sの溶存CO₂フラックスを与えた。

貯留量の 1%が漏出するという想定は、気候変動に関する政府間パネル(以下, IPCC と称 する)の検討に基づいている^[1]。IPCC は CO₂の漏出に関していくつかのシミュレーション結 果に基づいて検討を実施した。そのなかで、Walton et al. (2004)^[2]や Zhou et al. (2004) ^[3]による移行挙動シミュレーションに基づき、貯留層から CO₂が何らかの事象で漏出、拡散 する量は最大で圧入量(総量)の 1%以下と設定している。

^[1] Benson, S., Cook, P., Anderson, J., Bachu, S., Nimir, H.B., Basu, B., Bradshaw, J., Deguchi, G., Gale, J., von Goerne, G., Heidug, W., Holloway, S., Kamal, R., Keith, D., Lloyd, P., Rocha, P., Senior, B., Thomson, J., Torp, T., Wildenborg, T., Wilson, M., Zarlenga, F., and Zhou, D., 2005. Underground geological storage. In: Metz, B. et al. (Eds), IPCC Special Report on carbon dioxide capture and storage. Cambridge University Press, Cambridge, UK. pp.195-276.

^[2] Walton, F.B., Tait, J.C., LeNeveu, D., and Sheppard, M.I., 2004. Geological storage of CO₂: A statistical approach to assessing performance and risk. In: Rubin, E.S. et al. (Eds), Proceedings of 7 the International Conference on Greenhouse Gas Control Technologies, Vol. I., pp. 693-700.

^[3] Zhou, W., Stenhouse, M. J., Arthur, R., Whittaker, S., Law, D. H. -S., Chalaturnyk, R., and Jazrawi, W., 2004. The IEA Weyburn CO₂ Monitoring and storage project -modeling of the long-term migration of CO₂ from Weyburn. In: Rubin, E.S. et al. (Eds), Proceedings of 7 the International Conference on Greenhouse Gas Control Technologies, Vol. I., pp. 721-730.

Walton et al. (2004)^[1]は, 貯留層へ圧入した超臨界 CO₂が遮蔽層へ溶解, 拡散もしくは 坑井から漏出して生物圏, 地圏(地中), 貯留層の中を移動する割合(マスバランスの変化) を統計的に計算し, 特に生物圏へ移動する CO₂を漏出と認定した(第4.2-2 図)。

注: 出典:Walton et al. (2004)^[1]

第4.2-2 図 貯留層からの CO2 の漏出経路

結果として、4,000 ケースの計算を実施した上で標準偏差の2 σ (全体の95%) は生物圏 への漏出割合が0.012 となることを示し(第4.2-3 図), 圧入後8,000 年から10,000 年後に 坑井などを通じて生物圏へ漏出する CO₂の量は,最大でも圧入量の1.2%であることを示唆した(第4.2-4 図)。

^[1] Walton, F.B., Tait, J.C., LeNeveu, D., and Sheppard, M.I., 2004. Geological storage of CO₂: A statistical approach to assessing performance and risk. In: Rubin, E.S. et al. (Eds), Proceedings of 7 the International Conference on Greenhouse Gas Control Technologies, Vol. I., pp. 693-700.

注:出典:Walton et al. (2004)^[1]

第4.2-4 図 生物圏への圧入後から10,000 年後の漏出量

また, Zhou et al. (2004)^[2]も貯留層から生物圏への CO₂の漏出を課題とし, 貯留層に達 している坑井のプラグやアニュラスを通じて CO₂が漏出する場合を想定して漏出レート(フ

^[1] Walton, F.B., Tait, J.C., LeNeveu, D., and Sheppard, M.I., 2004. Geological storage of CO₂: A statistical approach to assessing performance and risk. In Rubin, E.S. et al. (Eds), Proceedings of 7 the International Conference on Greenhouse Gas Control Technologies, Vol. I., pp. 693-700.

^[2] Zhou, W., Stenhouse, M. J., Arthur, R., Whittaker, S., Law, D.H.-S., Chalaturnyk, R., and Jazrawi, W., 2004. The IEA Weyburn CO₂ Monitoring and storage project -modeling of the long-term migration of CO₂ from Weyburn. In Rubin, E.S., Keith, D.W., and Gilboy, C.F., (Eds), Proceedings of 7 the International Conference on Greenhouse Gas Control Technologies, Vol. I., pp. 721-730.

ラックス)の時系列変化を計算した。その結果に基づくと、フラックスは圧入直後に急激に 増加し、およそ100年後に最大値を示した後に減少傾向が認められる。また、直後に急減す る例(RUN)も顕著である(第4.2-5図)。

以上より, 貯留量の 1%が漏出開始直後の最大のフラックスで全て漏出してしまうという のが最も危険側での想定となる。そこで, 貯留量の 1%が 1 年で漏出する高い漏出フラック スを想定し, 1%漏出ケースのフラックスとした。

第4.2-5図 CO₂漏出レート(フラックス)の時系列変化

② 漏出域

漏出域は、円形に設定した(第4.2-6 図)。断層からの漏出を仮定したものであれば、線 状の漏出域になる可能性があるが、線上では向き依存性が生じる。例えば、東西流が卓越し ているような場合に、線状の漏出域を東西向きにするか南北向きにするかで CO₂の濃度分布 結果が変わる可能性がある。しかし、円形ならそういう可能性がない。また、漏出した CO₂ は移行挙動シミュレーションの上面から海底堆積層を通って海水に到達する間に広がる可 能性があり、線上の断層から漏出したとしても、必ずしも線状で海底(海底堆積層上面)に 達するとは限らない。これらの理由により、円形の漏出域を設定するのは妥当だと考えられ る。

円形漏出域の直径は、シナリオ2ケースと1%漏出ケースについて 500m と 100m の2ケー スを行った。ここでは、それぞれ「500m ケース」、「100m ケース」と記した。また、この漏 出域の直径と前項の漏出量を合わせて、例えば1%漏出ケースの 500m ケースであれば「1%漏 出-500m ケース」のように記した。

注:赤が直径 500m の円形漏出域の場合,黄色が直径 100m の円形漏出域の場合の漏出セル。

第4.2-6図 Full-3Dモデル領域(2km×2km)のCO2漏出域

③ 季節

シミュレーションは夏季と冬季の2季節について行った。夏季は2008年8月の境界条件 データを用い、冬季は2003年2月の境界条件データを用いた。2季節を選んだのは、海の 状態が夏季と冬季で両極端となるためである。夏季は水温が高く強く成層している。一方、 冬季は水温が低く成層がほとんどない。第4.2-2図や第4.2-3図に示されているとおり、水 深20m程度の浅い海域では冬季は強く鉛直に混合されており海底から海面までほぼ同じ水 温、塩分になる。夏季(8月)は海面と海底の水温差が約4℃となり、上下混合が起きにく い。また、夏季は最も低温の海底付近でも水温は約18℃で、冬季(2月)の約3℃に比べる と非常に高い。気体のCO2の溶解は水温に大きく依存するので、季節間での水温の違いも重 要な因子である。

④ シミュレーションケース

上記①~③の組み合わせによりシミュレーションは 8 ケース行った。また、漏出による CO₂ 濃度の増加量を求めるためにバックグラウンドとなる CO₂ 無漏出シミュレーションも行った。したがって、下記 10 ケースの計算を行った。

- 1. シナリオ 2-100m ケース, 夏季条件
- 2. シナリオ 2-100m ケース,冬季条件
- 3. シナリオ 2-500m ケース,夏季条件
- 4. シナリオ 2-500m ケース,冬季条件
- 5. 1%漏出-100m ケース, 夏季条件
- 6. 1%漏出-100m ケース,冬季条件
- 7. 1%漏出-500m ケース, 夏季条件
- 8. 1%漏出-500m ケース,冬季条件
- 9. 無漏出ケース, 夏季条件
- 10. 無漏出ケース,冬季条件

単位面積当たりの気相 CO₂の漏出量は、シナリオ 2-100m ケースが 2.33×10⁻⁶kg/m²/s、シ ナリオ 2-500m ケースが 8.86×10⁻⁸kg/m²/s、1%漏出-100m ケースが 2.54×10⁻⁵kg/m²/s、1% 漏出-500m ケースが 9.63×10⁻⁷kg/m²/s である。

CO₂漏出シミュレーションは,静水圧モデル単体で 90 日計算(スピンアップ)した状態を 初期値とした。