福島県における放射線健康不安の経年変化の把握と対策の促進に関する研究

主任研究者 川上憲人 (東京大学大学院医学系研究科精神保健学分野教授)

研究要旨

目的:本年度研究では①平成25年度に実施された放射線健康不安の実態調査の回答者のうち福島県仮設避難住宅および一般住民を追跡し、放射線健康不安の経年的変化および関連要因

(放射線と健康に関する講習会や健康診査の受診を含む)を明らかにする。②福島県一般住民 を対象とした大規模な質問票調査を実施し、自治体別の放射線健康不安の実態を詳細に明らか にし、経年変化および関連要因を検討するための新しいコホートを確立するとともに、賛同の 得られた福島県自治体に調査結果を返却し自治体ごとの対策の促進に役立てる。

対象と方法:平成25年度(2013/2014)調査対象の福島県仮設住宅居住の避難住民のうち追跡 調査に同意した者426名(避難住民)、②平成25年度(2014)調査対象の福島県避難区域以外17 自治体の避難区域外一般住民(住民①)、③同避難区域以外32自治体(上記自治体を除く)の 一般住民(住民②)に対する質問票調査を実施した。

結果:1)福島県避難住民の追跡調査:仮設住宅住民のうち188名(44%)から回答を得た。 回答者では、この2年間に身体症状、抑うつ(K6)、PTSD症状(PCL6)、放射線健康不安がいずれ も増加していた。65歳以上の者で身体症状が増加あるいは維持される傾向にあった。震災時に 死別を経験した者では抑うつおよび PTSD症状が増加/持続しやすかった。

2)福島県避難区域外(一般)住民調査:平成25年度調査対象となった福島県17自治体から抽出した675名のうち、208名(31%)から回答を得た。前回調査にくらべて今回調査ではこれら住民における身体症状、抑うつ、放射線健康不安は低くなっていた。しかしPTSD症状には変化が少なかった。平成25年度の関東地方一般住民の調査結果とくらべた場合には、これらの得点はいずれもまだ高かった。上記以外の福島県32自治体(避難区域を除く)に居住する20歳以上80歳未満の男女3,200人および17自治体から補足抽出した1,025名の合計4,225名のうち1443名(34%)から回答を得た。福島県の避難区域外の49自治体別の、身体症状、抑うつ、PTSD症状、放射線健康不安の平均点には幅広い差があった。また地域によって、身体症状、抑うつ、PTSD症状の性別、年齢別分布に違いがみられた。

3)健康診断・説明会への参加と放射線健康不安および心身の健康:仮設住宅住民の追跡調 査では、放射線について集団で講義を聞く形式の講習会・説明会を受講した者で抑うつの増加 が少なかった。健康診断による放射線健康不安や心身の不調の改善効果は明確でなかった。

考察:仮設住宅住民では心身の不調が増加しており、65歳以上の高齢者および死別を経験し た者へのケアが必要と思われた。避難区域外の一般住民では、放射線健康不安と心身の不調は しだいに改善しているが、なお経過を把握する必要がある。調査をもとに自治体別の心身の健 康プロフィールを求めることで、自治体ごとに心身の健康づくりなどの対策を進めることが効 果的である可能性がある。仮設住宅住民では、放射線に関する講習会・説明会を通じて精神的 不調が改善した可能性がある。

キーワード: 放射線健康不安、抑うつ・不安、PTSD、福島県、健康診断、経年変化

研究協力者 安村誠司(福島県立医科大学医学部公衆衛生学講座教授),矢部博興(福島県立 医科大学医学部神経精神医学講座教授),秋山 剛(NTT東日本関東病院精神科部長),鈴木 友理子(国立精神・神経医療研究センター成人精神保健部災害等研究支援室室長)、堀越直子(福 島県立医科大学放射線医学県民健康管理センター助手),Evelyn Bromet(米国ストーニーブルッ ク大学医学部・特別教授)、Kasisomayajula Viswanath(米国ハーバード大学公衆衛生大学院・教 授)、増子博文(福島県発達障がい者支援センター・センター長)、後藤あや (福島県立医科 大学医学部公衆衛生学講座・准教授)、岩佐 ー(福島県立医科大学医学部公衆衛生学講座・講師)、 佐藤 理(福島学院大学福祉学部こども学科・教授)

I 研究目的

福島第一原発事故にともない福島県の避難住民だけでなく一般住民にも放射線健康不安が高く なり、一部の住民ではこのために心身の不調が持続していることが平成24~26年度原子力災害影 響調査等事業(放射線の健康影響に係る研究調査事業)により明らかになった。

本研究ではこの研究を継続・発展させ、(1)平成25年度に実施された放射線健康不安の実態 調査の回答者のうち福島県仮設避難住宅および一般住民を追跡し、放射線健康不安の経年的変化 および関連要因(放射線と健康に関する講習会や健康診査の受診を含む)を明らかにする。(2) 福島県一般住民を対象とした大規模な質問票調査を実施し、自治体別の放射線健康不安の実態を 詳細に明らかにし、経年変化および関連要因を検討するための新しいコホートを確立するととも に、賛同の得られた福島県自治体に調査結果を返却し自治体ごとの対策の促進に役立てる。(3) 福島県一般住民において精神疾患が増加しているかどうかを明らかにするために WHO 統合国際診 断面接による訪問調査を実施する。

平成 27 年度研究では、①福島県避難住民約 500 人、平成 25 年度調査対象 17 自治体一般住民(住 民①)に対する 2 年目追跡質問票調査、②福島県避難区域以外 32 自治体(上記自治体を除く)の 一般住民(住民②)に対する初回質問票調査を実施した。なお本研究は以下の研究者の協力の下実 施した: 関屋裕希(東京大学大学院医学系研究科精神保健学分野特任研究員),北川砂織、酒井 理花(東京大学大学院医学系研究精神保健学分野科学術支援職員)、任 喜史(東京大学大学院医 学系研究科精神保健学分野・院生)、小竹理紗(東京大学大学院医学系研究科精神看護学分野・院 生)

環境行政の課題との関連性

本研究により、①福島県の避難住民および一般住民における放射線健康不安と精神的健康の改善・持続の実態と関連要因が明らかになる。②調査結果を自治体に報告することによる放射線健 康不安対策の促進手法を確立しその有用性が明らかになる。

Ⅱ 研究方法

1. 福島県(避難区域外)自治体への要望の聴取

研究の開始にあたって、福島県の避難区域外の49自治体(追跡調査対象17自治体、新規調査対象32自治体)に対して、本研究班が実施する実態調査の結果報告への希望の有無および調査内容に対する要望を聴取した。

2. 住民調查

1)調査対象

調査対象は以下の3つである。

(1) 福島県避難住民

平成 25 年度の福島県仮設住宅居住の避難住民のうち追跡調査に同意した者、426 名を対象に郵送法調査を行った。

(2) 平成 25 年度調查対象 17 自治体一般住民(住民①)

平成 25 年度調査対象となった福島県 17 自治体から 20 歳以上 80 歳未満の男女個人(20~39 歳の抽出ウエイトを 2 倍とした)を、各自治体 100 サンプル(各 4 地点 1 地点 25 サンプル)、

合計 1,700 人を抽出した(自治体ごとの二段無作為抽出法)。

(3) 福島県避難区域以外 32 自治体(上記自治体を除く)

上記以外の福島県 32 自治体(避難区域を除く)に居住する 20 歳以上 80 歳未満の男女個人(20~39 歳の抽出ウエイトを 2 倍とした)を、各自治体 100 サンプル(各 4 地点、1 地点 25 サンプル)、 合計 3,200 人を抽出した(自治体ごとの二段無作為抽出法)。

2) 方法

調査票では以下の項目を測定した。

(1) 放射線健康不安

放射線健康不安の尺度としては、福島県立医科大学放射線医学県民健康管理センターが行う避 難区域住民に対する「こころの健康度・生活習慣に関する調査」の自由回答およびこれまでの被 爆者に対する調査で使用された質問項目から作成した7項目の尺度が開発されている¹⁾。研究者 らはこれに項目を追加した9項目版、16項目版を開発している。しかしいずれの尺度もその信頼 性係数にはほとんど差がないことから、回答者の負担を考慮して、本調査では7項目版を採用し た。7項目版の質問項目を以下に示す。

- ① 将来、放射線の影響で深刻な病気にかかるのではないかと心配している。
- ② 体の具合が悪くなるたびに、放射線を浴びたせいではないかと不安になる。
- ③ 放射線の影響が子どもや孫など次の世代に遺伝するのではないかと心配している。
- ④ 原子力発電所の事故に関する報道を見ると、とても不安、または不快になる。
- ⑤ 自分が福島県に住んでいたために、他の人から差別された(不公平な扱いを受けた)経験がある。
- ⑥ 福島県の住民であることを、なるべく人に話さないようにしている。
- ⑦ 放射線が健康に与える影響について、家族と意見が対立して、もめた経験がある。

これら項目ごとに、とてもそう思う(4点)、ややそう思う(3点)、あまりそう思わない(2 点)、全くそう思わない(1点)の5件法で回答を求め、項目得点を合計して放射線健康不安の強 さの程度とした(7~28点)。先行研究では、内的整合性による信頼性係数(クロンバックα) は 0.812、一般住民における放射線不安尺度の合計得点と抑うつ、身体症状とのピアソン相関係 数は 0.28~0.35 と報告されている¹⁾。 (2) 抑うつ・不安

抑うつ・不安は K6 調査票で評価した。K6 は 2002 年に Kessler ら²⁾の手により開発された尺度 であり既存の 18 個のスクリーニング尺度から得られた 612 個の項目を候補とし、その中から 5 段階の大規模疫学研究を経て吟味された 6 項目により構成されている。質問項目は付録に示すと おりであり、回答選択肢は「全くない」、「少しだけ」、「ときどき」「たいてい」、「いつも」の 5 件法である。各回答選択肢に 0 から 4 点までの点数を与え、これを 6 項目で合計した尺度得点(0 ~24 点)を心理的ストレス反応の指標として使用する。日本語版は、古川、川上、金により作成 されており³⁾、その信頼性および気分・不安障害の診断に対する妥当性が一般住民および精神科 外来患者において検証されている⁴⁾。

(3) PTSD 症状

PTSD 症状は、PTSD Checklist-Specific (PCL-S)調査票⁵⁾で評価することを計画したが、回答 者の負担を考慮し、短縮版である6項目版⁶⁾を使用することとした。6項目版 PCL-S(以下 PCL-S6) は、6項目、5件法からなる PTSD 症状の尺度である。

そのストレス体験の、心をかき乱すような記憶、考え、イメージ(光景など)を繰り返し思い出す

- ② 何かのきっかけでそのストレス体験を思い出したとき、非常に動揺する
- ③ そのストレス体験を思い出させられるため、特定の活動や状況を避ける
- ④ 他の人々から距離を感じたり疎外されているように感じたりする
- ⑤ イライラしたり、怒りが爆発したりする
- ⑥ 物事に集中できない

回答選択肢は、全くなかった(1点)、少しあった(2点)、中程度であった(3点)、かなりあった(4点)、非常にあった(5点)であり、合計点は5-30点である。日本語版 PCL-S6のスクリーニング効率は、ROC 曲線下面積 0.85、感度 80.0%、特異度 75.8%であり、17点以上が PTSDのカットオフ点として推奨されている⁷⁾。本研究では PCL の得点を連続量として使用した。

(4) 身体症状

職業性ストレス簡易調査票⁸⁾から身体的ストレス反応の尺度(10項目)を用いて身体症状を測 定した。項目は、以下のようであり、ほとんどなかった(1点)、ときどきあった(2点)、しば しばあった(3点)、いつもあった(4点)で採点して合計得点を身体症状の指標とした。これら の項目は、めまいがする、体のふしぶしが痛む、頭が重かったり頭痛がする、首筋や肩がこる、 腰が痛い、目が疲れる、動悸や息切れがする、胃腸の具合が悪い、食欲がない、便秘や下痢をす るである。

(5) 震災後の健康診断や講習会・説明会への出席

研究者による情報収集と討議から、福島県における東日本大震災後の健康診断や講習会・説明 会の一覧を作成した(表)。

表 福島県における東日本大震災後の健康診断や講習会・説明会の一覧

(1) 震災以後に受けた健康診断について

- 自治体が行う健康診査
- 個人線量計による外部被ばく線量(ガラスバッチ)
- 内部被ばく線量(ホールボディカウンター)
- どの健康診断かわからないが健康診断
- その他の健康診断
- (2) 講習会・説明会について
- 甲状腺検査出張説明会(保護者や教員向けに医師が学校に出張して説明会を実施)
- よろず健康相談会(健診会場にブースを設置し、相談したい住民が医師や看護師・保健師等 によろず的な個別相談をする)
- 環境省主催住民向けセミナー(企画運営(公財)原子力安全研究協会)放射線の健康影響に
 関するセミナー:支所や公民館などで開催
- 環境省主催住民向けセミナー(企画運営(公財)原子力安全研究協会)住民参加型プログラムに基づく意見交換会:川俣、広野、浪江、楢葉、葛尾で4回シリーズ
- 市町村主催による放射線関連の講演会:地元の医師による放射線や甲状腺をテーマとした講 演会など
- 個別相談会:内部被ばく検査やガラスバッチの結果をもと医師による予約制の相談会
- 体験型学習会: JA 食品放射能測定所・仮置き場などの施設見学と医師との話し合い等
- 働く人のための放射線と健康講座:企業や事業所に出向き、医師による健康講座
- 出前講座:町内会や地域の団体、サークル等からの依頼により、市職員、保健師、医師などが出向いて、放射線と健康、内部被ばく検査結果の見方などの疑問の相談にのる
- 相談員制度:2014年3月に創設された「福島再生加速化交付金」による相談員の育成・配置 や個人線量低減支援相談員への相談

http://www.meti.go.jp/earthquake/nuclear/pdf/140725/20140725_01.pdf

しかし回答者に健康診断や説明会の詳細な区分を回答してもらうことは困難と考えられるため、 健康診断は4区分(ア)自治体が行う健康診査、イ)個人線量計による外部被ばく線量(ガラス バッチ)測定、ウ)内部被ばく線量(ホールボディカウンター)測定、エ)その他の健康診断) に、説明会も4区分(ア)集団で講義を聞く形式の講習会・説明会、イ)個人での健康相談会、 ウ)参加者同士の話し合いのある説明会、エ)「相談員制度」による相談員への相談)に分類し それぞれについて震災以降受けたことがあるかどうかをたずねた。また一番最近に講習会・説明 会を受けた時期を質問した。

6) 震災以後に、健康診断または加	x射線関連の講習会・説明会を利用されたかどうかうかがいます。
(1)健康診断について	
①震災以後に、健康診断をうけま	したか
<u>1 受けた</u> 2 受	けない ──▶「(2)」 へ進んでください 。
②健康診断について、 <u>受けたもの</u>	<u>)に〇をして</u> ください(〇はいくつでも)。
ア)自治体が行う健康診査	
イ)個人線量計による外部被ばく	線量(ガラスバッチ)測定
ウ)内部被ばく線量(ホールボラ	「ィカウンター)測定
エ)その他の健康診断	
③一番最近に健康診断を受けたの	りはいつですか。
1 1年以内	2 1年より前~2年以内 3 2年より前~3年以内
4 3年より前~4年以内	5 4年以上前
(2) 講習会・説明会について	
①これまでに放射線についての話	習会・説明会をうけましたか
<u>1 受けた</u> 2 受	けない ──→「(3)」 へ進んでください 。
②それぞれの講習会・説明会にな	oいて、 <u>受けたものに○をして</u> ください(○はいくつでも)。
ア)集団で講義を聞く形式の講習	会・説明会
イ)個人での健康相談会	
ウ)参加者同士の話し合いのある	説明会
エ)「相談員制度」による相談員	への相談
③一番最近に講習会・説明会を受	けたのはいつですか。
1 1年以内	2 1年より前~2年以内 3 2年より前~3年以内
4 3年より前~4年以内	5 4年以上前

(6)精神疾患

仮設住宅住民については、平成25年度の調査から、WHO国際統合診断面接⁹の結果からその時 点での過去12か月間の精神疾患(大うつ病、気分変調性障害、全般性不安障害、パニック障害、 PTSD、アルコール使用障害)の有無を判断した。

(7) その他の要因

基本属性として、性別、年齢を質問した。平成25年度の仮設住宅調査では、震災関連要因と して、原発事故時の不安の強さをたずね、「かなり」以上の者を不安強と区分した。また震災時の 自分のケガの経験、震災時の家族または友人との死別の経験、震災時の家屋被害の有無を調査し た。さらに日常生活動作(ADL)について、一人での外出に支障がある場合、問題ありと区分した。 また身体疾患による治療の有無を調査した。 (8) 自治体から希望された項目

以上の他、自治体から希望のあった項目を追加した。

(倫理面への配慮)

以上の調査については、東京大学大学院医学系研究科・医学部倫理審査委員会で審査を受け、 承認された上で実施された(倫理審査承認番号 3513-(5)および 10131-(5))。

Ⅲ 研究結果

1. 福島県(避難区域外) 自治体への要望の聴取

15 自治体(郡山市、猪苗代町、いわき市、伊達市、塙町、田村市、西会津町、喜多方市、石川 町、湯川村、三春町、棚倉町、南相馬市、平田村、相馬市)から実態調査の結果報告への希望あ りとの回答があった。またこれらの自治体から、以下のような項目を追加で調査して欲しいとの 希望が寄せられた。

- やりがいや充実感を感じられるものがあるか
- 幸福度
- 自分の喜怒哀楽を分かち合える人がいるか
- 困ったとき相談できる人がいるか
- 現在の自分の主観的健康度
- 健康を維持するために気をつけたい生活習慣は何かについてどんなものを考えているか
- 放射線の健康への影響の心配度合
- 水への不安度合(水道水の使用頻度(事故前後の比較))
- 食への不安度合
- 福島県民にとって今後必要なこと(施策、住民としての活動として)
- 福島県に居住希望か
- 避難している場合の帰還意向
- 2. 住民調查

1)福島県避難住民調査

平成 25 年度の福島県仮設住宅居住の避難住民のうち追跡調査に同意した者 426 名のうち 188 名(44.1%)から回答を得た。これらの者では、2014 年にくらべて 2016 年の、身体症状、抑う つ(K6)、PTSD 症状 (PCL6)、放射線健康不安がいずれも有意に増加していた。特に身体症状、抑う つ、PTSD 症状の増加の効果量が大きかった(表1-1)。

福島県仮設住宅住民の心身の健康および放射線健康不安の変化(増加)と関連する2013/2014 年調査時点の要因では、年齢が40-64歳の者で65歳以上の者よりも身体症状の改善が有意であっ た(表1-2)。震災時に死別を経験した場合には抑うつ(K6)およびPTSD症状(PCL6)が有意に増 加/持続しやすかった。放射線健康不安は、原発事故時の不安が強かったもので有意により改善 する傾向を示した。

2) 福島県避難区域外(一般)住民調查

(1) 17 自治体一般住民(住民①)における心身の健康および放射線健康不安の変化

平成25年度調査対象となった福島県17自治体の同じ27地域から抽出した675名のうち、208 名(31%)から回答を得た。女性は55.8%と約半数であり、平均年齢は47.2歳であった(表2)。 身体症状、K6、放射線健康不安の得点は今回調査の方が、有意に点数が少なくなっていた。PCL6に ついてはいくらか点数が低かったものの、有意な差ではなかった。2014年調査の関東地方一般住 民とくらべた場合には、身体症状、K6、PCL6,放射線健康不安の得点はいずれも今回調査の方が有意 に高かった。標準化された効果量でみると、関東地方にくらべて、身体症状、K6の得点の差は小さ かったが(0.09-0.14)、PCL6,放射線健康不安の得点はなお中等度に高かった(0.42-0.66)。

(2) 福島県自治体における心身の健康および放射線健康不安の実態

上記以外の福島県 32 自治体(避難区域を除く)に居住する 20 歳以上 80 歳未満の男女 3,200 人お よび 17 自治体から補足抽出した 1,025 名の合計 4,225 名のうち 1443 名 (34%)から回答を得た。 このデータを前述の福島県 17 自治体の同じ 27 地域からの回答者 208 名と合わせて解析した。合 計 1,651 名における回答者女性の割合は 53.0%で、平均年齢は 49.2 歳であった。この合計回答 者の身体症状、K 6, P C L 6, 放射線健康不安の得点は、前述の福島県 17 自治体の同じ 27 地 域からの 208 名の結果とほぼ同じであった (表 3 – 1)。

福島県の避難区域外の合計 49 自治体別の、身体症状、K 6, P C L 6, 放射線健康不安の平均 点には幅広い差があった。平均点(最小、最大)は、それぞれ 16.1 (13.4-17.8)、3.4 (1.4-5.2)、 8.5 (6.7-10.6)、15.0 (11.6-17.3)である。放射線健康不安と心身の健康度との間には有意な相 関がみられた(図1)。特に放射線健康不安とP C L 6 得点との間の相関が強かった。

地域別、性別、年齢別にみた心身の健康および放射線健康不安(表3-2)では、身体症状、 抑うつ(K6)、PTSD症状(PCL6)は浜通りで最も高く、放射線健康不安では浜通りと中通りが同じ 程度に高かった(p<0.05)。身体症状、抑うつ(K6)は女性で有意に高かった(p<0.05)。抑うつ(K6) は 20-39 歳台で、身体症状が 64 歳以下で、放射線健康不安は 40-64 歳で高かった(p<0.05)。地域 ごとにみた性別、年齢別の心身の健康および放射線健康不安(表3-3)では、身体症状では性 別×地域の交互作用が有意、抑うつ(K6)、PCL6 では年齢×地域の交互作用が有意であった (p<0.05)。浜通り、中通りでは女性で身体症状がより高かった。抑うつ(K6)は中通りでは若年層 で高い傾向にあった。PTSD 症状(PCL6)は浜通り、中通りでは高齢者に高い傾向にあった。

3) 健診・説明会への参加と放射線健康不安および心身の健康

(1) 仮設住宅住民の追跡調査

大部分の者が震災後に健康診断を受診していた。震災後に健康診断を受診した者では、2年間 の身体症状の増加がより大きかった(表4-1)。放射線についての講習会・説明会の受講の有無 では放射線健康不安および心身の不調の変化に有意な差はなかった。健康診断の種類別に同様の 解析を行った場合には、性、年齢調整後には震災後の健康診断の受診と放射線健康不安および心 身の不調の変化との間に有意な関連はなかった(表4-2)。講習会・説明会の種類別の分析では、 集団で講義を聞く形式の講習会・説明会を受講した者で、抑うつ(K6)の増加が有意に少なかっ た(表4-3)。個人線量計による外部被ばく線量測定経験者では、放射線健康不安が有意に高か った。 (2) 避難区域外自治体一般住民調查

福島県49自治体(避難区域を除く)からの回答者において、健康診断あるいは放射線に関する講習 会・説明会への参加の 有無別に放射線健康不安および心身の健康の尺度得点を比較した(表5 -1)。震災後に健康診断を受診した者は全体の約6割であった。受診した者では、受診しなかっ た者にくらべて抑うつ(K6)得点が有意に低く、一方放射線健康不安が有意に高かった。

健康診断の種類別では、自治体が行う健康診査の受診者では、PTSD 症状 (PCL6)および放射線 健康不安が有意に高かった (表5-2)。放射線に関する講習会・説明会に参加した者は約2割で あり、参加しなかった者にくらべて PCL6 および放射線健康不安の得点が有意に高かった。内部被 ばく線量測定経験者では、身体症状および放射線健康不安が有意に高かった。

講習会・説明会の種類別では、集団で講義を聞く形式の講習会・説明会への出席者で、PTSD 症状 (PCL6) および放射線健康不安が有意に高かった (表5-3)。個人での健康相談会への参加者は 少数であった。参加者では、身体症状、PTSD 症状 (PCL6) および放射線健康不安が有意に高かった。 参加者同士の話し合いのある説明会への出席者も少数であった。参加者では、PTSD 症状 (PCL6) お よび放射線健康不安が有意に高かった。「相談員制度」による相談員への相談はわずかに2名であ り、性、年齢を調整した統計的分析を行うことができなかった。

IV 考察

本年度研究から以下のことがわかった。

1) 福島県避難住民の追跡調査

福島県の仮設住宅に住む避難住民では、この2年間に身体症状、抑うつ(K6)、PTSD 症状(PCL6)、 放射線健康不安がいずれも増加していた。避難住民では、長期にわたる避難生活や生活上の変化 のために、心身の不調が持続したり、あるいは増加しているのかもしれない。しかしこれはこう した困難を持続的に感じている者が追跡調査により回答しやすかったためである可能性もあるた め結果の解釈には注意が必要である。

福島県仮設住宅住民の心身の健康および放射線健康不安の変化(増加)と関連する 2013/2014 年調査時点の要因では、65歳以上の者で身体症状が増加あるいは維持される傾向にあった。震災 時に死別を経験した者では抑うつおよび PTSD 症状)が増加/持続しやすかった。仮設住宅住民で は 65歳以上の高齢者および死別を経験した者へのケアが必要と思われた。

2) 福島県避難区域外(一般)住民調查

2年目の調査を行った非難区域外の17 自治体では、回答者における身体症状、抑うつ、放射線 健康不安がいずれも減少していた。一方、PTSD 症状の変化は少なかった。避難区域外の住民では、 放射線健康不安と心身の不調はしだいに改善している可能性がある。しかし PTSD 症状は比較的持 続していると思われる。2014年の関東地方一般住民の調査結果とくらべた場合には、身体症状、 抑うつ、PTSD 症状、放射線健康不安の得点はいずれもまだ有意に高かった。特に PTSD 症状、放 射線健康不安の得点が高い傾向にあった。福島県避難区域外一般住民において、PTSD 症状、放射 線健康不安がまだ高い状態にあると考えられる。

福島県の避難区域外の合計 49 自治体別の、身体症状、抑うつ、PTSD 症状、放射線健康不安の 平均点には幅広い差があった。また地域によって、身体症状、抑うつ、PTSD 症状の性別、年齢別 分布には違いがみられた。調査をもとに自治体別の心身の健康プロフィールを求めることで、自 治体ごとに心身の健康づくりなどの対策を進めることが効果的である可能性がある。

3) 健診・説明会への参加と放射線健康不安および心身の健康

(1) 仮設住宅住民の追跡調査

仮設住宅住民では、震災後に健康診断を受診した者では、2年間の身体症状の増加がより大き かった。健康診断の種類別では、震災後の健康診断の受診と放射線健康不安および心身の不調の 変化との間に有意な関連はなかった。仮設住宅住民では、健康診断による放射線健康不安や心身 の不調の改善効果は明確でなかった。一方、放射線についての講習会・説明会では、集団で講義 を聞く形式の講習会・説明会を受講した者で、抑うつの増加が有意に少なかった。集団での講習 会・説明会を通じて、自身の不安が軽減され、それにともない精神的な不調が改善した可能性が ある。個人線量計による外部被ばく線量測定経験者では、放射線健康不安が有意に高かった。こ れは外部被ばく線量測定を行うことで、放射線の健康影響により意識が高まったためである可能 性がある。しかし心身の不調が増加していないことは、注目すべき点かもしれない。

(2) 避難区域外自治体一般住民調查

福島県避難区域外の49自治体からの回答者では、震災後に健康診断を受診した者では、受診し なかった者にくらべて抑うつ(K6)得点が有意に低かった。しかし、健康診断の種類別ではこの 傾向は見られず、むしろ自治体が行う健康診査の受診者では、PTSD症状(PCL6)および放射線健 康不安が有意に高かった。今回調査しなかったタイプの健康診査が抑うつの減少に影響している のか、また健康診査を受けたがどの健診か記憶していない場合に抑うつが低いのか、さらに検討 が必要である。

放射線に関する講習会・説明会に参加した者は約2割であり、参加しなかった者にくらべて PCL6および放射線健康不安の得点が有意に高かった。これは講習会・説明会の種類別でもほぼ同 様に傾向であった。これは放射線健康不安や心身の不調がある者が講習会・説明会に参加しやす い傾向があるためである可能性がある。この点は横断研究の限界であり、本調査で実施する2年 後の追跡調査により講習会・説明会の効果を検討することが必要である。また個人での健康相談 会、参加者同士の話し合いのある説明会への参加経験者、「相談員制度」による相談員への相談は 人数が少なく、十分な解析ができていない点も認識しておく必要がある。

V 結論

1) 福島県避難住民の追跡調査

福島県の仮設住宅に住む避難住民では、この2年間に身体症状、抑うつ(K6)、PTSD 症状(PCL6)、 放射線健康不安がいずれも増加していた。65歳以上の者で身体症状が増加あるいは維持される傾 向にあった。震災時に死別を経験した者では抑うつおよび PTSD 症状)が増加/持続しやすかった。 仮設住宅住民では65歳以上の高齢者および死別経験者へのケアが必要と思われた。

2) 福島県避難区域外(一般)住民調查

震災3年目の調査にくらべて、5年目の調査では避難区域外(一般)住民における身体症状、 抑うつ、放射線健康不安が低くなっていた。しかし2014年の関東地方一般住民の調査結果とくら べた場合には、身体症状、抑うつ、PTSD症状、放射線健康不安の得点はいずれもまだ高かった。 避難区域外の住民では、放射線健康不安と心身の不調はしだいに改善している可能性があるが、 なお経過を把握する必要がある。また PTSD 症状は比較的持続していると思われた。福島県の避難 区域外の 49 自治体別の、身体症状、抑うつ、PTSD 症状、放射線健康不安の平均点には幅広い差 があった。また地域によって、身体症状、抑うつ、PTSD 症状の性別、年齢別分布には違いがみら れた。調査をもとに自治体別の心身の健康プロフィールを求めることで、自治体ごとに心身の健 康づくりなどの対策を進めることが効果的である可能性がある。

3) 健診・説明会への参加と放射線健康不安および心身の健康

仮設住宅住民の追跡調査では、放射線について集団で講義を聞く形式の講習会・説明会を受講 した者で抑うつの増加が少なかった。集団での講習会・説明会を通じて、自身の不安が軽減され、 それにともない精神的な不調が改善した可能性がある。健康診断による放射線健康不安や心身の 不調の改善効果は明確でなかった。また避難区域外(一般)住民では健康診断および講習会・説 明会受診者の方が放射線健康不安や心身の不調が大きい傾向にあり、横断調査の限界と思われた。

VI 次年度以降の計画

(1) 福島県一般住民における精神疾患の疫学調査

福島県の調査地点(避難区域を除く)を自治体規模に応じて20カ所無作為に抽出し、各地点の 20歳以上75歳以下住民40人をさらに無作為に抽出する。合計800~1000人の住民に調査依頼し、 400~500人(予定)に面接調査を実施する。調査は民間調査機関に委託し、10人の調査員に調査 方法であるWHO統合国際診断面接のトレーニングを実施する。調査員はノートPCを使用して対 面で面接調査を実施し、収集した面接データから気分、不安、物質使用性障害のDSM-IV診断を行 う。精神疾患に該当する経験を持つ回答者には発症時期(東日本大震災より前か以降か)、最終時 期、受診行動をたずねる。データを集計し、結果を平成25年~平成27年に実施された同一の方 法による一般(非被災地)住民の精神疾患の疫学調査(世界精神保健日本調査セカンド)と比較 し、福島県住民において精神疾患の有病率が増加しているかどうか検討する。

(2) 福島県自治体住民への新規大規模調査による自治体の対策支援

自治体ごとの放射線健康不安の属性別分布、要素別パターン、心身の健康との関連を解析する。 調査結果の提供希望のあった17の福島県自治体に、調査結果を報告し、およびこれをもとにした 自治体の対策を促進するための情報提供や助言を行う予定である。

本研究に関する現在までの研究状況、業績

ア) 雑誌

該当せず。

イ)単行本

該当せず。

引用文献

1. 梅田麻希、関屋裕希、川上憲人他. 福島県における放射線不安尺度の信頼性・妥当性の検討. 第 24回日本疫学会(仙台市、2014年1月23-25日)

2. Kessler RC, Andrews G, Colpe LJ, et al. Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol Med. 2002;32(6):959-76.

3. Furukawa TA, Kawakami N, Saitoh M, et al. The performance of the Japanese version of the K6 and K10 in the World Mental Health Survey Japan. Int J Methods Psychiatr Res. 2008;17(3):152-8.

4. Sakurai K, Nishi A, Kondo K, et al. Screening performance of K6/K10 and other screening instruments for mood and anxiety disorders in Japan. Psychiatry Clin Neurosci. 2011; 65(5):434-41.

5. Weathers F, Litz B, Herman D, Huska J, Keane T. The PTSD Checklist (PCL): Reliability, validity, and diagnostic utility. Paper presented at the Annual Convention of the International Society for Traumatic Stress Studies, San Antonio, TX, 1993.

6. Lang AJ, Stein MB, An abbreviated PTSD checklist for use as a screening instrument in primary care. Behav Res Ther. 2005; 43, 585-594.

7. Suzuki Y, Yabe H, Horikoshi N, et al. Diagnostic Accuracy of Japanese Posttraumatic Stress Measures after a Complex Disaster: The Fukushima Health Management Survey (under review).

8. 下光輝一,原谷隆史,中村賢,他. 主に個人評価を目的とした職業性ストレス簡易調査票の完成,加藤正明班長,労働省平成11年度「作業関連疾患の予防に関する研究」労働の場におけるストレス及びその健康影響に関する研究報告書,労働省,東京, 2000;126-164.

9. Kessler RC, Ustun TB. The World Mental Health (WMH) Survey Initiative Version of the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI). Int J Methods Psychiatr Res. 2004;13(2):93-121.

		2014年		2016 年			
	Ν	平均	標準偏差	平均	標準偏差	t 検定	効果量
身体症状	165	16.3	4.6	19.7	6.3	p<0.001	0.55
K 6	166	3.5	4.3	6.3	5.7	p<0.001	0.45
PCL6	159	9.0	3.5	11.4	4.9	p<0.001	0.48
放射線健康不安	172	17.0	4.6	18.0	4.4	p=0.004	0.22

表1-1 2014年および2016年調査に回答した福島県仮設住宅住民の心身の健康および放射線健康不安の変化

表1-2 福島県仮設住宅住民の心身の健康および放射線健康不安の変化(増加)を予測する 2013/2014 年調査時点の要因

如同調木味の亦粉	身体症状 K6						PCL6		放射線健康不安			
初回詞宜时仍愛奴	В	SE	Р	В	SE	Р	В	SE	Р	В	SE	Р
性別(女性)	38	. 98	. 697	. 47	. 97	. 629	51	.84	. 544	. 69	. 72	. 339
年齢(20-39歳 vs 65	- 64	4 25	<u> </u>	-7.26	1 26	004	-5.01	2 67	110	-2 20	2 25	500
歳以上)	04	4.55	. 004	-7.30	4.30	. 094	-5.91	5.07	. 110	-2.20	5.25	. 300
年齢(40-64 歳 vs 65 歳	-9 19	1 02	024	-1 19	1 02	979	- 80	07	257	- 65	76	204
以上)	-2.10	1.02	. 034	1.12	1.02	. 212	80	. 01	. 557	05	. 70	. 394
学歴(高卒以上)	-1.54	1.00	.126	55	1.01	. 588	41	. 87	. 637	65	. 73	. 370
震災時の自分のケガ	-2.61	1.97	. 186	-3.37	1.88	.075	-2.34	1.58	.141	-1.42	1.39	. 308
震災時の死別	. 57	. 95	. 552	2.16	. 95	.024	1.97	.82	.018	1.11	. 69	.110
震災時の家屋被害	. 44	. 99	. 655	. 40	. 97	. 682	. 40	.84	. 632	31	. 71	. 664
原発事故時の不安(強)	65	. 97	. 500	. 44	. 96	. 650	43	. 83	. 609	-2.07	.71	.004
精神疾患の経験(過去	_ 29	54	602	26	52	620	- 19	49	677	04	40	019
12 か月間)	20	. 04	. 003	. 20	. 52	. 020	. 10	. 43	.077	.04	. 40	. 912
ADL (問題あり)	-3.98	2.85	.164	-1.59	2.88	. 582	. 63	2.42	. 794	2.82	1.78	.116
身体疾患	. 83	1.05	. 430	. 15	1.04	. 884	. 47	. 91	. 606	58	. 77	. 449

	①福島県	k17 自治体-	一般住民	②福島県	具17 自治体-	一般住民	③関東地	也方一般住民	1.7				
	(2014 年	2月)		(2016 年	2月)		(2014 年	2月)		t 検定		効果量	
	人数	平均	SD	人数	平均	SD	人数	平均	SD	1-2	2-3	1-2	2-3
女性(%)	447	(57.4%)		207	(55.7%)		654	(54.4%)					
年齢(歳)	447	52.7	14.5	207	47.2	17.8	654	50.5	15.2				
身体症状	416	17.7	5.6	199	16.8	5.1	616	16.4	4.5	p<0.001	p=0.030	0.17	0.08
K 6	441	4.7	5.2	203	3.9	4.9	645	3.3	4.0	p<0.001	p<0.001	0.16	0.14
PCL6	434	9.2	4.0	207	8.9	4.2	634	7.5	3.0	p=0.117	p<0.001	0.07	0.42
放射線健康不安	438	16.2	4.5	203	15.2	4.2	639	12.5	4.0	p<0.001	p<0.001	0.20	0.66

表2 福島県17自治体一般住民における2年間(2014-2016)の心身の健康および放射線健康不安の変化と関東地方一般住民(2014)との比較

	福,	島県 32 自治	台体	福	島県 17 自治	台体	49 自治体合計			
	人数	平均	SD	人数	平均	SD	人数	平均	SD	
女性(%)	1442	52.6%		207	55.8%		1649	53.0%		
年齢(歳)	1442	49.5	17.9	207	47.2	17.8	1649	49.2	17.9	
(1) 身体症状	1325	15.9	5.0	199	16.8	5.1	1524	16.0	5.0	
(2) K 6	1379	3.3	4.3	203	3.9	4.9	1582	3.3	4.4	
(3) PCL6	1392	8.4	3.6	207	8.9	4.2	1599	8.5	3.7	
(4) 放射線健 康不安	1388	15.0	4.5	203	15.2	4.2	1591	15.0	4.5	

表3-1 福島県49自治体一般住民における心身の健康および放射線健康不安:2016年調査

図1 福島県非難区域外49自治体の放射線不安と心身の健康(2016):自治体別回答者の平均得点による作図 放射線健康不安とのスピアマン相関係数:身体症状,0.426 (p=0.002),K6,0.369 (p=0.009),PCL6,0.686 (p<0.001).

	身体症状			K6			PCL6			放射線健	康不安	
	n	平均	SD	n	平均	SD	n	平均	SD	n	平均	SD
地域												
浜通り	104	17.3	5.6	110	4.3	5.1	111	9.4	4.2	113	15.7	4.4
中通り	847	16.3	4.9	873	3.6	4.4	879	8.8	3.9	877	15.8	4.5
会津	557	15.4	4.9	582	2.9	4.2	590	7.8	3.2	582	13.7	4.3
		P<.001			0.007			P<.001			P<.001	
性別												
男性	700	15.2	4.7	727	3.1	4.2	739	8.3	3.6	741	14.9	4.6
女性	808	16.8	5.1	838	3.6	4.5	841	8.6	3.8	831	15.1	4.4
		P<.001			0.049			. 408			. 416	
年齢												
20-39 歳	644	16.3	4.9	650	3.9	4.8	653	8.4	3.8	641	14.8	4.7
40-64 歳	504	16.4	5.0	518	3.3	4.3	520	8.5	3.7	511	15.5	4.3
65+歲	360	15.2	5.0	397	2.5	3.7	407	8.5	3.6	420	14.7	4.4
		P<.001			P<.001			. 148			.002	

表3-2 地域別、性別、年齢別にみた心身の健康および放射線健康不安:福島県49自治体一般住民2016年調査

	身体症状	Ē状 K6				PCL6				放射線健康不安			
	n	平均	SD	n	平均	SD	n	平均	SD	n	平均	SD	
浜通り													
男性 20-39 歳	19	14.6	4.7	19	1.4	2.3	19	7.0	2.2	19	14.4	4.5	
男性 40-64 歳	12	16.9	6.2	15	5.8	4.6	15	10.9	5.0	14	17.2	4.3	
男性 65+歳	9	14.1	3.2	11	2.4	3.4	12	9.4	3.9	12	13.9	4.1	
女性 20-39 歳	35	17.9	5.5	36	4.7	5.4	36	9.1	4.0	37	15.4	5.0	
女性 40-64 歳	17	18.3	4.1	17	5.7	5.4	17	10.4	5.7	17	16.8	2.7	
女性 65+歳	12	21.5	6.9	12	5.5	6.9	12	10.3	2.7	14	16.8	4.3	
中通り													
男性 20-39 歳	175	15.4	4.4	177	3.9	4.7	178	8.5	3.9	177	15.6	4.6	
男性 40-64 歳	123	15.7	4.3	124	3.0	3.6	122	8.3	3.0	123	16.5	4.6	
男性 65+歳	93	14.7	4.5	102	2.7	3.5	109	8.9	3.8	115	15.6	4.4	
女性 20-39 歳	224	17.5	4.9	225	4.5	5.0	224	8.9	4.2	219	15.6	4.6	
女性 40-64 歳	147	17.6	5.6	150	3.5	4.4	151	9.1	3.9	146	16.4	4.5	
女性 65+歳	85	15.8	5.1	95	2.7	3.9	95	9.1	4.2	97	14.7	3.8	
会津													
男性 20-39 歳	87	14.7	5.4	88	3.1	4.7	89	8.0	3.7	85	13.4	4.7	
男性 40-64 歳	94	15.9	5.1	96	3.5	5.0	98	8.3	4.0	97	13.8	4.0	
男性 65+歳	88	14.0	4.6	95	1.6	3.1	97	7.3	2.7	99	13.1	4.4	
女性 20-39 歳	104	16.2	4.8	105	3.7	4.4	107	7.6	2.9	104	13.1	4.1	
女性 40-64 歳	111	15.7	4.5	116	2.7	3.6	117	7.7	2.8	114	14.3	3.6	
女性 65+歳	73	15.7	5.2	82	2.5	3.5	82	8.0	3.2	83	14.8	4.7	

表3-3 地域ごとにみた性別、年齢別の心身の健康および放射線健康不安:福島県49自治体一般住民2016年調査*

* 身体症状では:性別×地域の交互作用が有意、K6、PCL6 では年齢×地域の交互作用が有意(p<0.05).

表4-1 震災後の健康診断受診および放射線についての講習会・説明会参加の有無による心身の健康および放射線健康不安の変化の平均値の比較:仮設住宅住民追跡調査*

	あり				なし			
								p(性・年齢
							p (t 検定)	調整分散分
	人数	平均	標準偏差	人数	平均	標準偏差		析)
震災後の健康診断:								
身体症状	144	3.8	6.3	17	. 2	4.1	. 022	. 017
K6	145	2.8	6.5	17	2.6	4.0	. 897	. 605
PCL6	139	2.6	5.1	16	. 6	4.4	. 140	. 181
放射線健康不安	151	. 9	4.4	19	1.5	5.3	. 569	. 506
放射線についての講習会・詞	说明会:							
身体症状	54	3.6	7.3	94	3.5	5.7	. 961	. 875
K6	54	2.2	7.7	94	3.4	5.4	. 299	. 266
PCL6	49	3.0	5.9	92	2.4	4.7	. 499	. 439
放射線健康不安	56	1.5	5.2	102	. 6	4.0	. 203	. 212

* 正の値は前回調査より今回調査の方が得点が増加したことを意味する.

		あり			なし			p(性・年齢
-							p(t 検定)	調整分散分
健康診断の種別	人数	平均	標準偏差	人数	平均	標準偏差		析)
自治体が行う健康診査:								
身体症状	108	3.6	6.3	57	3.0	6.1	. 552	. 500
K6	111	2.2	6.2	55	4.0	6.1	.077	. 185
PCL6	107	2.2	4.7	52	2.7	5.7	. 548	. 420
放射線健康不安	112	. 8	4.2	60	1.5	5.0	. 328	. 163
個人線量計による外部被ばく	、線量測定	:						
身体症状	76	3.4	5.9	89	3.4	6.5	. 958	. 810
K6	77	1.8	5.8	89	3.6	6.4	.054	. 218
PCL6	75	2.1	4.9	84	2.6	5.1	. 498	. 539
放射線健康不安	77	1.2	4.8	95	. 9	4.2	. 627	. 546
内部被ばく線量測定:								
身体症状	93	3.9	6.2	72	2.8	6.2	. 256	. 127
K6	95	2.5	6.9	71	3.2	5.1	. 476	. 990
PCL6	92	2.7	5.6	67	1.9	4.0	. 289	. 234
放射線健康不安	98	.8	4.8	74	1.3	4.0	. 397	. 339
その他の健康診断:								
身体症状	29	5.3	7.4	136	3.0	5.9	.074	. 262
K6	28	3.4	6.6	138	2.6	6.1	. 532	. 657
PCL6	28	2.9	6.3	131	2.3	4.7	. 545	. 761
放射線健康不安	29	1.2	5.5	143	1.0	4.3	. 789	. 791

表4-2 種類別にみた健康診断の受診有無による心身の健康および放射線健康不安の変化の平均値の比較:仮設住宅住民追跡調査*

* 正の値は前回調査より今回調査の方が得点が増加したことを意味する.

表4-3 種類別にみた放射線に関する講習会・説明会の参加有無による心身の健康および放射線健康不安の変化の平均値の比較:仮設住宅住民追跡調査*

放射線に関する講習会・説		あり			なし			p(性・年齢
明会の種類	人数	平均	標準偏差	人数	平均	標準偏差	p(t 快ル)	調整)
集団で講義を聞く形式の講習	習会・説明会	会 :						
身体症状	44	3.0	7.2	121	3.6	5.8	. 603	. 837
K6	44	. 9	7.1	122	3.5	5.7	.017	. 025
PCL6	42	2.1	5.4	117	2.5	4.9	. 674	. 838
放射線健康不安	46	2.0	5.2	126	. 6	4.1	.072	.060
個人での健康相談会:								
身体症状	7	5.4	8.7	158	3.3	6.1	. 399	. 428
K6	8	6.8	10.4	158	2.6	5.9	.062	. 092
PCL6	6	4.3	8.8	153	2.3	4.8	. 333	. 326
放射線健康不安	6	4	3.1	166	1.1	4.5	. 428	, 397
参加者同士の話し合いのある	5説明会:							
身体症状	12	6.3	9.1	153	3.2	5.9	. 098	. 154
K6	12	2.4	8.2	154	2.8	6.0	.816	. 701
PCL6	11	1.6	6.2	148	2.4	4.9	. 592	. 461
放射線健康不安	11	. 9	5.8	161	1.0	4.4	. 915	. 885
「相談員制度」による相談員	員への相談	:						
身体症状	3	6.2	12.5	162	3.4	6.1	. 432	. 310
K6	3	4.7	11.7	163	2.7	6.1	. 595	. 244
PCL6	2	-2.0	5.7	157	2.4	5.0	. 214	. 235
放射線健康不安	2	-1.0	1.4	170	1.0	4.5	. 525	. 440

* 正の値は前回調査より今回調査の方が得点が増加したことを意味する.

表 5-1 震災以後に健康診断あるいは放射線についての講習会・説明会を受けたかどうかと心身の健康、放射線健康不安との関連:福島県一般住 民調査(2016 年 2 月)

	あり				なし			
_	n	平均	標準偏差	n	平均	標準偏差	р	p(性・年齢調整)
健康診断								
身体症状	892	16.2	4.8	607	15.8	5.2	. 141	. 375
K6	920	3.2	4.0	637	3.6	4.9	. 108	. 006
PCL6	932	8.5	3.7	639	8.4	3.8	. 823	. 914
放射線健康不安	930	15.3	4.5	648	14.5	4.5	<. 001	<. 001
放射線についての講習	会・説明会							
身体症状	274	16.5	4.9	1206	16.0	5.0	.114	. 210
K6	281	3.3	4.2	1255	3.4	4.4	. 790	. 916
PCL6	285	9.1	3.8	1268	8.3	3.7	.002	. 002
放射線健康不安	285	16.1	4.6	1273	14.7	4.4	<. 001	<. 001

表5-2 健康診断の種類別にみた、震災以後に健康診断を受けたかどうかと心身の健康、放射線健康不安との関連:福島県一般住民調査(2016年2月)

		あり			なし			
	n	平均	標準偏差	n	平均	標準偏差	р	p(性·年齡調整)
自治体が行う健康診査								
身体症状	426	16.3	5.0	1073	16.0	5.0	. 164	. 250
K6	446	3.2	4.0	1111	3.4	4.5	. 235	. 297
PCL6	456	8.8	3.9	1115	8.3	3.6	. 022	. 028
放射線健康不安	458	15.4	4.6	1120	14.8	4.4	.011	. 008
個人線量計による外部	疲ばく 線量	量測定						
身体症状	120	17.0	5.4	1379	16.0	5.0	. 026	. 048
K6	121	3.6	4.5	1436	3.3	4.4	. 492	. 843
PCL6	123	9.1	3.8	1448	8.4	3.7	. 039	. 050
放射線健康不安	122	16.6	4.7	1456	14.9	4.5	<. 001	<. 001
内部被ばく線量測定								
身体症状	335	16.3	4.8	1164	16.0	5.1	. 342	. 048
K6	342	3.3	4.1	1215	3.4	4.5	. 960	. 840
PCL6	341	8.7	3.6	1230	8.4	3.7	. 125	. 235
放射線健康不安	340	16.1	4.5	1238	14.7	4.4	<. 001	<. 001
その他の健康診断								
身体症状	385	16.5	5.0	1114	15.9	5.0	. 037	. 050
K6	391	3.3	3.9	1166	3.4	4.6	. 766	. 261
PCL6	397	8.2	3.6	1174	8.5	3.7	. 159	. 208
放射線健康不安	392	15.2	4.5	1186	14.9	4.5	. 215	. 289

表5-3 講習会・説明会の種類別にみた、震災以後に放射線についての講習会・説明会を受けたかどうかと心身の健康、放射線健康不安との関連: 福島県一般住民調査(2016年2月)

		あり			なし			
	n	平均	標準偏差	n	平均	標準偏差	р	p(性·年齢調整)
集団で講義を聞く形式	の講習会・	·説明会						
身体症状	263	16.4	4.9	1217	16.0	5.0	. 223	. 405
K6	269	3.2	4.1	1267	3.4	4.4	. 609	. 696
PCL6	273	9.0	3.8	1280	8.4	3.7	. 020	. 027
放射線健康不安	272	15.9	4.5	1286	14.8	4.5	.000	. 001
個人での健康相談会								
身体症状	12	18.8	4.6	1468	16.0	5.0	. 056	. 048
K6	13	4.5	5.6	1523	3.3	4.4	. 329	. 285
PCL6	13	11.2	4.8	1540	8.5	3.7	. 008	. 008
放射線健康不安	12	19.7	3.7	1546	15.0	4.5	<. 001	<. 001
参加者同士の話し合い	のある説明	月会						
身体症状	16	18.8	5.3	1464	16.0	5.0	. 029	. 046
K6	16	4.2	4.8	1520	3.3	4.4	. 445	. 434
PCL6	17	10.6	4.9	1536	8.5	3.7	. 094	. 025
放射線健康不安	18	17.1	4.8	1540	15.0	4.5	. 045	. 055
「相談員制度」による	相談員への	D相談						
身体症状	1	20.0		1479	16.1	5.0	. 430	-
K6	1	6.0		1535	3.4	4.4	. 547	-
PCL6	2	9.5	4.9	1551	8.5	3.7	. 699	-
放射線健康不安	2	15.0	7.1	1556	15.0	4.5	. 999	-

Research for monitoring changes in radiation health anxiety and promoting the countermeasures in the Fukushima Prefecture

Norito Kawakami^{*1}, Seiji Yasumura^{*2}, Hirooki Yabe^{*2}, Tsuyoshi Akiyama^{*3}, Mami Kayama^{*4}, Yuriko Suzuki^{*5}, Naoko Horikoshi^{*2}, Saori Kitagawa^{*1}

*1 Graduate School of Medicine, The University of Tokyo
 *2 Fukushima Medical University
 *3 NTT Medical Center Tokyo
 *4 St. Lukes International University
 *5 National Institute of Neurology and Psychiatry

Keywords: radiation health anxiety; depression/anxiety; PTSD; Fukushima; health checkups; secular trend

Abstract

The present study aimed: (1) to monitor secular changes in radiation anxiety and associated factors (such as attendance to health checkups and lectures on radiation and health) among evacuees living in temporary housing and the general population; (2) to conduct a large-scale questionnaire survey of radiation anxiety and establish a new cohort, with promoting countermeasures by the municipalities. Questionnaire surveys were conducted of 426 respondents to the 2013/2014 survey of evacuees living in a temporary housing; 675 residents living in 17 non-evacuee communities which were surveyed in 2013; and 4,225 residents living in other non-evacuee communities of Fukushima. 1) A total of 188 (44%) responded to the questionnaire survey. Somatic symptoms, depression, PTSD symptoms, and radiation anxiety were greater in this survey than in the past 2013/2014 survey. Respondents who lost their families/friends were more likely to increase/maintain depression and PTSD symptoms. 2) Among 208 (33%) respondents from 17 non-evacuee communities, somatic symptoms, depression, and radiation anxiety were lower in this survey than in the past 2014 survey, while these scores were still higher than in a previous 2014 survey in Kanto area. Additional 1443 (31%) responded to the survey on other communities. There was a wide range of score distributions among 49 (non-evacuee) municipalities of Fukushima, with area, sex, and age-related differences. 3) In the follow-up survey of evacuees living in a temporary housing, those who attended a group lecture on radiation health effect had lower depression score than those who did not. In sum, evacuees living in the temporary housing had an increase in psychosomatic symptoms and radiation anxiety, with a greater concern on elderly and those who lost their family/friends. Psychosomatic symptoms and radiation anxiety seem to improve among non-evacuee community residents, while the levels were still higher. A close monitoring is needed, and the development of community-based health promotion programs should be considered depending on community needs. A group lecture on radiation health effect may have been effective in improving depression among evacuees living in the temporary housing.

イーラーニング(e-learning)を活用した、 福島県、日本、アジアにおける包括的な放射線教育システムの確立

主任研究者 大野和子(京都医療科学大学 医療科学部 放射線技術学科·教授)

研究要旨

東京電力福島第1原発事故から5年近くが経過し、福島県では確実に前に進んでいる。また、 各地で原発再稼働にむけた動きも加速している。しかし、実際の避難計画をどのように作成す べきか解らない、事故時に実際の医療をどう展開したらいかとういう声をマスコミ等がしばし ば報道している。また、日本からの食品輸入規制も度々話題に上がる。本研究ではこれらの問 題を解決するために、イーラーニング(e-learning)を活用した、福島県、日本、アジアにお ける包括的な放射線教育システムの確立を目指。今年度は、基礎編と応用編の2段階のe-learning 教材案と教科書案を作成した。また、教材の効果を検証する目的で、平成28年度日本医師会認 定産業医講習会と、平成29年度にベトナムで開催されるアジア16カ国の診療放射線技師の会 議の教育講演での利用を決定した。

キーワード:イーラーニング、放射線教育、原発事故

研究協力者:奥山智緒(㈱イメージコミュニケーション診断部長),東達也(滋賀県立成人病センター総括研究員),香山不二雄(自治医科大学教授),内海博司(公益財団法人体質研究会主任研究員),菊地透(医療放射線防護連絡協議会総務理事),中村清一(公益財団法人体質研究会主任研究員),星北斗(一般社団法人福島県医師会副会長),藤波直人(京都府保健環境研究所大気課副主査),大津留晶(福島県立医科大学教授),長谷川正俊(奈良県立医科大学教授),宮田勝功(滋賀医科大学医学部附属病院診療放射線技師),足達美香(滋賀医科大学医学部附属病院

I 研究目的

東京電力福島第1原発事故から5年近くが経過し、原発の廃炉に向けた取り組みは確実に進み、 各地では原発再稼働が具体化しつつある。しかし、再稼働を前にして、地域の実情に沿った避難 計画の作成が難しい、実際の医療をどう展開したらよいか不安だ、という声をマスコミ等がしば しば報道している。また、台湾などでは日本産農作物への過剰とも言える輸入制限が実施されて いる。

本研究は、地域の医師および福島県で活動している相談員(相談員制度の相談員のみでなく生活支援相談員を含む)、全国の地方自治体職員を対象とした放射線教育システムを構築することにより、放射線の健康影響に関する基礎的な知識の共有と標準化を目的とする。さらに、近隣諸国の医療関係者への放射線影響に関する正確な情報発信方法を確立する。

原発再稼働には、中核となる地方の自治体職員や、地域医療の担い手である医師への放射線教 育が急務である。また、アジアでも現地の市民に信頼される立場である医療関係者への正確な情 報提供は、日本の現状理解を促進するために有効かつ必要といえる手段である。 Ⅱ 研究方法

地域の医師と相談員(福島県)、原発立地県・隣接県防災担当者およびアジアを中心とした世界 の医療関係者を対象とする。

1. e-learning 教材

主に相談員・防災関係者向けの e-learning 教材(基礎編)は、過去の主任研究者や研究協力 らの教育データを基に、放射線事故の特殊性を理解できるように工夫する。放射線について 初めて学ぶ者への導入教育とする。

相談員・防災関係者、医師向けの教材(応用編 1)は、基礎編の内容を理解していることを 前提とし、地域の住民に対応や防災計画を策定する際の基礎知識となる内容を網羅する。 地域の医師向けの教材(応用編 2)は、基礎編と応用編1の内容を理解していることを前提 とし放射線事故発生時に医療人が取るべき行動を主な内容とする。また、医療被曝の現状に

も触れ事故による被曝との相違点を理解できるように工夫する。

本年度は教材の原案を作成し、H28年度に動画等を付けて完成させる。

2. e-learning 教材の手元資料(副読本)

基礎編を受講する者は過去に放射線に関する教育を受けた経験がない者が多いため、理解を より確実にする、教材に沿った内容の小冊子を作成する。この小冊子は、相談員が単独で地 域住民への活動応用する場合も想定し、過去の主任研究者や研究協力者らの市民向けの放射 線について紹介した冊子の内容を基本とし、教科書として活用できる正確な用語に改訂した。

3. 教科書作成

教科書の本文(案)を完成させる。内容の記載方法については、放射線による健康影響等に 関する統一的な基礎資料 福島第一原発事故とその後の推移、ICRP publ. 113 を基準とする。

4. 有識者による評価

教材の内容について、有識者会議を開き、評価をもとに修正する。

 医師会員、相談員からの意見聴取 教材内容について福島県医師会と福島県立医大放射線医学県民健康管理センター職員から現 場で必要な放射線に関する知識について意見を聴取する。
 H28年度にはこの内容も考慮して教材を改定する。

6. 教育講演の準備

福島県医師会と日本医師会産業医認定講習会での教育講演開催に向けた事務局との打ち合わせ、診療放射線技師のアジア会議で e-learning 教材を活用した教育講演の開催に向けた協議 を主催者側と行う。

(倫理面への配慮)

人を対象とする医学系研究に関する倫理指針(厚生労働省)に従って研究を進めた。また、 主任研究者は CIT I Japan 医学研究者標準コースを終了している。なお、今年度の研究には 倫理委員会承認を必要とする事項は含まれていない。

Ⅲ 研究結果

1. e-learning 教材

親しみやすいキャラクターを決定し、e-learning 画面構成の大枠を決定した。基礎編、応用編

ともに1単元10分程度で終わる内容とする。基礎編は1.放射線はどこにある 2.放射線 と放射性物質 3.人への影響 4.防護の基本 5.基準値についての5単元とした。応用編 は、1.基礎編の復習 2.人への影響 3.医療人としての対応の基本 4.医療における放 射線利用 の4単元とした。 本年度は教材の原案を作成し、H28年度に動画等を付けて完 成させる。

2. e-learning 教材の手元資料 (副読本)

基礎編の e-learning 教材に沿った内容の小冊子を作成し、PC 画面を見ながら、また復習に活用できるようにした。

3. 教科書作成

環境省の図説ハンドブック、放射線による健康影響等に関する統一的な基礎資料に準拠した 内容で、教科書本文(案)を作成した。相談員・防災関係者向けは、福島第一原発事故とそ の後の推移内容が容易に理解できる基礎力がつき、地域の防災計画を作成できる能力が備わ ることを目的とした。医師向けは、医療人として必要な基本的知識を網羅し、放射線災害時 の医療について理解できるようにした。H28 年度にはこの各単元に内容を反映した機能マン ガを作成し、本文と併せて完成させる。

機能マンガについては、本年度はキャラクターを決定した。

4. 有識者会議

副読本の具体的内容と、教科書のコンテンツおよび教科書に盛り込むべき事項について有識 者会議で検討した。概ね原案通り了承されたが、記載方法として、同じ項目を繰り返し入れ、 徐々に内容を詳細にするようにとの助言があった。

5. 医師会会員、福島県立医大放射線医学県民健康管理センター職員からの意見聴取 福島県いわき市医師会で講習会を開催し、教材に対する会員の意見・要望を聴取した。また、 IAEA が主催する福島県内で活動する医師らとの会合に参加し、具体的な現状の問題点を収 集した。さらに生活相談員や保健師を兼ねる福島県立医大放射線医学県民健康管理センター 職員と意見交換をし、希望も聴取した。H28 年度にはこの内容を加えて教材を完成させる。

6. 教育講演の準備

H28 年 8 月に自治医科大学で開催される日本医師会産業医認定講習会(300 名)での教育講 演開催が決定した。診療放射線技師のアジア会議で e-learning 教材を活用した教育講演の開 催に向けた協議を、H28 年 8 月にベトナムで主催者側と行うこととした。

IV 考察

地域の防災関係者を対象とした教育を、主任研究者らは福島第一原発事故後各地で行ってきた。 その経験の中で、一般災害に対する防災計画を作成する能力がありながら、放射線に関する知識 が不足しているために、放射線事故を想定した計画のみ策定できないことが明らかとなった。ま た各人の背景要因によっても放射線に対する理解度に差が生じるとの印象も持った。このため、 だれもが簡単にアクセスでき、隙間時間を活用しながら情報を得る手法として e-learning 教材を 作成し、基本的な放射線に関する知識を得ることから始める必要があると考えるに至った。

e-learning 教材に不慣れな相談員のために準備した副読本については、主任研究者らが一般市民 への啓発向けに作成した教材を元にしたが、今回は教科書として利用する目的のため研究班内部 で討論を繰り返し、正確な記載に努めた。また、一般市民からこれまでに寄せられた感想で特に 解りにくいとされた、細胞レベルの影響の解説、食品の安全性に関する内容が正確に伝わるよう に細心の注意を払った。

福島県の医師らからは、震災後5年が経過していても住民の知識のバラつきが大きく、その差 が拡大しているとの意見が多かった。また、我々の印象では、医師会理事らは県民健康調査の運 営に参加していることもあり、現存被曝状況の改善に関する意識が高いが、その他の医師らは、 マスコミ報道に対する真偽を質問するなど、医療関係者間の知識量にも大きな隔たりを感じた。 また、県民健康管理センター職員らからは、現在も、飲料水に対する不安が極めて根強いこと、 食品の放射線量を計測することで安心できていることが報告された。このため、正確な食品の放 射能量の計測に関する情報を基礎編から盛り込むように要望された。しかし、この点について京 都府内でも簡単な意見聴取を実施したところ、食品汚染に関する関心は薄かった。H28年度に教 材を完成する際には、実際に汚染地域近くに生活圏がある福島県在住者への対応として、この要 望を効果的に取り入れたいと考えている。既に情報収集の手を止めたとも言える住民にもう一度 興味を持たせるためにも、相談員のレベルアップ、副読本の活用が急務と考えた。

最終的には本研究の実施により、福島県では地域主導型の長期的な被災者支援体制の確立が可能となること、また、原発再稼働の際に、地域の住民が納得できる原発事故防災計画を作成し、 原発事故への不安軽減にも貢献すること、さらに、近隣諸国の住民の不安を解消し原発事故の風 評被害の解消に寄与することを目指す。

V 結論

福島県相談員や地域の防災担当者、医師を対象とした、親しみやすい e-learning 教材と教科書 案を作成した。H28年度以後これらの教材を完成させ、日本国内と海外で実際に教育を展開し その効果を検証する。

VI 次年度の活動概要

平成28年度は以下の研究を展開する。

1. e-learning 教材

福島県医師会生涯研修、自治医科大学の認定産業医講習会、相談員・防災関係者を対象とした 講習会を開催し、e-learning 教材に準拠した講義を行う。講習会終了後、会場でのアンケート を実施する。参加者の質問と評価を集計し、各々の e-learning 教材に設問を組み込み完成させ る。

2. 教科書作成

医師向けと相談員・防災関係者向け教科書の内容に添った機能マンガや挿絵を挿入し、親しみ やすく理解し易い内容にして、日本語版を完成させる。

- 医師向けスマートフォン用アプリケーション
 講習会会場でアンケートを実施し、得られた結果を集計し掲載する質問を選定する。
- 4. アジアでの活動準備

H29年度開催の国際会議での教育講演について主催者側と協議し骨子を固める。

この研究に関する現在までの研究状況、業績

- ア)雑誌の場合
- 1) K. Ohno and K. Endo, LESSONS LEARNED FROM FUKUSHIMA DAIICHI NUCLEAR POWER PLANTACCIDENT: EFFICIENT EDUCATION ITEMS OF RADIATION SAFETY FOR GENERAL PUBLIC, Radiat Prot Dosimetry (2015). doi: 10.1093/rpd/ncv083.
- イ)単行本の場合
- 1) 大野和子.看護師のための放射線科入門. 京都医療科学大学 2015.

引用文献

なし

Establishing a Comprehensive Radiology Education System for Use in Fukushima Prefecture, Japan and Asia, Using E-learning

Kazuko Ohno

Kyoto Medical Collage of Sciences

Key words : E-learning; Radiation Education; Nuclear Power Plant Accident

Abstract

It is now five years since the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Station, operated by Tokyo Electric Power Company, and the situation in Fukushima Prefecture has come a long way. The movement to restart nuclear reactors in other areas in Japan is also gaining momentum. Despite this, however, the mass media continues to cite a lack of understanding in regard to how to actually create evacuation plans, and how medical care should be implemented in the face of an accident. There is also frequent discussion of the restrictions that have been placed on food imports from Japan. This research seeks to establish a comprehensive radiology education system for use in Fukushima Prefecture, Japan and Asia, using e-learning, in order to solve these problems. In fiscal 2015, we created proposals for e-learning materials and textbooks consisting of basic and advanced levels (1. Radiation All Around Us, 2. Types of Radiation, 3. Effects on Human Body, 4. Radiation Protection, 5. Radiation Standards and 6. Using Radiation in Health Care). To verify the effectiveness of these educational materials, we have decided to use them in training sessions for Japan Medical Association certified industrial physicians in 2018, and in educational lectures to be given during a conference of medical radiology technicians from 16 Asian countries that is scheduled to be held in Vietnam in 2019. 放射線被ばく不安に関連した潜在的要因の解析によるオーダーメイドな

放射線リスクコミュニケーションに向けて

長谷川 有史(福島県立医科大学 医学部 放射線災害医療学講座・教授)

研究要旨

福島第一原子力発電所(以下原発)事故からはや5年が経過したが、放射線への不安は一部 で根強く残っている。従来の放射線リスクコミュニケーションだけでは不安解消が困難になり つつあるとの危機感を我々現場は持っている。一方、事故後の我々の調査結果などから、放射 線被ばく不安は、その要因が多様であることが示唆され、その解析が急がれる。本研究では、 生活環境や職業など社会的背景の異なる集団において各々の放射線被ばく不安の潜在的要因を 抽出・解析する。そして各々の集団の特徴的な不安要因に即した情報や対策を対象者にフィー ドバックする。結果として、各々の放射線被ばく不安の潜在的な要因に配慮した、オーダーメ イドな放射線リスクコミュニケーションを確立することを目標とする。

対象は、1.福島県内の住民(帰還困難地域の住民や帰還可能地域の住民を含む)、2.福島県の 隣県や遠隔地域の住民、3.防災業務関係者(消防、警察や自衛隊など)、4.東京電力社員や関連 企業の職員、5.他国民(フランス・スペインを予定)とする。対象間では生活環境、職種や社 会的役割の違いにより放射線被ばく不安に係る潜在的要因が異なる事が予想される。

本研究では、第一に、フォーカス・グループ・インタビュー¹による Narrative base²な放射線 被ばく不安の潜在的要因を抽出する。さらにインタビューの結果を解析し、社会的背景の異な る集団毎に、放射線被ばく不安の潜在的な要因とその特徴を明確化することを試みる。

第二に、上記により明らかになった、社会的背景の異なる集団毎の放射線被ばく不安の潜在 的要因に対する情報と対策を、同一のインタビュー対象者に追加でフィードバックすることで、 新たなリスクコミュニケーションのあり方を追求する。新たなリスクコミュニケーションの有 効性は Face to Face のフィードバックで抽出する追加意見や同時に行うアンケート内容から評 価する。最終的には、社会背景の異なる集団に特徴的な潜在的放射線被ばく不安の対策をパッ ケージ化して、従来の放射線リスクコミュニケーションに追加で組み込むことで、より個人や 集団のニーズに即した効果的なリスクコミュニケーション、すなわちオーダーメイドな放射線 リスクコミュニケーションの形を提案したい。

本研究は、多様なニーズを持つ対象に時として共通の内容を提供してきたこれまでの放射線 リスクコミュニケーションに対する反省と、今後のリスクコミュニケーションに対する提言を 含む、放射線被ばく不安対策に対する手厚い行政対応の指針になると考える。そして最終的に は様々な環境、職種など社会的な背景の異なる各々の人々の実情に寄り添った、オーダーメイ ドな放射線リスクコミュニケーションの確立に寄与することができると考える。

¹ フォーカス・グループ・インタビュー:複数人の共通事項を持った集団に対しインタビューを することであり、個別インタビューと比較して相乗効果性、安心感等の点で効率的情報収集が可 能とされる。

² Narrative base:個人体験の物語であり、人間という生物が危機に直面したとき示す現実の反応である。前向き研究や実験では同様の状況を設定することが困難であるため、他には得ることの出来ない貴重な学術記録であり、極めて重要な知見となる。

キーワード:リスクコミュニケーション、社会的背景、オーダーメイド、潜在不安、フォーカ ス・グループ・インタビュー

研究協力者:高村 昇(長崎大学原爆後障害医療研究所 教授),折田 真紀子(長崎大学大学院 医歯薬学総合研究科 助教),畠山 とも子(福島県立医科大学看護学部 家族看護学講座 教 授),藤野 美都子(福島県立医科大学医学部 人間科学講座 教授),松井 史郎(福島県立医 科大学広報コミュニケーション室 特命教授),谷川 攻一(福島県立医科大学国際医療科学セ ンター 副学長),大津留 晶(福島県立医科大学医学部 放射線健康管理学講座 教授),緑川 早苗(福島県立医科大学医学部 放射線健康管理学講座 准教授),宮崎 真(福島県立医科大 学医学部 放射線健康管理学講座 助教),熊谷 敦史(福島県立医科大学 災害医療学習セン ター 副センター長),安井 清孝(福島県立医科大学 災害医療学習センター 助手),吉田 浩 二(福島県立医科大学 災害医療学習センター 助手),佐藤 久志(福島県立医科大学 医学 部 放射線医学講座 助教),福田 里美(国際医療福祉大学 看護師),仲井 邦彦(東北大学 医学部 教授),鍋師 裕美(国立医薬品食品研究所 主任研究員),稲益 智子(IARC(国際 がん研究機関) 研究員),栗原 治(放射線医学総合研究所 チームリーダー),鈴木 元(国 際医療福祉大学クリニック クリニック院長 教授)

I. 研究目的

福島第一原発事故後の5年間、多くの専門家が住民や防災業務関係者(消防、警察や自衛隊な ど)へ向けて、放射線リスクコミュニケーションに尽力してきた。多くの放射線に関する知識や 放射線被ばくの現状共有、線量低減の為の情報提供が行われたが、必ずしもすべての人々に対し て十分に放射線被ばく不安を低減するには至っていない。実際、我々の経験からも、放射線リス クコミュニケーションの現場において根強い放射線被ばく不安を持った方に出会うことが稀では ない。

本研究の目的は、これら潜在的不安の特徴を、社会的な背景の異なる集団における特徴の観点 から解析することである。そして従来から行われてきたコミュニケーションに、集団毎に特徴的 な放射線被ばく不安潜在的要因の対策を加えた、いわば「オーダーメイドな放射線リスクコミュ ニケーション」を確立することにある。

本研究によって、今後の放射線リスクコミュニケーションの内容をより向上させるための提言 ができると考える。さらに放射線被ばく不安に対する手厚い行政対応の方針を示し、放射線被ば く不安の一層の低減が期待できると考える。

我が国を含め世界は、今後少なくとも数十年は原子力との共存を選択せざるをえないであろう。 本研究内容は、平時の原子力政策の一環として、住民の放射線防護、放射線リスクコミュニケー ションに寄与すると考える。さらには、将来の原子力事故発生時においても、放射線の恐怖や不 安に対するクライシスコミュニケーションの手法の洗練化に寄与すると考える。そして、質的デ ータ分析手法を用いることにより「放射線被ばく不安の潜在的要因の対策」を様々な状況や立場、 職種によって特徴を明らかにする。そこから得られた集団の特徴別コミュニケーションのコンテ ンツを、従来の放射線リスクコミュニケーションを組み合わせることにより、オーダーメイドな 放射線リスクコミュニケーションを確立することを本研究の目的とする。 Ⅱ.研究方法

Ⅱ-1 研究開始準備

Ⅱ-1-1 福島県立医科大学倫理委員会への本研究申請書類の作成

本研究はヒトを対象としているため当大学の倫理委員会に研究の倫理申請を実施する。

Ⅱ-1-2 研究者間における基本的考え方の統一

多数の研究者が参画するため、調査開始前に意見交換会を開催し、研究者間で具体的な研 究方法の詳細について意見交換する機会を設ける。

Ⅱ-2 潜在的不安要因の抽出と解析

社会的背景の異なる放射線被ばく不安の潜在要因を抽出し、質的データ分析法を用いて解析 を行う。

Ⅱ-2-1 インタビュー対象者の選定

1) 対象者へのパンフレットと説明・同意書の作成

インタビュー対象者に調査内容をわかりやすく説明することが重要と考え、パンフレット を作成する。また、インタビュー対象者の不利益を極力低減するため説明・同意書を作成す る。

2) インタビュー対象者の選定

各研究協力者はインタビュー対象者を募集、選定し、説明と同意を取得する。

インタビュー対象者は、職業・居住地等の社会的背景の異なる集団毎に4~8人(1グループ) を1~数グループ選定する。

事前に想定するインタビュー対象者の社会的背景は以下の通り

- ・居住地域の異なる自治体の住民
- 防災業務関係者(消防、警察、自衛隊等)
- ・東京電力社員、関連企業の職員
- ・他

3) インタビュー対象者の保護

研究者は、インタビュー対象者が発言内容により不利益を被らないよう、本項末(倫理面 への配慮)に示す対策を講じる。

Ⅱ-2-2 インタビュー担当者の養成

研究責任者はインタビュー担当者を公募し契約する。

インタビュー担当者は、所定時間内に必要な内容を抽出するために、事前に研究に必要なセ ミナー等の専門教育を受ける。

Ⅱ-2-3 インタビューの方法

フォーカス・グループ・インタビュー(以下FGI)法を用いる。¹⁾

4~8人を1グループとして約2時間(インタビューは実質1時間)程度のインタビューを行う。 インタビュー担当者が対象グループの居住地まで出向きインタビューを行う。 インタビュー担当者はインタビュー内容を文字起こしして以下の解析に用いる。

Ⅱ-2-4 インタビュー内容の解析方法

インタビュー内容は、文字化し、以下に掲げる質的分析法で解析を行う。

1) KH Coder³による頻出用語の抽出とテーマ別カテゴリー化²⁾

2) SCAT法4によるストーリーラインの作成と理論的解釈^{3,4)}

Ⅱ-2-5 社会的背景の異なる集団別の放射線被ばく不安潜在的要因の抽出

社会的背景の異なる集団毎に、特徴的な不安要因を有することが予想される。上記 II-2-4 の結果から、社会的背景の異なる集団別の放射線被ばく不安潜在的要因の特徴を抽出する。

Ⅱ-3 オーダーメイドなリスクコミュニケーションの確立

Ⅱ-2-4,5の結果から、社会的背景の異なる集団毎に放射線被ばく不安潜在的要因を整理する。 各々個別の要因毎に対策となる情報や資料を、追加の対策パッケージとして作成する。 上記を従来の放射線リスクコミュニケーションに加えることで「オーダーメイドな放射線リス クコミュニケーション」を完成させる。(図1.)

Ⅱ-3-1 放射線不安潜在要因リストの作成

上記Ⅱ-2-4,5の結果から、社会背景の異なる集団別の潜在不安リストを作成し、データベースにストックする。

Ⅱ-3-2 追加の対策パッケージ作成

個別の不安要因の項目毎に追加の情報や資料を、追 加で作成し、データベースにストックする。項目分類 には、既存の資料およびデータベースを利用する。
 加射線被ばく 不安

 Betaga, 開標等, 第四の社会背景に 3000社会背景に 3000社会手想

 Lat, Harding, Mark L

Ⅱ-3-3 追加の対策パッケージの評価

追加の対策パッケージを、初回と同一のFGI対象者に個別またはグループ別に説明する(フィードバック)。このとき得られたアンケート結果から受容度を評価し、これを対策パッケージ

³ KH Coder: テキスト型(文章型) データを統計的に分析するためのフリーソフトウェア。KH データの中から語を自動で抽出し、抽出語の品詞別の分類、語の出現回数、語の含まれる文書数 の確認ほかが可能である。

⁴ SCAT (Steps for Coding and Theorization)法:質的データ分析のための手法。インタビュー 記録などの言語データをi)センテンス毎に分割し、ii)各々に注目すべき語句を抽出、iii)言 い換えの語句に変換、iii)それを説明するための語句に変換、iv)そこから導き出される概念を 記述する。そして上記 iv)で導き出された概念を用いてストーリーラインを記述し、命題や定義 のような理論を導き出す分析手法である。比較的小規模のデータ解析にも適用可能な特徴を持つ。 の評価とする。

Ⅱ-3-4 オーダーメイドなリスクコミュニケーションの確立

社会背景の異なる集団毎に、集団の特 徴から上記Ⅱ-3-1~3を選択し組み合わ せ、従来のコミュニケーション内容に加 えることで、オーダーメイドなリスクコ ミュニケーションの確立を試みる

Ⅱ-3-5 社会との情報共有

Ⅱ-3-1~4の内容を、研究者が各々の 視点から論文報告するとともに、社会に 広く情報提供する。

研究方法の概要を右図に示す。(図2.)

(倫理面への配慮)

本研究は福島県立医科大学倫理委員会の承認を受けている。(No.2573)

- 尚、本研究の倫理面への配慮について詳細を以下に示す。
- 1) 対象者の人権の擁護
 - 本研究は、この研究についての説明を受け、参加することに同意した者のみを対象者とする。
 - ② 同意を得た対象者が、本研究の開始後に参加を中止する旨の希望を申し出た場合、その意思を尊重する。
 - ③ 本研究への参加・不参加は、対象者の自由意思によるものであり、参加に同意しない場合 又は参加を中止した場合でも不利益は受けない。
 - ④ 対象者は、研究参加同意後であっても、再度本研究についての説明を受け、または、質問 することができる。そのことについても、対象者は不利益を受けない。
 - ⑤ アンケート調査においても、本調査に同意した対象者のみに実施し、対象者から参加を中 止する旨の希望を申し出た場合、その意思を尊重する。
- 2) 個人情報の取扱い

本研究の結果は、対象者又は代理人からの請求に基づく情報の開示があった場合に迅速に対応するため、連結可能匿名化とする。具体的には、個人情報の用紙に番号を付したデータを作成の上、連結可能匿名化のデータベースを作成する。このデータベースは、他のコンピュータから切り離されている(インターネットにつながっていない、他のコンピュータと共有されていない)コンピュータを使用して作成し、最終的に外部記録媒体に保管する。個人情報や質問用紙、結果は、講座内の施錠できる保管庫に保管し管理する。連結可能匿名化したデータも厳重に管理する。また、解析結果は、集計、分析された形で公表することとし、個人が特定できるような形での公表は一切行わない。

Ⅲ. 研究結果

平成27年度は、主に研究調査の準備を目標として以下の如く研究を行った。

- Ⅲ-1 研究開始準備
 - Ⅲ-1-1 福島県立医科大学倫理委員会への本研究申請書類の作成

平成27年11月19日に倫理委員会から承認を受けた(No.2573)。修正・指摘事項は認めなかった。

Ⅲ-1-2 研究者間の基本的考え方の統一

意見交換会を開催し、現在質的研究に関わっている研究者を招き、「量的研究者による質的 データの分析紹介」と題してご講演を賜った。その後、研究者間で以下の課題について意見 交換、課題抽出し、結果を得た。

研究者間で交わされた意見、課題を「・」、導き出した方針を「*」で以下に示す。

- 1) インタビュー対象者における社会背景の枠組み
- ・職業、居住地域などだけでは規定しきれない、潜在的不安の分布や特徴が予想される。
- ・異なる社会的背景を持つ集団を調査前に事前に想定するのは困難が予想される。
- ・無関心層も一つの社会的背景と捉える。
- * 研究開始時点では研究者のフィールドに於けるインタビュー対象者を特定の社会的背景を 持つ集団と考え FGI を行う。
- *FGIの解析結果が論理的飽和に達した時点で、中間解析を行う。
- * 中間解析の結果を踏まえてインタビュー対象者の所属する社会的背景の枠組みを見直す。
- 2) フォーカス・グループ・インタビューの枠組み
- ・各集団から共通して抽出するインタビューの内容を明確にする。
- ・インタビュー担当者の固定概念にインタビュー対象者を誘導しない配慮を行う。
- (Open question を原則とし、質問に極力「放射線」「被ばく」等の用語を用いない、等)
- ・災害時相・時間経過によるインタビュー対象者の意識・考え方・不安内容の変化を把握する。
- * 概ね以下の質問の枠組みに沿って、インタビュー対象者から潜在的不安要因を抽出する。 例 1.震災と職業の関係についてお話し下さい。
- 例2.震災と住まいの環境についてお話し下さい。
- 例3.震災とご自身の健康についてお話し下さい。
- 例4.震災とご家族の健康についてお話し下さい。
- 例 5. 震災と食品の安全についてお話し下さい。
- 例 6. 震災に関する情報をどのようにして入手しているかお話し下さい。
- 例7.ご自身の現在の課題について、課題達成ために必要なことについてお話し下さい。

3) FGI の記録方法

以下の方法で行う。

- *KH Coderによる頻出用語・内容の統計的解析。
- *SCAT法によるストーリーラインの作成と理論的解釈。
- 4) 記録集の作成について
- ・Narrative base な記録集を残すためのインタビューと、社会集団毎の潜在不安要因を解析 するためのインタビューは、両立困難と考える。
- ・記録集を残すことを目的にインタビューを行うと、抽出すべき情報に制限が加わること が予想される。
- * Narrative base な記録集作成は別途、別機会に個別面接等の手法を用いて行う。
- 5) オーダーメイドリスクコミュニケーションの評価方法
 - ・正式には介入群・非介入群を設定して RCT を行う必要がある。
 - ・上記を実行するには研究期間が短く非現実的である。
 - ・別途、量的研究手法を用いて行うことが可能かもしれない。
 - * アンケートによるインタビュー対象者の受容度で評価する。
- Ⅲ-2 潜在的不安要因の抽出と解析

Ⅲ-2-1 インタビュー対象者の選定

1) 以下に示す対パンフレットと説明・同意書をインタビュー対象者向けに作成した。

2) インタビュー対象者の選定

各研究協力者からインタビュー対象者として挙げられた集団は以下の通り。

居住地址	居住地域の異なる自治体の住民							
	避難指示区域からの避難者							
	住民(避難指示解除準備区域、福島県内各地)							
防災業績	務関係者(消防、警察、自衛隊等)							
	消防職員(福島県内)							
	警察職員(福島県内)							
東京電	東京電力社員、関連企業の職員							
	運輸関連企業職員(福島県内、福島県外)							
ほか								
	お子さんを持つ母親							
	保健師 (避難指示区域等指定市町村)							

医療従事者 医学系学生(福島県内、福島県外) 行政職員(福島県内市町村・福島県) 外国人

3) インタビュー対象者の保護

研究者は、インタビュー対象者が発言内容により不利益を被らないよう、(倫理面への配 慮)に示す対策に加えて、説明と同意の書類に下記①~④を掲載し対象者の不利益事項に配 慮する。

- フォーカス・グループ・インタビュー実施や放射線被ばく不安の潜在的要因対策パッケージの聞き取りのため、侵襲性などの危険性が生じる行為は行わない。
- ② しかし、インタビューによる時間的制約が生じる。
- ③ 第3者に結果が渡った場合には、対象者に対し不利益が生じる可能性があるため、情報の管理を厳重に行う。
- ④ 記録内容が、対象者の不利益につながる場合は、対象者の希望で該当する部分を消去することが出来る。
- Ⅲ-2-2 インタビュー担当者の養成

インタビュー担当者を1名内定した。

ファシリテーションスキル向上の為、本年度中に、別途開催されるFGIのセミナーに参加して、来年度以降の聞き取り調査に備える。

同様に、音声情報の文字化のためのソフトウエア操作訓練を行う。

Ⅲ-2-3 インタビューの方法

方法論に変更はなし。

ただし、結果が論理的飽和を認めた時点で、中間解析を行い対象群の見直しを行うこととした(Ⅲ-1-2参照)。

Ⅲ-2-4 インタビュー内容の解析方法

文字化されたインタビュー内容の解析法は既述手段を予定している。

インタビュー内容を文字化する手段として、以下のソフトウエアをデモし選定中である。

- AmiVoice
- RECAIUS

IV. 考察

人々には各々個別の「放射線被ばく不安の潜在 的要因」が存在するのではないかと推察する。そ れらは、各位個別の社会的背景等により、仕事、

補償問題、健康、人間関係や風評被害など多岐にわたっているが、一方で集団の特徴毎に一定の 特徴を有すると予想される。それらの要因が、いつの時期から始まり、どのような項目に渡り、 放射線被ばく不安とどのように関連しているのかを探りたい。

過去の研究を紐解くと、職業、性別、年齢等の社会的背景とリスク認知の違いに関する研究は 比較的多く認められる。国、性別、年齢、職種等によりリスクの認知に違いがあることが報告さ れている。⁵⁻⁸⁾ 一方、社会的背景の異なる集団における、放射線不安の潜在的要因の特徴を解析し た研究は少なく、宮崎、Oritaらの研究結果の中に一端を垣間見ることができる。平成24年度から 26年度にかけて行った環境省原子力災害影響調査等事業における福島医大 宮崎らの研究による と、福島県内18歳以上の65名の住民アンケート調査(平成25年10月に実施)では、原発由来の放 射線への恐怖感と、健康影響について、分布に正の相関と個体差が見られた(図4A)。しかしな がら、地元産の食品購入と原発由来の放射線被ばくへの恐怖に共通性が低く、放射線被ばくへの 恐怖が放射線被ばく以外の他の要因に関連している可能性が考えられた(図4B)。9 長崎大学 折田らの報告によれば、川内村の住民で帰村の有無に関する理由では、放射線被ばく線量の他に、 地域の利便性や補償に関する課題も指摘された。¹⁰

本研究は「質的研究」に分類され、インタビューの結 果が、事前の仮説では予想できなかった内容となる可能 性も否定できない。特に、集団に特有な不安要因が、当 初研究者の想定した社会的背景の異なる集団の枠組み に収まらない可能性が予想される。これらに対応しつつ、 研究結果が研究者の主観および事前仮説により受ける 影響を極力低減するために、FGIのファシリテーション はテーマを特定せずオープンクエスチョンを基本とし、 FGIの中間解析を行いその結果に合わせて、インタビュ ー対象者と質問・抽出事項の枠組みを更新したい。(図5)

また、本研究における「オーダーメイドなリスクコミ ュニケーションの確立」は、十分な潜在不安要因の解析

が前提となることは言うまでも無い。目標到達を急ぐ余り、対象者へのインタビューとその解析 をおろそかにすることのないよう十分注意して研究を行いたい。

V. 結論

本研究では、第一に生活環境や職業など社会的背景の異なる集団において各々の放射線被ばく 不安の潜在的要因を抽出・解析することを目的とする。第二に各々の社会的背景の異なる集団に おける放射線被ばく不安の潜在的な要因に配慮した、オーダーメイドな放射線リスクコミュニケ ーションを確立することを目的とする。

インタビュー対象者から得られた情報を、質的研究手法を用いて解析する。その結果を元に、 個々の不安要因に対応する情報や対策を講じ、インタビュー対象者にフィードバックする。

本研究は、社会背景の異なる集団における放射線潜在不安の違いを明らかにする点、それに基 づいたオーダーメイドなリスクコミュニケーションを社会に提案する点に新規性がある。学術的 には、社会背景が異なる集団における、放射線不安の特徴とニーズの多様性を解析する点に重要 性がある。そして、行政的には、これまでの放射線リスクコミュニケーションに対する反省、お よび今後のリスクコミュニケーションに対する提言とそのための資料提供という観点から重要な 意義を持つと考えられる。

VI. 次年度以降の計画

- 平成28年度:前年度準備を踏まえ、年間を通してFGIとその結果の解析を実施する。結果が論理 的に飽和したと考えられる時点で中間解析を行い各対象集団の枠組みについて再 評価を行う。上記を通して社会的背景の異なる集団別の放射線被ばく不安潜在的 要因の抽出を行う。
- 平成29年度:前年度の結果をもとに、必要に応じて追加でFGIを行う。得られた解析結果に基づ き作成した追加不安対策パッケージを、インタビュー対象者にフィードバックし て、その評価を行う。上記の評価結果を踏まえて、オーダーメイドなリスクコミ ュニケーションを社会に提案する。学会発表や論文発表を行う。

この研究に関する現在までの研究状況、業績

特になし

引用文献

- 1) 安梅勅江. ヒューマン・サービスにおけるグループインタビュー法:科学的根拠に基づく質的研究 法の展開. 東京: 医歯薬出版(株),2001.
- 2) KH Corder, http://khc.sourceforge.net/ (Acceces 28 January 2016).
- 大谷尚. SCAT: Steps for Coding and Theorization— 明示的手続きで着手しやすく小規模データに適用 可能な質的データ分析手法 —. 感性工学. 1994;10:155-60.
- 4) 大谷尚.4 ステップコーディングによる質的データ分析手法 SCAT の提案— 着手しやすく小規模 データにも適用可能な理論家の手続き —. 名古屋大学大学院教育発達科学研究科紀要(教育科学). 2008;54:27-44.
- 5) 木下富雄. リスクコミュニケーションの思想と技術. 柴田義貞, 編. 放射線リスクコミュニケーション 健康影響を正しく理解するために 長崎大学グローバル COE プログラム 放射線健康リスク 制御国際戦略拠点. 長崎:長崎新聞社(株), 2012; 7-52.
- 6) Slovic P Layman M Kraus N et.al. Perceived risk, stigma, and potential economic impacts of a high-level nuclear waste repository in Nevada, Risk Anal 1991;11(4):683-96.
- 7) 土屋 智子, 谷口 武俊, 小杉 素子, 他. 市民と専門家の原子力安全に対する視点の違い~東海村に おけるリスクコミュニケーション活動の実践から~. 社会技術研究論文集. 2009;6:16-25.
- 8) 中谷内一也, 島田貴仁. 犯罪リスク認知に関する一般人-専門家間比較:学生と警察官の犯罪発生 頻度評価. 社会心理学研究. 2008;24(1):34-44.
- 9) 宮崎真. まるごと線量評価に基づく詳細なリスク分析に伴った リスクコミュニケーションの確立 環境省原子力災害影響調査等事業(平成 24-26 年度) www.env.go.jp/chemi/rhm/reports/h2503a_4.pdf (Accessed 28 January 2016).
- 10) Orita M Hayashida N Urata H et al. Determinants of the return to hometowns after the accident at Fukushima Dai-ichi nuclear power plant: a case study for the village of Kawauchi, Radiat Prot Dosimetry 2013;156(3):383-5.

Toward the Establishment of the Custom-made Risk Communication; based on the potential factors of the Radiophobia in each different social background group

Arifumi Hasegawa

Department of Radiation Disaster Medicine, Fukushima Medical University School of Medicine

Keywords: Risk communication; Social background; Custom-made; Radiophobia; Focus group interview; Qualitative study

Abstract

The first aim of this study is to extract and analyze the potential factor of each radiophobia from radioactive exposure in the various group who have different social backgrounds, such as living environments and occupations. The second aim is to establish the custom-made radiation risk communication which was considered by each potential factor of the radiophobia among each social background groups.

The information obtained from the interviewees are analyzed using the qualitative research technique. Based on the result, we prepare the packages containing information and measure corresponding to an each anxious factor, and feedback them to an interviewee.

This study has novelty to clarify the difference of the potential factor of radiophobia among the different social background group, and to propose the custom-made risk communication into the society. This study has scientific importance with analyzing the diverse characteristics of the radiation anxieties among different social background groups. And the administrative significance of this study is to become a proposal to the future risk communication, and to play the role of the reconsideration on conventional radiation risk communication.

テーマ(4)平成26年度 事故後の住民の被ばく線量の包括的な把握に関する研究

4-1 東京電力福島第一原子力発電事故における住民の線量評価に関する包括研究 鈴木 元(国際医療福祉大学クリニック) 東京電力福島第一原子力発電事故における住民の線量評価に関する包括研究

鈴木 元 (国際医療福祉大学クリニック・院長)	鈴木	元	(国際医療福祉大学クリニック・院長)
-------------------------	----	---	--------------------

永井 晴康 (日本原子力研究開発機構・グループリーダー)

栗原 治 (放射線医学総合研究所・チームリーダー)

- 松崎 浩之 (東京大学・教授)
- 楠原 洋之 (東京大学・教授)

研究要旨

東京電力福島第1原発事故後の福島県住民および周辺県住民の体系的な線量評価は、WHO と UNSCEAR がこれまで行ってきているが、事故初期の測定データの不足に起因する大きな不確 かさがある。本研究においては、5 つの研究グループが相互に情報を提供し合いながら、大気 輸送拡散沈着シミュレーションモデル(WSPEEDI)や他の線量評価手法を改良し、その有効性 を確認しながら、福島県住民および周辺県住民の外部被ばく線量、内部被ばく線量、とりわけ 甲状腺線量を再評価する。

鈴木のグループは、福島県および周辺県が実施していた空間線量率、土壌汚染密度、農林水 産物の汚染検査データを系統的に収集し、さらに、実測値が乏しい時期や地区に関しては、 WSPEEDI による評価値をベースに飲料水や農産物等の汚染濃度をシミュレーションするコン パートメントモデルを構築し、評価する。既存の測定値と新たに取得する測定値をつかって、 コンパートメントモデルに使うパラメータの妥当性を検討する。我々は、避難住民の衣服汚染 の核種分析結果と約 42,000 名の GM サーベイメータ測定データを使って、避難途上の I-131, I-132, I-133, Te-132 の吸入被ばくによる甲状腺被ばく線量を評価する手法を開発する。

キーワード:大気拡散シミュレーション、内部被ばく線量、短半減期核種、体表面汚染、コ ンパートメントモデル

研究者協力者氏名・所属施設名及び所属施設における職名

(専門委員会委員)	中村	尚司	(東北大学・名誉教授)
	石榑	信人	(名古屋大学・教授)
	堤	(国立医	薬品食品衛生研究所・部長)
	茅野	弘道	(日本原子力研究開発機構・部門長)
	浅見	真里	(国立保健医療科学院・上席主任研究官)
(研究協力者)	長谷り	右中	(福島県立医大・教授)

大葉 隆 (福島県立医大・臨床放射線技師) 近藤 久禎 (国立病院機構災害医療センター・室長) 小早川 義貴 (国立病院機構災害医療センター・医師) I 研究目的

研究の背景: 2014年5月にUNSCEARの福島報告書が公表されたが、その評価値は小児甲状腺簡易測定からの評価値や弘前大学の床次等の評価値に比べて過大評価となっている。我彼の違いが出てくる原因としてUNSCEAR報告書は、事故による放出放射能濃度の不確かさ、事故直後のTe-132、I-131などの短半減期核種の測定データの欠如、日本人特有のヨウ素代謝データの不足等をあげている。また、UNSCEARの評価値は平均値であって、住民の行動パターンの違いによりその30~50%から2~3倍までの違いがあると指摘されている。事故直後の必ずしも情報が十分でない中での、WHOやUNSCEARによる評価は、不確かさを承知の上で、将来の健康管理対策や不安対策に早急に利用するために公表された意味合いもある。しかしながら、今後は長期的な健康影響に対するモニタリングや、健康不安、復興に対する懸念対応など、息の長い対応が求められていくことになる。その際に、事故初期の被ばく線量の不確かさや、保守的な評価の結果をそのまま利用し続けることには課題があり、両報告も詳細なデータの更なる収集等による線量評価の精緻化の必要性を指摘している。

<u>研究の目的</u>: 本研究は主に事故初期の被ばくに注目して、ソースタームおよび大気輸送・拡 散・沈着モデルを最新版へ更新するとともに、モデルのパラメータを最適化するための新規デー タの収集・測定を実施し、避難途上や事故後早期の外部被ばく・内部被ばく(呼吸・飲食)線量 の再構築を行うことを目的とする。また、日本人特有のヨウ素代謝パラメータについて分析し将 来的な被ばく線量の評価検討に資するものとする。

<u>環境行政の課題との関連性</u>: 住民の不安を解消するために、被ばく線量の中央値だけでなく 幅を評価することが重要である。また、将来の UNSCEAR による福島報告に資するためにも、特 に事故初期の被ばく線量評価の大きな不確かさの問題解消を図る必要がある。そのためには、日 本からデータを提示することが重要である。この点は、国際的にも強く求められている。なお、 事故から3年を経ており、時間の経過に伴い被ばく線量評価に関わる様々なデータの入手は難し くなっていくと思われる。そのため、関連データの収集にはできる限り早く着手する必要がある。 この点からも本研究の必要性・緊急性は極めて高いといえる。

Ⅱ 研究方法

本研究は、包括研究として実施される。JAEAの永井らが、大気拡散シミュレーションの精緻化 を担当し、そのシミュレーション結果を国福大・福島県立医大、放医研の班員が利用できる体制 を取る。また、大気拡散シミュレーションのパラメータ調整に使われる新規データの取得部分を 学習院大・東大、国福大・福島県立医大、および東大の班員が実施する。

JAEAのグループが実施する大気拡散シミュレーションの精緻化は、JAEAが報告した最新のソ ースタームを使い、また、最新の気象モデルとデータ同化手法を用いた気象場計算を実施すると ともに、拡散モデルに化学形態を考慮した精緻な沈着過程を導入し、放射性物質の大気拡散及び 沈着状況の再現性を向上させる。事故直後の各地の空間線量率、土壌放射性物質の沈着濃度、 PM2.5の連続測定フィルターの放射性セシウムなどのデータに加え、下記のI-129の測定データ等 を使い、大気拡散シミュレーションモデルのパラメータの最適化を図る。そして、放射性物質大 気濃度・沈着量の時間空間分布データベースを構築する(詳細は、分担研究成果報告書参照)。

放医研の栗原らは、上記の放射性物質大気濃度・沈着量の時間空間分布データベースを利用し、 福島県住民の行動調査票と甲状腺簡易測定データやホールボディカウンターデータとを突き合わ せて、これらの測定値のある住民の内部被ばく線量・外部被ばく線量を再評価すると共に、大気 拡散シミュレーションの評価値との整合性を検討する(詳細は、分担研究成果報告書参照)。

東大の松崎らは、福島県および一部周辺県の土壌のI-129をAMS加速器質量分析法により測定し、 もってデータの乏しかった事故直後のI-131の空間的広がりを再現する。これまで650試料の測定が 終わっており、最終的には、890試料の測定を計画している。このデータは、大気拡散シミュレー ションのパラメータ調整に使われる。(詳細は、分担研究成果報告書参照)。

東大の楠原らは、欧米人および日本人のヨウ素・甲状腺代謝に関する報告を文献調査し概観す ると共に、分担研究者がH25年度に長崎で実施したI-123の体内動態に関する臨床研究データをベ ースに他の日本人研究者のデータを統合して日本人成人のヨウ素代謝の数理学的モデルを構築す る(詳細は、分担研究成果報告書参照)。

主任研究者は、3つのテーマ「経口摂取による内部被ばく線量及び福島県外の外部被ばく線量の 推計」、「体表面スクリーニング検査結果からの甲状腺被ばく線量推計」並びに「内部・外部被ば く線量の統合」に関して調査する。第3のテーマ「内部・外部被ばく線量の統合」は、最終年度に 班全体の研究成果の総括として取り上げる予定である。

第1のテーマ「経口摂取による内部被ばく線量及び福島県外の外部被ばく線量の推計」は、三菱総研に外注し、実施する。H25年度に三菱総研が原子力災害影響調査等事業の一環で実施した福島県内13市町村の事故初期の食品の経口摂取による内部被ばく線量評価調査において確立してきた手法を継承しつつ、13市町村以外の福島県住民、および周辺県住民に適用する。

① 経口摂取による内部被ばく線量の検討

飲料水や食品(野菜等)の放射能濃度の実測値及び検討した喫食量を用いて、対象期間・対象 地域の経口摂取による内部被ばく線量を推計する。飲料水や食品(野菜等)の実測データが不足 している期間・地域については、実測データ及び大気拡散シミュレーションからの放射性物質の 地表面沈着率を利用し、ワン・コンパートメントモデルないしマルチ・コンパートメントモデル によって、飲料水や食品の放射能濃度を推計し、内部被ばく線量を検討する。福島県立医大がサ ンプリングしていた沢水の核種分析結果、自治体が実施していた水源汚染データなどにより、当 該モデルの検証を実施する。また、大気拡散シミュレーションによる放射性物質の地表面沈着量 を線量推計に用いるが、土壌中 I-129 の分析による I-131 土壌沈着量等を検証データとして用いる ことで、線量推計及び大気拡散シミュレーションの精度向上を行う。

また、事故後のセシウムによる内部被ばく線量を把握するために、マーケットバスケット方式 の調査結果を整理し、減衰の予測を行う。

② 吸入摂取による内部被ばく線量の検討

大気拡散シミュレーションによる放射性物質の大気中濃度等の評価結果を用いて、吸入による 内部被ばく線量を検討する。その際、人の活動レベルや屋内に滞在することによる防護係数等の パラメータは、他の分担研究によって得られたデータを用いて検討する。

③ 福島県外の外部被ばく線量の検討

福島近隣県の住民の外部被ばく線量の推計に関する系統的な文献収集を行い、情報を整理する。 具体的には、関係する自治体などの公表している推計結果を収集・整理して福島県外の外部被ば く線量の推計状況を整理する。 第2のテーマ「体表面スクリーニング検査結果からの甲状腺被ばく線量推計」は、2011年3月12 日から3月17日までに約42,000名の避難住民に実施したGMサーベイメータによる体表面スクリー ニング・データをベースに甲状腺等価線量を評価する。これまで、このような推計モデルは確立 されておらず、我々の研究が初めてである。我々の目標は、避難途上の短半減期放射性核種 (I-131,I-132,I-133, Te-132)の吸入被ばくによる甲状腺等価線量を推計することである。

福島第一原発1号機、3号機、2号機から漏洩した放射性プルームは、3月15日の夕方までは乾性 沈着により避難住民の衣服に沈着したと考えられる。GMサーベイメータのベータ線測定結果より、 大気中の放射性核種濃度を推測する第1歩は、3月12日に20Km圏で実施した移動ダストモニタリン グの結果と、3月12日に放射性プルームに曝露された3名の避難住民の衣服等のゲルマニウム半導 体検出器による核種分析結果を分析し、¹³¹Iに対する核種の相対的な沈着速度比を求めることであ る。相対的な沈着速度が判れば、¹³¹Iの沈着速度を仮定すると、避難途上に吸入した上記短半減期 核種の吸入量を推計でき、甲状腺等価線量も推計できる。第2に、¹³¹Iの乾性沈着速度は、文献値 により求める。避難途上の乾性沈着速度が一定と仮定すると、避難に要した時間"T"時間に衣服 に沈着した放射性核種の量は、避難途上"T"時間に吸引した大気中の放射性核種と比例関係にあ る(図1)。

A. 避難途上で呼吸する大気中の放射性ヨウ素濃度

B. 避難途上で大気から沈着する放射性ヨウ素量

図1. 大気中放射性ヨウ素と衣服に沈着する放射性ヨウ素の量的関係

t時間目の空間の放射性ヨウ素濃度を y=f(t) (Bq/m³) と定義すると、0~T時間の放射性ヨウ素 濃度の積分値と、1 歳児の呼吸率を 0.35(m³/h)、1 歳児の甲状腺等価線量係数を 1.4 x 10⁻⁶ (Sv/Bq) (ICRP Publ 71)を使って、吸入による 0~T時間の間の甲状腺預託線量 *D(t)* (Sv)は、以下の積分値と して表現される。

$$D(t) = 0.35 \text{ x } 1.4 \text{ x } 10^{-6} \int_{0}^{T} f(t) dt$$

一方、*t*時における放射性ヨウ素の体表面沈着量 *S(t)*(Bq/cm²)は、*f(t)*と沈着速度 *K*(cm/s)の積であるので、0~T時間の間の体表面沈着量は、以下の数式で表現される。

$$S(t) = \int_0^T 3600K(10^{-6}f(t)dt) = 3.6 \ge 10^{-3}K \int_0^T f(t)dt$$

放射性ヨウ素濃度の積分値が両式で共通なので、代入すると

 $S(T) = 3.6 \ge 10^{-3} \ge K \cdot D(T) / 0.35 \ge 1.4 \ge 10^{-6} = 7.35 \ge 10^{3} K \cdot D(T)$

 $D(T) = 1.36 \ge 10^{-4} S(T)/K$ (Sv)

(式1)

となり、沈着速度 K が空間汚染濃度と関係なく一定と仮定すると、体表面汚染密度は甲状腺被ば く線量と線形関係にある。すなわち、汚染密度が判れば、甲状腺等価線量を評価できる。年齢階 層に応じた ICRP の呼吸率と甲状腺等価線量換算係数を使い、他の年齢階層の甲状腺等価線量も 同様に評価できる。皮膚に付着した1ミクロン以下の微粒子は、簡単には脱落せず、その半減期 は14.7時間と報告されている(文献1)。プルーム曝露後15時間以内にスクリーニングを受けた と仮定し、GM サーベイメータの測定までに50%の汚染が自然脱落したものとして線量推計する。

(倫理面への配慮)

住民の個人データを扱う鈴木および栗原の研究計画については、それぞれ、国際医療福祉大学 (13-B-79)と福島県立医大(受付番号2136)、および福島県立医大(受付番号1892)で別個に倫 理審査をうけ、研究倫理委員会から承認を受けている。楠原の研究計画は、公表データの再解析 であり、今回、倫理問題は発生しない。永井および松崎の研究は、ヒトのデータを使わない研究 であり、倫理的問題は生じない。

Ⅲ 研究結果

分担研究者の研究成果に関しては、それぞれの成果報告書を参照されたい。

1. 経口摂取による内部被ばく線量及び福島県外の外部被ばく線量の推計

事故直後の摂食状況を検討するため、福島県の生鮮品の流通状況を調査した。経口摂取による 内部被ばく線量を検討するため、事故直後に各地で測定された放射能濃度を収集し、整理した。 水道水の実測値が不足している期間や地域において、濃度変化が新たな放射性核種の沈着と含ま れる放射性核種の実効的な減衰によって表されるワン・コンパートメントモデル(以下にモデル を記載)を用いて、推計を行った。水源への沈着のみでは説明が困難な地域について、浄水場へ の放射性核種の沈着を考慮したマルチ・コンパートメントモデルで推計を行った。なお、大気拡 散シミュレーションは平成 25 年度に JAEA 殿から入手した WSPEEDI(参考文献:寺田宏明、永 井晴康、古野朗子、掛札豊和、原山卓也、茅野政道、緊急時環境線量情報予測システム(世界版) WSPEEDI 第2版の開発、日本原子力学会和文論文誌、7、 p257-p267、2008) によるデータを用いた。

$$\frac{dC}{dt} = ap' - \lambda C$$
C 水道水中の核種濃度 (Bq kg⁻¹)
p' 地表面沈着率 (Bq m⁻² s⁻¹)
a 換算係数 (m² kg⁻¹)

✗ 実効減衰係数(s⁻¹)

福島県各市町村を対象として、水道水の放射能濃度をワン・コンパートメントモデルで推計した。実測値によってフィッティングされる推計のパラメータ(換算係数および実効減衰係数)は、 実測値の十分な全ての地域で推計し、パラメータにどの程度不確かさが含まれるかを検討した。 換算係数の平均値は1.8×10⁻⁴、実効減衰係数の平均値は1.6×10⁻²であった。各パラメータのばらつ きを図2に示す。また、図3に、放射能濃度推計の具体的な結果として、ある地点の推計を示す。 青の線が拡散シミュレーションの地表面沈着率、赤点が計測された実測値、緑の線が実測値と地 表面沈着率に基づく推計値を示す。

B. 実効減衰係数のバラツキ

図2. 水道水中の放射能推計のためのワン・コンパートメント・モデルの換算係数、実効 線量係数のバラツキ(A、B)

図 3. ワン・コンパートメント・モデルによる水道水放射能濃度推計結果

また、ワン・コンパートメントモデルで説明が困難であった地域について、水源と浄水場に沈 着した核種量(拡散シミュレーションから推計)を考慮したマルチ・コンパートメントモデルに よって、放射能濃度を推計した。

図4. マルチ・コンパートメント・モデルによる水道水の放射能推計結果

内部被ばく線量に関する測定データとして、マーケットバスケット方式のセシウムに関す る内部被ばく線量調査結果がある。これらの調査結果は事故後半年後から福島県内外を含め、 継続的に実施されてきており、データの蓄積がある。それらの調査結果をフィッティングす ることにより、セシウムの経口摂取による内部被ばく線量の減衰予測を実施した。この結果 により、福島県を含め周辺県のセシウムによる事故後の内部被ばく線量が推計する基礎がで きた。

図5. マーケットバスケット方式によるセシウムの預託実効線量の推計(成人)

図6. 放射性セシウムの預託実効線量(成人)の減衰予測

周辺県における外部被ばく線量については、実測値として多数のデータが存在する空間線 量率の結果を用いて、屋内外滞在時間の補正、建物の遮蔽効果、バックグラウンド、空間線 量と実効線量の換算関係等を考慮した推計手法を構築した。その際、周辺県の空間線量率と して、JAEAで実施されている広域的な走行サーベイによる結果を整理した。以下に、その空 間線量率の結果(例:栃木県)と、その結果を用いて指数第1項の減衰式で予測を行った結 果を示す。

図7.事故後の空間線量率の推移とフィッティング(栃木県)

2. 体表面スクリーニング検査結果からの甲状腺被ばく線量推計

福島県立医大で実測した3月12日に放射性プルームに曝露した住民の衣服等のゲルマニウム半 導体検出器による放射性核種分析結果と3月12日の20Km圏での移動ダストサンプリングの核種分 析結果を比較すると、粒子状のTe-132とガス状と粒子状の混合している I-131, I-133、I-135との 存在比は、ほぼ同じであった。このことより、これらの核種の乾性沈着速度はほぼ同じと見なす ことができ、それ故、体表面の核種組成は、避難住民が吸入していた大気中の核種組成を反映し ていると結論された。乾性沈着速度の幅を仮定すれば、住民が吸入した放射性核種の量が推計で き、甲状腺吸収線量が推計できるという我々のモデルの基礎ができた。Katataらのソースタームの 核種組成と3月12日の移動ダストサンプリングのそれは違いがあるため、今後、元データのガンマ 線スペクトルに遡りさらに検討する。また、本研究では、ほとんど沈着しないメチル化ヨウ素の 存在比を20%として、放射性ヨウ素の沈着速度を補正し、線量計算に用いた。

上半身のGMサーベイメータ汚染検査で複数の記録がある場合は、バックグランドを除いた値の 平均値を持って当該個人の代表値とした。体表面の向き(上向き、下向き、垂直など)、衣服や頭髪 等の物理化学的・静電気的特性により沈着速度は変わる。また、GMサーベイメータの測定手技に より、測定値も変動する。GMサーベイメータの測定技法による変動係数を15%と仮定すると、残 り測定値の変動係数は体表面の性状による沈着速度のバラツキと見なすことができる。3名の複数 箇所測定の変動係数は約41%であったので、沈着速度の変動係数も同じ程度有ると推定された。 この値は、沈着速度が一様分布の確率密度分布をとると仮定した時の一様分布の幅を検証する際 に、用いられた。

平成27年11月末時点で、データベース化された1070名を途中解析した結果を記載する。大熊町、 浪江町、富岡町、双葉町、楢葉町、南相馬市、田村市、葛尾村、いわき市、広野町、川内村、飯 舘村からの避難住民の体表面汚染の分布を見てみると、第1に、99%の住民が13,000cpm未満の汚 染である。第2に、分布は2峰性を示唆しており、避難ルート、避難日によりプルームへの曝露状 況が異なることが示唆された。約7,500名の入力が完成した後、避難ルート、避難日別の分布を求め、最終的な線量評価につなげたい。

IV 考察

研究全体を概観すると、JAEAで進めている大気拡散シミュレーションを精緻化する研究は、計 算のためのワークステーション整備、計算プログラム開発導入、ベータベース整備などが進んだ。 来年度にむけて、最新のソースタームを使い、新しい気象モデルを使ったWSEEDIによる計算環 境が整った。福島県内は1Kmメッシュ、1時間間隔での計算が可能となる。一方、WSPEEDIのパ ラメータ調整に使う実測値の発掘という面では、学習院大グループで進めている土壌のI-129の分 析や、環境省の浮遊粒子状物質(SPM)の捕集フィルターに残されていた放射性セシウムデータ を使ったデータ収集が進んでおり、これらの実測値を使った調整が来年度後半に可能となる。国 福大と福島県立医大では、福島県13市町村以外の地域や周辺県の測定データを系統的に収集開始 しており、また、未公表の家庭菜園や原乳、沢水等のデータ発掘も進んだ。来年度後半にはこれ らのデータもWSPEEDIのパラメータ調整に利用される体制ができたと言える。放医研グループは、 小児甲状腺のガンマ線簡易測定検査をうけた小児および2011年6月~7月に放医研がホールボディ カウンター検査を実施した住民に関して、行動調査法との突き合わせが完了した。来年度は、線 量と行動との関係を解析する基礎ができた。さらにJAEAが同年7月より翌年1月まで実施したホー ルボディカウンター検査対象者の行動調査票との照合作業を実施する。個人の防護行動が WSPEEDIの新しいシミュレーション結果を使った住民の外部被ばく線量・内部被ばく線量評価を どのように修飾するのかを評価する予定である。東大のグループは、ヨウ素制限のない通常食を 食べていた日本人成人のデータを基に日本人のヨウ素代謝数理モデルを完成した。来年度は、文 献的考察より、数理モデルを小児や腎機能の低下した成人にも拡張する。この数理モデルは、最 終的に甲状腺被ばく線量を評価する際に、日本人集団の中央値と幅を算定する際に使われる。以 下、国福大が実施した分担研究分に関する考察を記載する。

実測値の不足している期間における水道水の放射能濃度をワン・コンパートメントモデルで推 計した結果、各地点におけるパラメータ(換算係数、実効減衰係数)のばらつきが比較的小さい ことが分かった。推計対象の地点では、福島原子力発電所から近く放射性物質の沈着も多い場所 と、福島原子力発電所から遠く放射性物質の沈着が少ない場所の両者が含まれる。また、推計結 果としても妥当な結果が得られたと考えられる。そのため、福島県内においては、水源への核種 の沈着量を考慮したワン・コンパートメントモデルで実測値の不足した期間の放射能濃度を補完 できる可能性がある。さらに、水源への沈着のみでは実測値の説明が困難だった地点について、 浄水場への沈着も考慮したマルチ・コンパートメントモデルを用いることで、放射能濃度を補完 できると考えられる。また、事故後半年後程度からはマーケットバスケット方式によるセシウム の実測値が存在しており、これらの結果を整理し評価することで、セシウムの経口摂取による内 部被ばく線量の推計を行った。さらに、JAEA で実施されている走行サーベイの空間線量率の結 果に、換算係数や遮蔽効果等を考慮することによって、周辺県における事故後の外部被ばく線量 を推計する手法を構築した。

今回、我々は避難住民の行動を反映している体表面汚染に着目して内部被ばく線量を推計する 方法論を提案した。旧科学技術庁の委託により原子力安全研究協会が作成した「緊急時医療の知

346

識一第1次緊急時医療活動一」(文献2)において、体表面汚染レベル40Bq/cm²を小児甲状腺被ば く線量100mSvのスクリーニングレベルとして提案していたが、この計算では、GMサーベイメー タの測定に寄与するベータ線が全て放射性ヨウ素-131に由来すると想定していた。実際の福島原 発事故では、3月12日の実測値では、放射性ヨウ素-131に由来するベータ線は16%に過ぎず、放 射性ヨウ素132に由来するベータ線が約5割を占めていた。短半減期核種の組成は時間の経緯と共 に変わっていくため、これらの核種を含めた内部被ばくとして評価する必要がある。今回、衣服 に付着していた放射性核種のスペクトル分析を行い、GMサーベイメータで測定したcpm値に占め るそれらの核種から放出されるベータ線割合を算定し、同じ割合で吸入被ばくしたとして線量評 価したところに新規性がある。GMサーベイメータの測定者は多数いるので、避難ルート毎の集団 の甲状腺被ばく線量の平均値と分散を評価できるところが利点である。

このモデルは、幾つかの不確実性を有している。第1に、内部被ばくの評価に際して、放射性核 種を粒子径1µmの粒子と仮定し、その場合のヨウ素の乾性沈着速度の確率密度分布を 0.1~ 0.5cm/s の一様分布として計算した。この値は、ウィンズケール事故やSL-1事故のフィールド調査 でのガスと粒子状のヨウ素の総体としての乾性沈着速度の報告値、0.1~0.52 cm/s、に由来する。 沈着速度は、粒子径、風速や沈着表面の性状により変動する(文献3~5)。上記事故の報告値 は、地面あるいは草木の葉への沈着速度であり、ヒトの頭髪・皮膚・衣服への沈着速度値ではな いため、不確実性がある。第2に、ヨウ素の化学型・粒子径の不確実性である。ガス状の元素ヨウ 素の乾性沈着速度は、文献的には0.02~26cm/sと報告されており、メチルヨウ素のそれは、10⁻²~ 10⁻⁴cm/sと報告されている(文献3)。メチルヨウ素の割合が高くなると、放射性ヨウ素総体の沈着 速度は低下する。今回、20%がメチルヨウ素として計算しているが、不確実性の原因となる。第 3の不確実性は、ガス状と粒子状の放射性ヨウ素の存在比である。甲状腺等価線量換算係数に関 係するので線量評価の不確実性に繋がる。感度解析として、存在比を変えた場合の影響の範囲を 検討したい。第4の不確実性は、プルーム曝露からGMサーベイメータによるスクリーニングまで の時間と、その間に自然脱落する核種の割合である。今回、0.5マイクロメータの粒子径の蛍光シ リカがヒト皮膚から自然脱落する半減期 14.7 時間を採用している。しかし、スクリーニングを 受けるまでの時間は不確実性があり、この点も不確実性の原因となる。第5の不確実性は、ICRP の甲状腺モデルと日本人の平均的は甲状腺モデルの違いである。ICRPのは、放射性ヨウ素の甲状 腺取り込み率を30%としているが、安定ヨウ素の摂取量が多い日本人の中央値は15%前後と報告さ れている。他方、ICRPモデルに比して、日本人の甲状腺体積は小さいことが判っており、これら の違いがネットの効果として甲状腺等価線量推計へ及ぼす影響は、さらなる検討が必要である。 分担研究者の楠原らの数理学的モデルを援用して、線量評価の不確実性評価に生かしていく。

V 結論

経ロ摂取による内部被ばく線量推計に必要な水の放射能濃度について、実測値を収集するとと もに、濃度推計の方法を検討した。濃度推計方法としてはワン・コンパートメントモデルおよび マルチ・コンパートメントモデルを用いることで、福島県の各市町村における水道水の放射能濃 度が推計可能であることを確認した。さらに、マーケットバスケット方式の調査結果や JAEA の 走行サーベイの結果をもとに、セシウムの経口摂取による内部被ばく線量と外部被ばく線量を推 計する手法を構築した。

今後の課題として、精緻化された大気拡散シミュレーションの出力データを用いた濃度推計を

347

行い、今年度実施した飲料水の放射能濃度推計と、野菜等の放射能濃度推計を最適化する必要が ある。また、今後10年および生涯の被ばく線量の推計や、事故直後でない期間(2011年5月以 降等)の摂食状況も考慮した内部被ばく線量の検討を行う必要がある。

体表面汚染データから短半減期核種(I-131、I-132, I-133, Te-132)吸入摂取量を推計し、もって 甲状腺等価線量を推計するモデルを構築した。疫学倫理委員会の承認を受け、福島県立医大およ び福島県が保管する紙媒体の体表面汚染データを電子データベース化し、避難ルート毎の甲状腺 等価線量を推計する体制が整った。

VI 次年度以降の計画

平成28年度

- JAEAから提供される最終バージョンの大気拡散モデルのシミュレーション結果を 使い、JAEAから提供される改良バージョンの大気拡散モデルによる土壌汚染シミ ュレーション結果を使い、実測値のない時期や地域の飲料水・食品からの内部被 ばく線量を評価する。また、福島県内だけでなく、周辺県の内部被ばく線量の推 計を実施する。これらの評価値とホールボディカウンター等の実測値との整合性 を検討する。
- 2. 実測値の少ない3月12日から3月15日にかけてのダストサンプリング等のデータ発掘 を続ける。
- 3.約7,500名の体表面汚染データから避難日、避難ルート毎、年齢別の甲状腺等価線 量、その不確実性区間を推計する。
- 4.甲状腺スクリーニングやホールボディカウンターにより甲状腺線量が評価されている住民データと体表面汚染データの突合行い、線量評価の妥当性を検討する。

この研究に関する現在までの研究状況、業績

- Kondo H Shimada J Tase C et al. Screening of residents following the Tokyo Electric Fukushima Daiichi Nuclear Power Plant accidents, Health Phys. 2013; 105: 11-20.
- Ohba T Miyazaki M Sato H et al. A strategy for a rapid radiological screening survey in large scale radiation accidents: A lesson from an individual survey after the Fukushima Daiichi Nuclear Power Plant accidents, Heath Phys. 2014; 107: 10-17.

引用文献

- Hession H et al. Measurement of contaminant removal from skin using a portable fluorescence scanning system. J. Environ. Radioactivity, 2006; 85: 196-204.
- 2)「緊急時医療の知識―第1次緊急時医療活動―」平成5年3月、(財)原子力安全研究協会
- 3) Sehmel GA. Particle and gas dry deposition: A review. Atmospheric Environment 1980; 14: 983-1011.
- Gifford FA Jr Pack DH. Surface deposition of airborne material. Technical Progress Review, Nuclear Safety, 1974; 3(4): 205-214. (ORNL-TM-195)
- 5) Chamberlain AC. Deposition of iodine-131 in Northern England in October 27. Quar. J. R. Meteor. Soc. , 1959; 85(366): 362-270.

Comprehensive study on radiation dose received by residents in the TEPCO Fukushima Dai-ichi Nuclear Power Station Accident

Gen Suzuki^{*1}, Haruyasu Nagai^{*2}, Osamu Kurihara^{*3}, Yasuyuki Muramatsu^{*4}, Hiroyuki Kusuhara^{*5},

*1 International University of Health and Welfare Clinic
 *2Japan Atomic Energy Agency
 *3National Institute of Radiological Sciences
 *4Faculty of Science, Gakuchuin University
 *5Graduate School of Pharmaceutical Science, University of Tokyo

Keywords: Atmospheric transport dispersion deposition model; Internal exposure dose; Short half-life radionuclides; Body surface contamination, Compartment model

Abstract

WHO and UNSCEAR have systematically estimated the dose received by residents in Fukushima and adjacent prefectures after the TEPCO Fukushima Dai-ichi Nuclear Power Station Accident. However, these dose estimates had large uncertainty due to the lack of measurements in the early phase of the accident. In the present study, 5 research groups will collaborate with each other so as to improve and validate an atmospheric transport dispersion deposition model (WSPEEDI) and other methodologies for the evaluation of internal dose especially thyroid dose in residents living in Fukushima and adjacent prefectures.

Suzuki's group will systematically collect the measurements data of air dose rate, soil contamination, and water/food contamination done by local governments or researchers, and food supply situation after the accident. As to areas in the early phase of accident, where measurements were lacking, we will simulate water/food contamination levels by constructing compartment models based on the output from WSPEEDI. Known and newly acquired measurements will be used for the validation of parameters in these compartment models. We also utilize the GM-survey meter measurements of 42,000 evacuees' cloths in combination with their nuclides analyses by a germanium spectrometer and construct a model to estimate thyroid dose by I-131, I-132, I-133 and Te-132.

東京電力福島第一原子力発電所事故における住民の線量評価に関する包括研究

ソースタームの評価と大気拡散シミュレーション

永井晴康(日本原子力研究開発機構 原子力科学研究部門 原子力基礎工学研究センター 環境・放射線科学ディビジョン 環境動態研究グループ・リーダー)

研究要旨

東京電力福島第一原子力発電所の事故時に放出された放射性物質による住民の被ばく線量に ついて、現時点では実測に基づく評価が困難な事故初期段階における被ばく線量を詳細に評価 するために、計算シミュレーションにより放射性物質の時間空間分布を再構築する。本研究項 目においては、放出源情報の精緻化及び大気拡散シミュレーションの高精度化により、放射性 物質大気濃度・沈着量の時間空間分布データベースを開発し、住民の行動パターンや移行モデ ルと組み合わせた推計に活用する。

本年度は、改良モデル及び最新の放出源情報による大気拡散シミュレーションを実行し、旧 モデルも含む様々な条件による計算結果と積算地表沈着量の観測値との比較により再現性の評 価を行い、さらに改良すべき点を抽出した。また、データベース計算手法及びデータベース解 析手法を試作し、放射性物質大気濃度・沈着量の時間空間分布データベースの基本版を構築し た。

キーワード: 放出源情報、大気拡散シミュレーション、福島第一原発事故、線量再構築、放射 性物質の時間空間分布データベース

研究協力者:

山澤弘実(名古屋大学 大学院工学研究科 エネルギー理工学専攻・教授)

Matthew Hort (UK Met Office)

Werner Rühm (Helmholtz Center Munich)

André Bouville (National Cancer Institute, NIH, DHHS)

I 研究目的

東京電力福島第一原子力発電所(以降、福島第一原発と称す)の事故時に放出された放射性物 質による住民の被ばく線量の把握において、ヨウ素等の短半減期核種による事故初期段階におけ る内部被ばく線量については、現時点では実測に基づく評価が困難である。また、外部被ばく線 量についても、実測データがない地点でのプルーム通過時の直接線量と地表汚染からの線量の積 算を評価することはできない。そこで、放射性物質の空間分布及び時間変化を再現可能な大気拡 散シミュレーションを活用し、実測データと整合するように拡散状況を再現することにより、実 測データを時間空間的に補完した線量推計が可能となる。本研究では、最新の知見を反映した大 気拡散シミュレーションにより事故時の放射性物質の拡散状況を再構築し、線量推計に必要とな る放射性物質大気濃度・沈着量の時間空間分布データベースを構築することを目的とする。

このデータベースと他の研究項目で実施する住民の行動パターン及び陸上の核種移行モデルを

組み合わせることで、実態に近い被ばく線量評価が可能となるとともに、事故による環境影響の 把握と将来予測にも有効な基礎・基盤的な技術及び知見としての活用が期待される。

Ⅱ 研究方法

本研究では、大気拡散シミュレーションにより事故時の放射性物質の拡散状況を再構築し、線 量推計に必要となる放射性物質大気濃度・沈着量の時間空間分布データベースを構築する。この 目的を達成するために、具体的に以下の課題を実施する。

①放出源情報の設定と不確実性の評価

大気拡散シミュレーションの入力条件として必須となる放出源情報について、短半減期核種を 含む放射性核種を粒径や化学形態別に細分し大気拡散と被ばく評価への影響を考慮できるように する。また、短時間間隔(1時間程度)で放出率時間推移を設定し、設定値の不確実性を評価する。

②大気拡散シミュレーションの精度向上と計算手法の開発

大気拡散シミュレーションについて、最新の気象モデルとデータ同化手法を用いた気象場計算 を実施するとともに、拡散モデルに化学形態を考慮した精緻な沈着過程を導入し、放射性物質の 大気拡散及び沈着状況の再現性を向上する。また、他モデルとの相互比較等により計算精度と不 確実性の評価を行う。さらに、任意の放出源情報に基づく大気拡散シミュレーション結果を効率 的に作成可能なデータベース計算手法を開発する。

③放射性物質大気濃度・沈着量の時間空間分布データベースの構築

②で開発した計算手法に基づき、単位放出条件による大気濃度及び沈着量の時間空間分布デー タセットを作成し、任意の放出源情報を設定すると、即座にその条件に基づく放射性物質の大気 濃度及び沈着量を評価可能なデータベース解析機能を開発する。これにより、これまでの大気中 濃度分布に加えて、降下量、沈着量分布も含む、放射性物質大気濃度・沈着量の時間空間分布デ ータベースを構築する。

④放射性物質大気濃度・沈着量の時間空間分布データベースの改良

他の研究項目による新規データやデータベースを用いた被ばく線量評価研究からのフィードバックを反映させることにより、放出源情報及び拡散計算を最適化し、データベースを完成する。

平成27年度は、上記研究項目のうち、1)大気拡散シミュレーションの計算実行と性能評価(②)、 2)データベースと解析機能の試作(③)を進めるとともに、これまでの解析結果をJAEAデータ ベース(付録1、2)として公開した。各研究項目の実施方法を、以下に記述する。

1) 大気拡散シミュレーションの計算実行と性能評価

昨年度導入・改良した気象・拡散モデル(WRF-GEARN)及び最新の放出源情報を用いた大気 拡散シミュレーションを実行し、旧モデル(MM5-GEARN)も含む様々な条件による計算結果と 積算地表沈着量の観測値との比較により再現性の評価を行い、さらに改良すべき点を抽出した。 航空機モニタリングによる放射性物質の地表沈着量と比較を行うために、東日本全体を覆う計算 領域を設定した。鉛直方向の計算範囲は、気象計算では地表から100hPa面まで、拡散計算では地 表から10km上空までとした。計算期間は、2011年3月12日3時から4月1日0時(JST)までとした。 気象計算の初期・境界値の作成には、気象庁の数値予報格子点値(GPV)のMSMを用いた。放出 核種や放出量、放出形態等の情報は、2種類の大気放出源情報(旧放出源Terada et al. 2012¹⁾、新放 出源Katata et al. 2015²⁾)を用いた。WRF-GEARNの主な計算条件を表1に示す。また、沈着分布を 再現する上で重要なプロセスを明らかにするために、表1の雲微物理スキームの変更と解析値ナッ ジングを加えた計算を別途実施した。

		領域1	領域2	領域3			
時間ステップ		60秒	60秒 20秒				
GEARN時間ス	、テップ	なし	なし 6秒				
格子数		100×100×31	130×190×31	190×190×31			
水平格子幅		9 km	3 km	1 km			
	雲微物理	WSM6					
	積雲対流	Betts-Miller-Ja	なし				
物理エデル	接地境界層	MYNN					
初理モアル	地表面過程	5-layer thermal diffusion					
	大気境界層	MYNN Level 2.5					
	大気放射	RRTM(長波放射)及びDudhia(短波放射)					
解析値ナッジ	ング	不使用					

表1 WRF-GEARNの計算条件。

さらに、昨年度整備したWRF-DA及びWRFによる気象データ同化解析手法を用いて、気象場の 再現計算とその結果に基づく大気拡散シミュレーションを実施し、実測値との比較によりデータ 同化による拡散計算の再現性向上への影響を評価した。データ同化計算は表1の領域1のみを対象 に実施し、これにより修正した初期・境界値を領域1~3の3領域ネスティング計算で使用した。解 析サイクルと同化ウィンドウはともに6時間とし、観測データ挿入の時間間隔は1時間とした。同 化に用いた気象観測値を以下に示す。

- ・福島第一原発敷地内における地表付近の風向・風速
- ・福島第二原子力発電所(以下、福島第二原発)における排気筒高さ(地上120m)の風向・風速
- ・福島県環境放射能監視テレメータシステムのモニタリングポスト大野局(大熊町)における地 表付近の風向・風速
- ・気象庁のアメダス観測所及び気象官署における地上観測値(計算領域内計452地点における風 向・風速・気温。気象官署については気圧、相対湿度も使用)
- 2) データベースと解析機能の試作

データベース計算手法及びデータベース解析手法を試作し、放射性物質大気濃度・沈着量の時 間空間分布データベースの基本版を構築した。本データベースでは、単位放出条件による大気濃 度及び沈着量の時間空間分布データセットから、任意の放出源情報を設定すると、即座にその条 件に基づく放射性物質の大気濃度及び沈着量を評価可能とするものである。この要件を満たすよ うに、データベース構築に必要となる格納データ、解析機能、及びインターフェイスについて検 討し、データベースの全体設計を行った。この設計に基づき、データベースに格納する計算出力 を作成するための計算条件を決定し、その計算出力から放射性物質の大気濃度及び沈着量を評価 する解析手法を開発した。そして、昨年度整備した並列計算機、データサーバ、及び制御サーバ からなる計算機環境上に、これらのデータを格納し解析機能のソフトウェアを整備することで、 データベース基本版を試作した。

(倫理面への配慮)

本研究は、放射性物質の大気拡散シミュレーションが実施内容であり、倫理面への配慮が必要な状況は発生しないと考えられる。

III 研究結果

1) 大気拡散シミュレーションの計算実行と性能評価

(1) 改良モデルWRF-GEARNの試験計算

昨年度導入した気象モデル(WRF)、旧気象モデル(MM5)、沈着過程を改良した拡散モデル (新GEARN)、及び改良前の拡散モデル(旧GEARN)を用いた試験計算によって、Cs-137によ る地表汚染分布の再現性を確認した。図1に、各モデルの組み合わせ(MM5-旧GEARN、MM5-新 GEARN、WRF-旧GEARN、及びWRF-新GEARN)に対して、2種類の大気放出源情報(旧放出源 Terada et al. 2012¹⁾、新放出源Katata et al. 2015²⁾)を用いたCs-137の積算沈着分布の計算結果を示す。 MM5を用いた場合(図1b-d)とWRFを用いた場合(図1e-g)では、若干の違いは見られるものの、 東日本全体で見たときの汚染地域の分布傾向は近かった。WRFと改良後のGEARNと最新の放出量

(Katata et al. 2015²⁾)の組み合わせた計算(図1g)は、航空機サーベイの観測結果³⁾(図1a)の分 布傾向とも一致した。地域別に比較すると、計算結果はプラント南部・群馬県と新潟県の県境・ 茨城県南部の沈着量を過大評価していた。これらの地域は、主に降雨による湿性沈着と霧に取り 込まれた放射性物質の沈着(霧水沈着)によって汚染されたと考えられている(Katata et al. 2015²⁾)。

これらの不一致の原因を調べるために、降水量の再現性に影響するWRFの雲微物理スキームを WRF Single-Moment 6-Class (WSM6; Hong et al. 1994⁴⁾)からMorrison double-moment (Morrison; Morrison et al. 2009⁵⁾)に変更した計算を行った。図2a及びbは、WSM6とMorrisonを用いたときの Cs-137の積算沈着量の計算結果である。雲微物理スキームの変更によって、上述したプラント南 部・群馬県と新潟県の県境・茨城県南部の過大評価が若干改善した。計算期間中の同地域での積 算降水量を比較すると、WSM6を用いた場合(図2c)に比べて、Morrisonを用いた場合の計算結果 が明らかに小さかった(図2d)。

図1 気象モデル(MM5, WRF)、大気拡散モデル(沈着過程改良前の旧 GEARN、沈着過程改良 後の新 GEARN)、及び大気放出源(旧放出源 Terada et al. 2012¹⁾、新放出源 Katata et al. 2015²⁾) を組み合わせたときの事故後1か月の Cs-137の積算沈着量分布の計算結果。(a)の測定値は、原子 力規制委員会(2012)³による。

図 2 WRF の雲微物理過程(表) に(a, c) WSM6 スキーム及び(b, d)Morrison スキームを用いたと きの WRF と、沈着過程改良後の新 GEARN 及び新大気放出源 Katata et al. 2015²⁾)を組み合わせた 事故後 1 か月の Cs-137 の(a, b) 積算沈着量及び(c, d)積算降水量分布の計算結果。

(2) 気象計算におけるデータ同化による再現性への影響

WRF-DA及びWRFによる気象データ同化解析手法と沈着過程を改良した拡散モデル(新GEARN) 及び新放出源(Katata et al. 2015²⁾)を用いた試験計算により、Cs-137地表汚染分布の再現性を確認 した。図3に、WRF単体による気象場に基づく計算(以降、「データ同化なし」)と、4D-Varに よるデータ同化を実施した気象場に基づく計算(以降、「4D-Var」)によるCs-137沈着量分布を 示す。なお、データ同化なしの計算結果(図3bおよび図3e)は、図1gと同じである。

これら2ケースの結果の違いを以下に挙げる。プラント周辺においては、図3d~fの比較から、 4D-Varでプラント北西方向への高い沈着量分布が明確に計算され再現性が向上しており、プラン ト南部での過大評価も改善している。北西部については、図4で例示されるように、この地域の沈 着分布が形成された15日夜のプルームの輸送が異なることに起因するものと考えられる。南部に ついては、15日深夜のプルームのプラント北西方向から南方向への吹き戻しが4D-Varでは2時間程 度遅くなり(図5)、この地域での降水の発生時間帯(図は示していない)に南方へ輸送されなく なったことによる変化と考えられる。広域では、図3a~cの比較から、4D-Varでは、栃木県北部、 群馬県北部、及び茨城県北部におけるCs-137沈着量の過大評価が低減し、再現性の向上が見られ る。栃木県については、シミュレーションにおいてこの地域の沈着分布形成に寄与した3月15日14 ~16JST頃の降水量が減少したことに起因すると考えられるが、群馬県については積算降水量、降 水強度ともに大きな変化は見られず、さらなる解析が必要である(図6)。茨城県北部については、 3月21日6~10JSTのプルームの位置が東側へシフトしたことによる影響と考えられる(図7)。そ の他に、図には示していないが、1号機の水素爆発後の3/12午後に形成されたプラント北北西方向 の沈着分布が、同化なしに比べて4D-Varでは東側へシフトしていた。新放出源(Katata et al. 2015²⁾) が推定された際のシミュレーション結果では、空間線量率の観測結果との比較からプルームの主 軸は西側にずれていたとされており、今後さらなる解析が必要である。

一方、福島県北部での沈着量を過小評価している、プラント北西方向の地表沈着分布の形状が 遠方で航空機モニタリング結果よりやや細い、茨城県南部での沈着量を過小評価している、とい った点については変化が見られなかった。

図3 データ同化を実施しない計算(データ同化なし)及び 4D-Var データ同化解析(4D-Var)に よる気象場を用いた時の、事故後1か月の Cs-137 積算沈着量分布の比較。拡散モデルは、沈着 過程改良後の新 GEARN、放出源情報は、新放出源(Katata et al. 2015²⁾)を使用した。(a)及び(d) の測定値は、原子力規制委員会(2012)³⁾による。

図4 3月15日21時(JST)のCs-137積算沈着量(色ベタ塗り)とプルーム(ピンク色コンター線)の分布。

図5 3月15日23時から16日1時(JST)のCs-137の積算沈着量(色ベタ塗り)とプルーム(ピンク 色コンター線)の分布。

357

図6 3月15日15時 (JST) のCs-137の積算沈着量(色ベタ塗り)とプルーム(ピンク色コンター線) の分布(左)と降水強度分布(中央)、及び4月1日0時 (JST)までの積算降水量分布(右)。

図7 3月21日6時、8時、10時(JST)のCs-137の積算沈着量(色ベタ塗り)とプルーム(ピンク色 コンター線)の分布。

図8に、I-131地表沈着量について、データ同化なしと4D-Varの観測値との比較を示す。Cs-137 と同様に、4D-Varはデータ同化なしに比べてプラントの北西部及び南部での地表汚染分布の再現 性が向上している。また、航空機モニタリング結果(Torii et al. 2013⁶)において、Cs-137(図3d) とくらべてI-131(図4a)では原発の西及び南方向にも沈着量が高い分布となっているが、4D-Var の結果(図3f及び図4c)でもこの沈着分布の特徴が再現されている。

- 図8 データ同化を実施しない計算(データ同化なし)及び4D-Varによるデータ同化解析(4D-Var) による気象場を用いた時の、事故後1か月のI-131積算沈着量分布。拡散モデルは、沈着過程 改良後の新 GEARN、放出源情報は、新放出源(Katata et al. 2015²⁾)を使用した。(a)の測定値は、 航空機モニタリングの解析(Torii et al. 2013⁶⁾)による。
- 2) データベースと解析機能の試作
 - (1) データベース設計

放射性物質大気濃度・沈着量の時間空間分布データベース構築に必要となる格納データ、解析 機能、及びインターフェイスについて検討し、データベースの設計を行った。データベースは、 図9に示す構成とした。本データベースは、格納データ、解析機能、及びインターフェイスから構 成され、昨年度整備した並列計算機、データサーバ、及び制御サーバからなる計算機環境上に構 築される。格納データの構成、解析機能の内容、及びインターフェイスの仕様は、以下のとおり である。

【格納データの構成】

- ①放出源情報:核種特性データ(半減期、換算係数)、インベントリ、化学組成、粒径分布、放 出源推定結果(UNSCEAR、JAEA、JNESなど、シャットダウン時のインベントリに対する放出 割合を1時間単位で指定、壊変なしとする)
- ②気象・拡散計算出力:気象場(MM5、WRF、WRF-DA)、拡散場(気象場出力×放出期間分割 ×沈着特性(希ガス、粒子状、化学形別ガス状)の全ケース単位放出計算(壊変なし)の出力)
- ③測定データ:濃度、沈着量、降下量、空間線量率についての空間分布、時系列、離散値(時間・ 位置情報)、付帯情報(引用、測定手法、放出源推定への利用(どの推定に使ったか)など)

【解析機能の内容】

①放出源設定機能:放出率の時系列(任意条件、放出源推定結果の再利用)の設定を行う。

- ②拡散分布解析機能:拡散計算出力データセットと放出源情報から即座に、濃度、沈着量、降下 量、空間線量率の時間空間分布を作成し、データセットとして取得可能とする。
- ③拡散分布評価機能:拡散分布解析結果と測定データ(使用する測定データを選択可能)の比較 による再現性評価を行う。

【インターフェイスの仕様】

WEBベースのGUIにより、上記解析機能の制御及び結果の可視化を可能とする。

(2) 計算手法と解析手法の開発

放射性物質大気濃度・沈着量の時間空間分布データベースの全体設計に基づき、データベース に格納する計算出力を作成するための計算条件を決定し、その計算出力から放射性物質の大気濃 度及び沈着量を評価する解析手法を開発した。計算条件及びデータ出力仕様は、今後の汎用化と 解析処理速度を考慮して以下のように決定した。

【GEARN計算及び出力方法】

- ・計算領域:1kmと3kmのネスティング(範囲はKatata et al. 2015²⁾)
- 計算期間:日本時間3月12日00時~31日24時の20日間480時間
- ・放出期間:計算期間を1時間間隔で分割した各期間のみの放出に対する拡散計算を各放出期間 (480放出ケース)について実行
- ・放出高度:建屋、スタック(高度条件ケース)
- ・放出物質:希ガス、ガス状ヨウ素1(I₂)、ガス状ヨウ素2(CH₃I)、粒子状ヨウ素、その他(Cs 等)を想定した異なる沈着特性の5物質(壊変なし)を同時計算
- ・放出率:単位放出(1Bq/h)
- ・計算継続期間:各ケースの放出開始時刻から粒子がなくなるまで
- ・出力データ:各放出物質の空気中濃度(3D)、乾性沈着量(2D)、湿性沈着量(2D)、霧水沈 着量(2D)、I/Oが早いフォーマット(NetCDF)
- ・出力ファイル:1つの領域・放出高度ケース別に同一ディレクトリに480放出ケースの1時間ごとの出力を格納(放出物質は同一ファイル)
- ・出力ファイル数:480ケース×48(最大48時間出力として)=23,040ファイル
- ・出力ファイル名:rYYYYMMDDHH_yyyymmddhh (YYYYMMDDHH、yyyymmddhh:放出開始 時刻と出力時刻)

図9 放射性物質大気濃度・沈着量の時間空間分布データベースの構成

・出力ファイルサイズ: 200×200×30grid単精度の場合約25MB

上記拡散計算による出力データセットの状態を図10に示す。この出力データセットと任意に設 定した放出源情報から即座に、濃度、沈着量、降下量、空間線量率の時間空間分布を作成する解 析手法は、以下の処理の流れで実施する。

①対象核種の放出率(シャットダウン時換算)の時間変化を設定(図11)

②各放出期間の出力ファイルの対応する放出物質の濃度・沈着量に放出率をかける(図11)

③各出力時刻について放出ケースごとに計算された濃度・沈着量を合算(沈着量は最後の出力結 果が計算期間終了まで継続とする)(図12)

④濃度・沈着量にSD時刻から各出力時刻までの減衰率をかける(図13)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	
出	1	0														
カ	2	0	0													
時	3	0	0	0												
剡	4	0	0	0	0											
放	5	0	0	0	0	0										
出	6	0	0	0	0	0	0									
期	7	0	0	0	0	0	0	0								
间の	8	0	0	0	0	0	0	0	0							
終	9		0	0	0	0	0	0	0	0						
了	10			0	0	0	0	0	0	0	0					
時	11				0	0	0	0	0	0	0	0				
<u>%</u>]	12				0	0	0	0	0	0	0	0	0			
4	13					0	0	0	0	0	0	0	0	0		
ŏ	14						0	0	0	0	0	0	0	0	0	
時	15							0	0	0	0	0	0	0	0	0
间八	16									0	0	0	0	0	0	0
7	17									0	0	0	0	0	0	0
\downarrow	18										0	0	0	0	0	0
													0	0	0	0

放出期間(480放出ケース)→

図 10 拡散計算出力データセット(〇印は、放出期間ごとの単位放出・壊変なしの大気中濃度、 沈着量の出力ファイルを示す。図の見易さのため8時間前後で計算が終了するとしている。)

図 11 放出率時間変化の設定とそれを反映した一次データ(放出期間ごとの放出率を色で表し、 その色の〇印は、放出率を反映した壊変なしの大気中濃度、沈着量の出力ファイルを示す。)

図 12 出力時刻ごとに全放出ケースの濃度・沈着量を合算した 2 次データ(◎印は、設定した放 出率時間変化に対する壊変なしの大気中濃度、沈着量の出力ファイルを示す。大気中濃度は、存 在する出力ファイルの値のみを合算し、沈着量は、各放出ケース最後の出力ファイルの値がその 後も継続するとして合算する。)

図13 壊変による減衰を反映した最終結果(●印は、設定した放出率時間変化に対する壊変によ る減衰を反映した大気中濃度、沈着量の出力ファイルを示す。)

(3) データベース基本版の試作

昨年度整備した並列計算機、データサーバ、及び制御サーバからなる計算機環境上に、上記拡 散計算条件で作成した出力データを格納し、解析機能のソフトウェアを整備することで、データ ベース基本版を試作した。試作時に使用したモデルの組み合わせは、WRF-旧GEARNである。従 来の方法で計算した結果とデータベースによる結果を比較したところ、ほぼ、同一の結果が得ら れることを確認した。

解析機能を組み込んだWebベースのGUIは、「データベース解析」、「放出源設定」及び「図閲覧」の3つから構成される。

【データベース解析】

データベースによる解析では、以下の手順で任意の放出源情報から濃度・沈着量を計算できる (図14)。

- ・作成済みの放出条件ファイルを読み込む。
- ・放出条件ファイルにある核種の中から1つを選択する。この際、放出率の変化を図で確認できる。
- ・計算結果の出力先、出力変数(大気中濃度または地表面沈着量のいずれか)、出力期間(1 日単位で設定可能)及び出力時間間隔(1, 2, 3, 6, 12, 24, 48時間)を選択し、データを 作成する。
- ・データ作成後に、図化し確認することが可能である。この際、風速ベクトル図を追加することも出来る。また、作成した図を保存することも可能である(図15)。

図14 データベース解析のGUI画面

図15 データベース機能により作成した結果を図により確認するためのGUI

【放出源設定】

放出源設定では、対象核種数が5つまでという制限はあるが、GUIによる新規の放出条件ファイルの作成、および作成済みの放出条件ファイル編集が可能となっている(図16)。WRF及びGEARNにおける日時は、UTC時間となっているが、GUIでは、日本時間(JST)で設定できる。

● WSPEEDIデータベース計算機能(開発版) - Mozilla Firefox	-D×
ファイル(E) 編集(E) 表示(V) 履歴(S) ブックマーク(B) ツール(D) ヘルブ(H)	
✓ WSPEEDI データベース計算機× +	
(◆) ④ (♂) ○ (◊) ◊	∢ ⊜ ≡
WSPEEDI データベース計算機能(開発版 Ver. 0.2.3)	
対象:1F事故 期間:2011年3月12日~31日(日本時間(JST)) モデル:WRF+ 日GEARN SDT:2011年3月11日	14時46分(JST)
データベース計算 放出条件ファイル作成 保存した図の表示	<u>リセット</u>
放出条件ファイル: 読み込み 保存 別名保存	
Time Zoneについて 入力&表示:JST 放出条件ファイル:UTC	
データ行: 追加 削除 (追加:最下部の下に追加、削除:最下部を削除)	
「放出開始(JST) 放出終了(JST) 対象核種の放出量[Bq/h]	放出高度
日付 時刻 Cs137 Image: Cs	[m]
20110312 150000 20110315 050000 2.5E+15	20 💌 📥
	20 💌

図16 放出源設定のGUI

【図閲覧】

データベース解析において保存した図を閲覧するためのGUIであり、図の表示だけでなく、使用した放出条件ファイル名も表示される。また、図は時系列順にコマ送りでの表示と動画による表示が可能となっている。

IV 考察

改良モデルWRF-GEARNと最新の大気放出源情報を用いることによって、航空機サーベイによ る東日本における地表沈着分布の観測結果をある程度再現することがわかった(図la,g)。その 一方で、旧モデルMM5-GEARNでは見られなかったいくつかの地域での観測結果の過大評価も確 認された。MM5-GEARNとWRF-GEARNの計算結果が異なった理由として、計算に用いた放出源 情報はMM5-GEARNにより推定されたため、WRF-GEARNに合わせて最適化されていないことや、 WRFとGEARNの結合手法に問題があることなどが考えられる。また、気象モデルの変更に伴う降 雨量の計算結果の変化も重要であることが、雲微物理スキームを変化させた感度実験によって示 された(図2)。本研究で用いたWSM6とMorrisonのいずれの雲微物理スキームでも、水蒸気、雲 水、雲氷、雨水、雪及びあられの混合比を計算している。しかし、後者には雲氷、雨水、雪及び あられの数濃度が予報変数として考慮されているため、雲と降水の相互作用に影響する粒径分布 を厳密に考慮することができる。このことが積算降雨量分布の違いを生み(図2c,d)、降雨沈着 量が変化し、積算沈着量分布が変化した可能性がある。雲微物理スキームに限らず、WRFには大 気境界層や放射過程などの様々な物理スキームが用意されており、これらが地表沈着過程に及ぼ す影響は明らかになっていない。今後、より多くの感度実験を行い、計算結果と雨量計による地 上観測やレーダーエコー等のデータとの定量的な比較を行う必要がある。また、降雨に限らず、
大気拡散に影響する気象要素(風速・風向、気温等)の再現性を検証することも重要である。

WRF-DA/WRFによるデータ同化を実施した結果、プルームの主軸方向やその時間変化が変わっ たことに起因すると考えられる地表沈着分布の再現性向上が見られた。これによって得られる大 気中濃度(特にI-131)や降下量の時間・空間分布の精度向上は、吸入による内部被ばくや飲用水 摂取による経口被ばくを正確に評価する上で非常に重要となる。また、今回の解析では、これま でに推定された放出量をそのまま使用したが、データ同化の実施によりプルームの輸送状況や沈 着分布が変更されると、大気拡散シミュレーションと環境モニタリングの結果に基づき放出率及 びその時間変動を再検討する必要がある。こうして最適化した放出源情報を用いて拡散データベ ースを作成することで、さらなる被ばく評価の精度向上に資することが可能となる。

データベース解析により、従来法と同様な計算結果が得られることを確認できた。一方で、デ ータベース解析で結果を得るまでに、出力期間、出力時間間隔等の条件により異なるが、数十分 かかることがわかった。原因としては、一度、データベース解析を行い、入力データベースがメ モリのキャッシュにされている状態では、1分以内に結果が出力されることから、昨年度整備した 高速なSSDのデータ領域に、データベースのデータ容量が大きいために格納できず、低速なHDD のデータ領域に格納していることにあると考えられる。また、試作では放出高度が代表的な2ケー スのみであるため、今後さらに異なる放出高度の計算結果をデータベース化する必要がある。こ のため、データベース解析を高速化するためには、高速なSSDのデータ領域を大きくすることや、 データベースの形式を再考するなど、ハード、ソフト双方の構成について検討する必要がある。

V 結論

東京電力福島第一原子力発電所の事故時に放出された放射性物質による住民の被ばく線量推計 に必要となる、放射性物質大気濃度・沈着量の時間空間分布データベースの構築において、本年 度は、以下の成果を得た。

- 改良モデル及び最新の放出源情報による大気拡散シミュレーションを実行し、旧モデルも含む 様々な条件による計算結果と積算地表沈着量の観測値との比較により再現性の評価を行い、 さらに改良すべき点を抽出した。
- 2) データベース計算手法及びデータベース解析手法を試作し、放射性物質大気濃度・沈着量の時間空間分布データベースの基本版を構築した。また、これまでの解析結果をJAEAデータベース(付録1、2)として公開し、他の分担テーマにおける線量評価の基礎データとして提供した。

VI 次年度(最終年度)の計画

最終年度の3年目は、大気拡散シミュレーション及びデータベース解析機能の改良を進めるとと もに、分担研究(「土壌中I-129の分析によるI-131土壌沈着量等の推計」(東京大)及び「事故初 期の被ばく線量再構築及び体表面スクリーニング検査結果からの甲状腺被ばく線量推計」(国福 大・県立医大))で検討されるI-131モニタリングデータ等の結果を参考にして、放出源情報及び 拡散計算を最適化し、放射性物質大気濃度・沈着量の時間空間分布データベースを完成する。本 成果は、内部・外部被ばく線量の統合・将来推計に利用される。 この研究に関する現在までの研究状況、業績

- 1)東京電力福島第一原子力発電所の事故時に放出された放射性物質の大気放出量の推定により、 原子力安全委員会の放出量発表(平成23年4月12日)、IAEAに対する日本政府の報告書(平 成23年6月、9月)、世界保健機関(WMO)、国連科学委員会(UNSCEAR)等による被ばく 線量評価に貢献。
- 2)局地詳細拡散解析により、プラント北西部の線量上昇過程を解明し、プレス発表(平成23 年6月13日)。
- 3)日本全域での事故後2ヶ月間の被ばく線量を試算し、原子力機構ホームページに掲載(平成 23年6月15日)。
- 4) 東日本域大気拡散解析により、Cs-137降下量解析結果を厚生労働省に提供し(平成23年8月 31日、厚生労働省プレス発表)、茨城県内の線量上昇過程について環境放射線監視委員会に 報告(平成23年9月2日)。
- 5) 公開ワークショップを開催し(平成24年3月6日)、国内の6機関からの10名の専門家との議論により、放出量推定結果を検証し、東日本域におけるCs-137沈着プロセスを解明。
- 6) 平成24年度環境省受託事業「事故初期のヨウ素等短半減期による内部被ばくの線量評価調査」 の一部「大気拡散シミュレーションによる時系列大気中放射性物質濃度マップの整備」により、暫定的な内部被ばく評価に貢献。

【論文】

- Chino M, Nakayama H, Nagai H, et al., Preliminary Estimation of Release Amount of ¹³¹I and ¹³⁷Cs Accidentally Discharged from the Fukushima Daiichi Nuclear Power Plant into the Atmosphere, Journal of Nuclear Science and Technology 2011; 48: 1129-1134.
- 2) Katata G, Ota M, Terada H, et al., Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I: Source term estimation and local-scale atmospheric dispersion in early phase of the accident, Journal of Environmental Radioactivity 2012; 109: 103-113.
- Katata G, Terada H, Nagai H, et al., Numerical reconstruction of high dose rate zones due to the Fukushima Dai-ichi Nuclear Power Plant accident, Journal of Environmental Radioactivity 2012; 111: 2-12.
- 4) Terada H, Katata G, Chino M, et al., Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: Verification of the source term and analysis of regional-scale atmospheric dispersion, Journal of Environmental Radioactivity 2012; 112: 141-154.
- 5) Chino M, Terada H, Katata G, et al., Reconstruction of atmospheric releases of ¹³¹I and ¹³⁷Cs resulting from the Fukushima Daiichi Nuclear Power Plant accident, Proceedings of the first NIRS symposium on reconstruction of early internal dose in the TEPCO Fukushima Daiichi Nuclear Power Station accident, NIRS-M-252 2012; 127-135.
- 6) Nagai H, Chino M, Terada H, et al., Atmospheric dispersion simulations of radioactive materials discharged from the Fukushima Daiichi Nuclear Power Plant due to accident: Consideration of deposition process, Proceedings of the first NIRS symposium on reconstruction of early internal dose in the TEPCO Fukushima Daiichi Nuclear Power Station accident, NIRS-M-252 2012; 137-149.

- 7) Kobayashi T, Nagai H, Chino M, et al., Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations, Journal of Nuclear Science and Technology 2013; 50: 255-264.
- Arnold D, Seibert P, Nagai H, et al., Lagrangian models for nuclear studies: Examples and applications, Lagrangian Modeling of the Atmosphere, American Geophysical Union, Washington, D. C. 2013; 329-348.
- 9) Nagai H, Katata G, Terada H, et al., Source Term Estimation of ¹³¹I and ¹³⁷Cs Discharged from the Fukushima Daiichi Nuclear Power Plant into the Atmosphere, Radiation Monitoring and Dose Estimation of the Fukushima Nuclear Accident, Springer 2014; 155-173.
- 10) Katata G, Chino M, Kobayashi T, et al., Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model, Atmospheric Chemistry and Physics 2015; 15: 1029-1070.
- 11) H. Nagai, H. Terada, M. Chino, G. Katata, S. Mikami, K. Saito, Source term estimation for the Fukushima Daiichi nuclear power station accident by combined analysis of environmental monitoring and plant data through atmospheric dispersion simulation, Proceedings of 16th International Topical Meeting on Nuclear Reactor Thermalhydraulics 2015; 4044-4052.

引用文献

- Terada H, Katata G, Chino M, et al., Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: Verification of the source term and analysis of regional-scale atmospheric dispersion, Journal of Environmental Radioactivity 2012; 112: 141-154.
- 2) Katata G, Chino M, Kobayashi T, et al., Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model, Atmospheric Chemistry and Physics 2015; 15: 1029-1070.
- 3) 原子力規制委員会, 平成24年7月までの福島第一原子力発電所から80km圏外の航空機モニタ リング, available from http://radioactivity.nsr.go.jp/ja/list/258/list-1.html, 2012.
- 4) Hong S Y, Dudhia J, Chen S H, A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation, Monthly Weather Review 2004; 132; 103–120.
- Morrison H, Thompson G, Tatarskii V, Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one and two-moment schemes, Monthly Weather Review 2009; 137; 991–1006.
- 6) Torii T., Sugita T., Okada C. E., Reed M. S., Blumenthal D. J., Enhanced analysis methods to derive the spatial distribution of I-131 deposition on the ground by airborne surveys at an early stage after the Fukushima Daiichi nuclear power plant accident, Health Physics 2013; 105; 192–200.

Comprehensive studies on the dose reconstruction for residents in Fukushima Nuclear Accident: Updating source term and atmospheric transport dispersion simulations

Haruyasu Nagai^{*1}, Hiroaki Terada^{*1}, Katsunori Tsuduki^{*1}, Genki Katata^{*1}, Masakazu Ota^{*1}, Akiko Furuno^{*1}, Shusaku Akari^{*1}, Hiromi Yamazawa^{*2}, Matthew Hort^{*3}, Werner Rühm^{*4}, André Bouville^{*5}

*1Nuclear Science and Engineering Center, Japan Atomic Energy Agency
*2Department of Energy Engineering and Science, Nagoya University
*3Atmospheric Dispersion and Air Quality Team, UK Met Office
*4Institute of Radiation Protection, Helmholtz Center Munich
*5National Cancer Institute, NIH, DHHS

Keywords: Source term; Atmospheric dispersion simulation; Fukushima nuclear accident; Dose reconstruction; Database for spatiotemporal distribution of radionuclide

Abstract

In order to assess the radiological dose to the public resulting from the Fukushima Daiichi Nuclear Power Station accident in Japan, especially for the early phase of the accident when no measured data are available for that purpose, the spatial and temporal distribution of radioactive materials in the environment are reconstructed by computer simulations. In this study, by refining the source term of radioactive materials discharged into the atmosphere and modifying the atmospheric dispersion model, the atmospheric dispersion simulation of radioactive materials is improved. Then, a database of spatiotemporal distribution of radioactive materials in the air and on the ground surface is developed from the output of the simulation, and is used for the dose assessment by coupling with the behavioral pattern of evacuees from the nuclear accident.

In this year, Atmospheric dispersion simulations by the new model using the new source term were carried out. Simulation results by various calculation conditions including results by the old model were compared with measured surface deposition, and the reproducibility of new model is evaluated to consider the necessity of further improvement. Furthermore, a prototype of database of spatiotemporal distribution of radioactive materials in the air and on the ground surface has been constructed by developing calculation method and analysis functions for database.

JAEA公開データベースは、原子力機構のプログラム・データベース情報検索システム(PRODAS, http://prodas.jaea.go.jp/)から検索及び利用申請手続きを行うことができる。WSPEEDI大気拡散解 析結果のデータベースは、以下の概要書に示すように登録されている。

データベース 略称	WSPEEDI-F1
データベース 日本語名称	東京電力福島第一原子力発電所事故により大気中に放出された放射性物質濃度の WSPEEDI計算による時空間分布データベース
データベース 英語名称	Database of the spatiotemporal distribution of radionuclide discharged from the TEPCO's Fukushima Dai-ichi Nuclear Power Station calculated by WSPEEDI
概要及び目的	本データベースは、東京電力福島第一原子力発電所事故により大気中に放出された放射性物質について、世界版緊急時環境線量情報予測システムWSPEEDIを用いて評価した東日本域における I-131 及び Cs-137 等の大気中濃度、地表面沈着量等を収録したものである。収録データは、国連科学委員会(UNSCEAR)の2013年報告書で被ばく線量評価に利用された放出源情報に関する論文(文献1)の解析結果、また、その後新たに公表されたモニタリングデータを参照し、精緻な沈着過程を導入して再解析した放出源の評価に関する論文(文献2)で公表された解析結果の数値データで、以下の情報である。①計算格子情報(緯度、経度、標高等)、②気象場(風速、鉛直拡散係数、降水量)、③核種ごと(文献1についてはI-131及び Cs-137、文献2についてはI-131、Te-132、Cs-134、及び Cs-137)の大気中濃度、地表面沈着量、湿性沈着量、乾性沈着量。本データベースは、事故時の放射性物質の拡散や沈着過程、大気や地表面における濃度について時刻及び場所ごとの情報を詳細に提供するものであり、事故の解析、環境影響評価、線量評価等、様々な評価に利用できるものである。
格納データの内 容及び特徴	 ○WSPEEDI-IIの出力ファイル(格子情報、気象データ、大気中濃度、沈着量) ○サンプル描画プログラム(フリーソフトGMT利用のためのシェルプログラム) ○サンプル図
分野	環境安全
カテゴリ	R:環境、地球科学
日本語キーワ ード	東京電力福島第一原子力発電所事故、WSPEEDI-II、大気拡散、空気中濃度、沈着 量

データベース概要書

英語キーワー ド	TEPC Fukushima Dai-ichi Nuclear Power Station Accident、WSPEEDI-II、Atmospheric Dispersion、Air Concentration、Deposition
機構外提供	無償提供可能
機構外利用の 限定条件	
利用結果の公 表についての 事前協議の必 要性の有・無	無
データベース 格納計算機 OS	Linux
データベース 管理システム (関連プログ ラム)	利用モデル:WSPEEDI-II (10121660) 、MM5 (10041217) 、GEARN (40061345) 入出力ライブラリ:NetCDF (フリーソフト) 描画ソフト:GMT (フリーソフト)
データの加工 度	1次(生データに簡単な処理を施して、他人にも利用できるようにしたデータ)
格納データのソ ースと作成方 法	 入力データ:気象庁数値予報データ MSM (購入、グループで保存) アメダスデータ (〃) 敷地内観測風速データ (関係機関より提供、グループで保存) 計算モデル:WSPEEDI-II 格納データ評価方法:フリーソフト GMT を利用し、描画
参考文献	<引用すべき参考文献> (1)H. Terada, G. Katata, M. Chino, H. Nagai: Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion, Journal of Environmental Radioactivity, 112 (2012) 141-154 (2)G. Katata, M. Chino, T. Kobayashi, H. Terada, M. Ota, H. Nagai, M. Kajino, R. Draxler, M. C. Hort, A. Malo, T. Torii, Y. Sanada: Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model, Atmospheric Chemistry and Physics, 15 (2015), 1029-1070

	<代表参考文献> (1)United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR): UNSCEAR 2013 Report to the General Assembly, with scientific annexes, Volume I: Report to the General Assembly, Scientific Annex A: Levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami. UNSCEAR, Vienna, 2014. <マニュアル>
	(1)東京電力福島第一原子力発電所事故により大気中に放出された放射性物質濃度のWSPEEDI計算による時空間分布データベース:使用手引き
利用上の留意 点及び特記事 項	
データベース提供 方法	CD-ROM 等の電子媒体

Г

WSPEEDI 大気拡散解析結果のデータベースの利用手引き書を以下に示す。

平成27年4月1日作成

福島第一原子力発電所事故により放出された放射性物質についての WSPEEDI 拡散解析データベ ースの使用手引き

国立研究開発法人 日本原子力研究開発機構

原子力科学研究部門

- 原子力基礎工学研究センター
- 環境・放射線科学ディビジョン

環境動態研究グループ

1. 概要

福島原子力発電所事故により放出された放射性物質について、放出源の推定と世界版緊急時 環境線量情報予測システム WSPEEDI を用いた大気拡散・地表沈着状況の解析を実施してき た。これらの解析結果は、日本政府、自治体の対応に加え、学会、国内外の研究機関による 事故の解析、世界気象機関(WMO)による大気拡散解析、世界保健機関(WHO)や国連科学委 員会(UNSCEAR)による線量評価等に活用されるなど、事故に関わる一連の対応に幅広く 貢献した。また、解析結果を基に作成した放射性物質の拡散状況についての動画は、報道機 関による解説に活用されるなど、有用性が広く認識されている。このような状況により、外 部機関からの計算結果の利用依頼が多いため、WSPEEDIの計算結果を原子力機構データベ ースとして整備・登録し、外部利用に供することとした。格納データは、UNSCEAR2013 レ ポートで被ばく線量評価に活用された放出源情報を取りまとめた論文(Terada et al., 2012)の 東日本域解析結果、及びその後新たに公表されたモニタリングデータと精緻な沈着過程を導 入した WSPEEDI 解析による放出源再評価についての論文(Katata et al., 2015)の高分解能局 地解析及び広域解析の結果である。以下、データベースの内容及び使用方法を記述する。ま た、これらの論文で評価し大気拡散解析に利用した放出源情報をAppendixに記載する。

- 2. 解析の概要
- 2.1 Terada_2012JER: UNSCEAR2013 レポートの線量評価に活用
 - 掲載論文

H. Terada, G. Katata, M. Chino, H. Nagai: Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion, Journal of Environmental Radioactivity, 112 (2012) 141-154

● 計算モデル 気象場: MM5 拡散計算: GEARN

- 計算領域 東日本域:681km×951km 水平分解能:3km
- 解析期間 2011 年 3 月 11 日 21UTC~4 月 30 日 15UTC (UTC:世界標準時)
 2011 年 3 月 12 日 6JST~5 月 1 日 0JST (JST:日本標準時)
- 出力時間間隔 1時間
- 2.2 Katata 2015ACP: 原子力機構の再評価
- 掲載論文

G. Katata, M. Chino, T. Kobayashi, H. Terada, M. Ota, H. Nagai, M. Kajino, R. Draxler, M. C. Hort, A. Malo, T. Torii, Y. Sanada: Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model, Atmospheric Chemistry and Physics, 15 (2015), 1029-1070

- 計算モデル 気象場:MM5 拡散計算:GEARN(沈着過程を精緻化)
- 計算領域 広域: 381km×561km 水平分解能: 3km
 - 局地:187km×187km 水平分解能:1km
- 解析期間 2011 年 3 月 11 日 21UTC~3 月 31 日 20UTC (UTC:世界標準時)
 2011 年 3 月 12 日 6JST~4 月 1 日 05JST (JST:日本標準時)
- 出力時間間隔 1時間

3. アータベース利用に必要な	公專	に必	用(ス利	ベー	・タ	デー		3
-----------------	----	----	----	----	----	----	----	--	---

OS	Linux
データ容量	約 100GB (圧縮時 49.4GB)
	内訳
	Terada_JER2012:約 64GB(東日本域:圧縮時 34.5GB)
	Katata_ACP2015:約14.4GB(広域: 圧縮時 5.7GB)
	約 21.6GB(局地: 圧縮時 9.2GB)
ソフトウエア	NetCDF ¹⁾ (I/O ライブラリ)
	GMT ²⁾ (描画ソフト)
	ポストスクリプト表示可能なプログラム (例えば Adobe Acrobat、
	Ghostscript ³⁾ 等)もしくはポストスクリプトからの画像変換ソフ
	ト(ImageMagick ⁴⁾ 等)

1) http://www.unidata.ucar.edu/software/netcdf/

日本語マニュアルの例 https://www.gfd-dennou.org/arch/ucar/netcdf-jman/guidef/Title.html

- 2) http://gmt.soest.hawaii.edu/ (the Generic Mapping Tools: フリーソフトウエア)
- 3) http://www.ghostscript.com/

4) http://www.imagemagick.org/script/index.php

- 4. データベースの内容
- 4.1 Terada_2012JER
 - 格納ファイル
 - \bigcirc terada.taz
 - 解凍すると1時間間隔のデータ出力ファイル1,123個が得られる。
 - ファイル名: OP_GEARN_d1_YYYYMMDDHH.nc (YYYY:年、MM:月、DD:日、 HH:時刻、期間:2011年3月11日21UTC~4月30日15UTC)
 - map.sh
 - サンプル描画プログラム (Cシェル、GMT利用)
 - \bigcirc color.pt
 - map.sh で用いるカラーパレットファイル
 - 配列数 NCX=227, NCY=317, NCZ=28
 - 地図投影法 ランベルト正積方位図法
 - 中心緯度経度 Lonc=139.4 Latc=38.0
 - 領域左下 (135.6877, 33.5760) 領域右上 (143.6647, 42.3105)
 - 格納されている変数
 - 計算格子情報
 - LON (NCX, NCY):緯度
 - LAT (NCX, NCY): 経度
 - XDIS (NCX):x座標(m)
 - YDIS (NCY): y座標(m)
 - ZMESH (NCZ): z座標 (m)
 - ZZT (NCX, NCY, NCZ): 気象要素や濃度の定義点(m)
 - TERRAIN (NCX, NCY):標高(m)
 - 気象場【風速、鉛直拡散係数、降水量】
 U (NCX, NCY, NCZ):風速東西成分(m/s)
 V (NCX, NCY, NCZ):風速翰北成分(m/s)
 W (NCX, NCY, NCZ):風速鉛直成分(m/s)
 KV (NCX, NCY, NCZ):鉛直拡散係数(m2/s)
 RAINI (NCX, NCY):降水量(mm/h)
 ACMRAIN (NCX, NCY):積算降水量(mm)
 - モデル計算結果【¹³¹I、¹³⁷Csの濃度、沈着量、湿性沈着量、乾性沈着量】 CONC_I131 (NCX, NCY, NCZ): I-131 濃度(Bq/m³)
 CONC_Cs137 (NCX, NCY, NCZ): Cs-137 濃度(Bq/m³)
 DEPO_I131 (NCX, NCY): I-131 地表面沈着量(Bq/m²)
 DEPO_Cs137 (NCX, NCY): Cs-137 地表面沈着量(Bq/m²)
 WETD_I131 (NCX, NCY): I-131 湿性沈着量(Bq/m²)
 WETD_Cs137 (NCX, NCY): Cs-137 湿性沈着量(Bq/m²)
 DRYD_I131 (NCX, NCY): I-131 乾性沈着量(Bq/m²)
 DRYD_I131 (NCX, NCY): I-131 乾性沈着量(Bq/m²)

サンプル描画プログラム

描画プログラムのサンプルとして、map.shを用意した。map.shの中身は以下の通りである。

```
#!bin/csh -f
#
     GMT mapping program
#
set ifile=OP_GEARN_d1_2011033115.nc # input filename
                    # output filename
set ofile=sample.ps
set ncx = 227
set ncy = 317
set lonmin = 135.6877
set latmin = 33.5760
set lonmax = 143.6647
set latmax = 42.3105
set var = DEPO Cs137
# GMT program
    convert ascii data to netCDF data
#
pstext -R0/8.5/0/26.5 -Jx1 -U'Japan Atomic Energy Agency' -P -K -V << END > $ofile
 5.0 14.5 16 0 0 2 ${ifile}
END
#
   mapping
 grdimage "${ifile}?${var}" -R1/${ncx}/1/${ncy} -JX10/13.95 -Ccolor.pt -X0.0 -Y0.0 -P
-O -K -V >> $ofile
 pscoast -R{10min}/{{latmin}/{{latmax}}r -Dh -JL139.4/38.0/33.5/42.0/10}
-B2g2/2g2WSne -W3 -P -O -K -V >> $ofile
 psscale -D11/7/15/0.5 -O -Ccolor.pt -P -E -Q -V >> $ofile
```

ここでは、3月31日15UTCにおける Cs-137の地表面沈着量を描画している。ifile で入力 ファイルを、ofile で出力(描画)ファイルを指定する。その次の ncx から latmax までは、 配列数および領域の設定に必要な情報である。この内容は、入力ファイルである NetCDF のヘッダにも記載されている。最後に var で出力したい変数を指定する。この部分を変更 することで、任意の変数についての図を描画することができる。等値線の値および色は color.pt で定義されている。color.pt の中身は以下のとおりである。

1 行目から 10 行目は、等値線の値および色を定義している。左から順に、最低値、等値線 の色 (R, G, B)、最高値、等値線の色 (R, G, B) を指定している。つまり一行目は、濃度 が 10000Bq/m² から 30000Bq/m² の範囲を、(R, G, B) = (178,140,80) で表現することを意 味している。11 行目~13 行目の B、F、N は、それぞれバックグラウンド、フォアグラウ ンド、NaN の色指定である。ここでは、最低値の 10000Bq/m²以下の領域を (215,200,150) で、最高値である 1e08Bq/m3 以上の領域を (255,0,0) で、値がない領域を (128,128,128) (グレー) で描画するよう設定している。描画する変数を変更する場合は、最高値・最低 値の値に応じて等値線の値を適宜変更する。

 サンプル描画プログラムにより描かれる図 linux 上で map.sh を実行すると、出力ファイル sample.ps が作成される。
 Adobe Acrobat もしくは Ghostscript がある場合は、それらのソフトウエアを利用して sample.ps を開く。ない場合は、ImageMagick の機能を利用し、「convert sample.ps sample.jpg」 と入力し実行すると、sample.jpg が作成される。

図1 sample.jpg(東日本領域)

(日本時間 2011 年 4 月 1 日 00 時の Cs-137 地表面沈着量分布)

- 4.2 Katata_2015ACP
- 格納ファイル
- katata-wide.taz (広域)

解凍すると以下の1時間間隔のデータ出力ファイル480個が得られる。

ファイル名: OP_GEARN_d2_YYYYMMDDHH.nc (YYYY:年、MM:月、DD:日、HH: 時刻、期間: 2011年3月11日21UTC~3月31日20UTC)

katata-narrow.taz (局地)

解凍すると以下の1時間間隔のデータ出力ファイル480個が得られる。

ファイル名: OP_GEARN_d3_YYYYMMDDHH.nc (YYYY:年、MM:月、DD:日、HH: 時刻、期間: 2011 年 3 月 11 日 21UTC~3 月 31 日 20UTC)

○ map.sh

```
サンプル描画プログラム (C シェル、GMT 利用)
```

4.1 と同様。領域数や領域左下、右上点の情報について修正済

 \bigcirc color.pt

map.sh で用いるカラーパレットファイル

● 配列数 広域 NCX=127, NCY=187, NCZ=28

局地 NCX=187, BCY=187, NCZ=29

- 地図投影法 ランベルト正積方位図法
- 中心緯度経度 Lonc=139.4 Latc=38.0
- 広域 領域左下 (137.8047, 34.4160) 領域右上 (142.1629, 39.5575)
 局地 領域左下 (139.3837, 36.3100) 領域右上 (141.5473, 38.0143)
- 格納されている変数

○ 計算格子情報

LON (NCX, NCY):緯度 LAT (NCX, NCY):経度 XDIS (NCX): x 座標(m) YDIS (NCY): y 座標(m) ZMESH (NCZ): z 座標(m) ZZT (NCX, NCY, NCZ):気象要素や濃度の定義点(m) TERRAIN (NCX, NCY):標高(m)

- 気象場【風速、鉛直拡散係数、降水量】
 U (NCX, NCY, NCZ):風速東西成分 (m/s)
 V (NCX, NCY, NCZ):風速南北成分 (m/s)
 W (NCX, NCY, NCZ):風速鉛直成分 (m/s)
 KV (NCX, NCY, NCZ):鉛直拡散係数 (m2/s)
 RAINI (NCX, NCY):降水量 (mm/h)
 ACMRAIN (NCX, NCY):積算降水量 (mm)
- モデル計算結果【濃度、沈着量、湿性沈着量、乾性沈着量】 CONC I131p (NCX, NCY, NCZ): I-131 (粒子) 濃度 (Bq/m³) CONC Te132 (NCX, NCY, NCZ): Te-132 濃度(Bq/m³) CONC Cs137 (NCX, NCY, NCZ): Cs-137 濃度 (Bq/m³) CONC Cs134 (NCX, NCY, NCZ): Cs-134 濃度(Bq/m³) CONC I2g (NCX, NCY, NCZ): ガス状ヨウ素濃度(Bq/m³) CONC CH3Ig (NCX, NCY, NCZ): ガス状 CH₃I 濃度 (Bq/m³) DEPO I131p (NCX, NCY): I-131(粒子)沈着量(Bq/m²) DEPO Te132 (NCX, NCY): Te-132 沈着量 (Bq/m²) DEPO Cs137 (NCX, NCY): Cs-137 沈着量(Bq/m²) DEPO_Cs134 (NCX, NCY): Cs-134 沈着量(Bq/m²) DEPO I2g (NCX, NCY): ガス状ヨウ素沈着量 (Bq/m²) DEPO CH3Ig (NCX, NCY): ガス状 CH₃I 沈着量 (Bq/m²) WETD I131p (NCX, NCY): I-131(粒子)湿性沈着量(Bq/m²) WETD Te132 (NCX, NCY): Te-132 湿性沈着量(Bq/m²) WETD_Cs137 (NCX, NCY): Cs-137 湿性沈着量(Bq/m²) WETD Cs134 (NCX, NCY): Cs-134 湿性沈着量(Bq/m²) WETD I2g (NCX, NCY): ガス状ヨウ素湿性沈着量(Bq/m²) WETD_CH3Ig (NCX, NCY): ガス状 CH₃I 湿性沈着量(Bq/m²) DRYD I131p (NCX, NCY): I-131(粒子) 乾性沈着量(Bq/m²) DRYD Te132 (NCX, NCY): Te-132 乾性沈着量(Bq/m²) DRYD Cs137 (NCX, NCY): Cs-137 乾性沈着量(Bq/m²) DRYD Cs134 (NCX, NCY): Cs-134 乾性沈着量(Bq/m²) DRYD I2g (NCX, NCY): ガス状ヨウ素乾性沈着量 (Bq/m²) DRYD CH3Ig (NCX, NCY): ガス状 CH₃I 乾性沈着量(Bq/m²)

● サンプル描画プログラム map.sh、color.pt、出力ファイル sample.ps、sample.jpg: 4.1 と同様 広域の出力例

OP_GEARN_d2_2011033115.

図 2 sample.jpg (広域) (日本時間 2011 年 4 月 1 日 00 時の Cs-137 地表面沈着量分布)

(日本時間 2011 年 4 月 1 日 00 時の Cs-137 地表面沈着量分布)

Appendix A. Terada_2012JER の放出量

release start	release end (UTC)	I-131	Cs-137	release
(UTC)	(YYYYMMDD	(Bq/hour)	(Bq/hour)	height
(YYYYMMDD	HHMMSS)			(m)
HHMMSS)				
20110311 200000	20110312 003000	3.7E+13	3.7E+12	20
20110312 003000	20110312 063000	1.7E+13	1.7E+12	120
20110312 063000	20110312 070000	3.0E+15	3.0E+14	50
20110312 070000	20110313 140000	8.4E+13	8.4E+12	120
20110313 140000	20110314 020000	3.6E+13	3.6E+12	120
20110314 020000	20110314 023000	3.0E+15	3.0E+14	150
20110314 023000	20110314 123000	2.3E+13	2.3E+12	20
20110314 123000	20110314 150000	1.3E+15	1.3E+14	120
20110314 150000	20110314 220000	3.5E+14	4.0E+13	120
20110314 220000	20110315 010000	3.0E+15	3.0E+14	20
20110315 010000	20110315 040000	8.0E+13	8.0E+12	20
20110315 040000	20110315 080000	4.0E+15	4.0E+14	20
20110315 080000	20110316 210000	2.1E+14	3.0E+12	20
20110316 210000	20110319 060000	4.1E+14	1.0E+13	20
20110319 060000	20110320 180000	3.8E+14	3.5E+13	20
20110320 180000	20110321 120000	1.4E+14	1.4E+13	20
20110321 120000	20110322 140000	4.1E+14	4.7E+12	20
20110322 140000	20110323 150000	7.1E+14	8.9E+12	20
20110323 150000	20110324 150000	1.9E+14	2.9E+12	20
20110324 150000	20110326 020000	5.6E+13	1.2E+12	20
20110326 020000	20110328 010000	4.0E+12	1.7E+11	20
20110328 010000	20110329 120000	7.5E+12	4.7E+12	20
20110329 120000	20110330 020000	1.5E+13	8.8E+12	20
20110330 020000	20110330 150000	1.8E+14	1.4E+14	20
20110330 150000	20110331 130000	2.4E+13	4.5E+12	20
		•		

Appendix B. Katata_2015ACP の放出量

Release	Release	I-131	Te-132	Cs-137	Cs-134	I-131	I-131	I-131	release height
start	end	particle	particle	particle	particle	I2 gas	CH3I gas	particle+gas	(volume
(UTC)	(UTC)	(Bq/hour)	dimension: m)						
2011/3/11	2011/3/12	2.9E+13	9.2E+13	5.8E+12	5.8E+12	1.2E+13	1.7E+13	5.8E+13	20
20:00	0:30								
2011/3/12	2011/3/12	1.3E+13	4.1E+13	2.7E+12	2.7E+12	5.3E+12	8.0E+12	2.7E+13	20
0:30	5:00								
2011/3/12	2011/3/12	1.5E+15	4.4E+15	2.9E+14	2.9E+14	5.9E+14	8.8E+14	2.9E+15	120
5:00	6:00								
2011/3/12	2011/3/12	6.7E+12	2.0E+13	1.3E+12	1.3E+12	2.7E+12	4.0E+12	1.3E+13	20
6:00	6:30								
2011/3/12	2011/3/12	7.2E+15	2.1E+16	1.4E+15	1.4E+15	2.9E+15	4.3E+15	1.4E+16	100x100x100
6:30	7:00								
2011/3/12	2011/3/12	8.7E+13	2.3E+14	1.7E+13	1.7E+13	3.5E+13	5.2E+13	1.7E+14	120
7:00	13:00								
2011/3/12	2011/3/12	1.6E+14	4.1E+14	3.1E+13	3.1E+13	6.3E+13	9.4E+13	3.1E+14	120
13:00	19:00								
2011/3/12	2011/3/13	1.1E+14	2.9E+14	2.2E+13	2.2E+13	4.4E+13	6.6E+13	2.2E+14	120
19:00	0:00								
2011/3/13	2011/3/13	1.3E+14	3.3E+14	2.6E+13	2.6E+13	5.1E+13	7.7E+13	2.6E+14	120
0:00	3:30								
2011/3/13	2011/3/13	2.5E+14	6.6E+14	5.0E+13	5.0E+13	1.0E+14	1.5E+14	5.0E+14	120
3:30	6:00								
2011/3/13	2011/3/13	1.5E+14	3.9E+14	3.0E+13	3.0E+13	6.0E+13	9.0E+13	3.0E+14	120
6:00	14:00								
2011/3/13	2011/3/13	4.1E+13	8.8E+13	8.2E+12	8.2E+12	1.6E+13	2.5E+13	8.2E+13	120
14:00	17:30								
2011/3/13	2011/3/13	2.2E+13	4.7E+13	4.4E+12	4.4E+12	8.7E+12	1.3E+13	4.4E+13	120
17:30	22:00								
2011/3/13	2011/3/14	1.8E+13	3.8E+13	3.5E+12	3.5E+12	7.1E+12	1.1E+13	3.5E+13	120
22:00	2:00								
2011/3/14	2011/3/14	1.9E+15	3.8E+15	3.7E+14	3.7E+14	7.5E+14	1.1E+15	3.7E+15	100x100x300
2:00	2:30								
2011/3/14	2011/3/14	9.0E+12	1.8E+13	1.8E+12	1.8E+12	3.6E+12	5.4E+12	1.8E+13	20
2:30	9:00								
2011/3/14	2011/3/14	5.3E+12	1.0E+13	1.1E+12	1.1E+12	2.1E+12	3.2E+12	1.1E+13	20
9:00	10:00								
2011/3/14	2011/3/14	5.0E+12	9.4E+12	1.0E+12	1.0E+12	2.0E+12	3.0E+12	1.0E+13	20

10:00	11:00								
2011/3/14	2011/3/14	5.2E+12	9.6E+12	1.0E+12	1.0E+12	2.1E+12	3.1E+12	1.0E+13	20
11:00	12:00								
2011/3/14	2011/3/14	1.2E+14	1.5E+14	1.6E+13	1.6E+13	4.8E+13	7.2E+13	2.4E+14	20
12:00	13:00								
2011/3/14	2011/3/14	5.6E+12	1.0E+13	1.1E+12	1.1E+12	2.3E+12	3.4E+12	1.1E+13	20
13:00	14:00								
2011/3/14	2011/3/14	2.7E+14	6.3E+14	6.9E+13	6.9E+13	1.1E+14	1.6E+14	5.4E+14	20
14:00	15:00								
2011/3/14	2011/3/14	6.4E+12	1.1E+13	1.3E+12	1.3E+12	2.6E+12	3.8E+12	1.3E+13	20
15:00	16:00								
2011/3/14	2011/3/14	1.2E+15	3.5E+15	3.9E+14	3.9E+14	4.7E+14	7.0E+14	2.3E+15	20
16:00	17:00								
2011/3/14	2011/3/14	1.6E+14	2.7E+14	3.1E+13	3.1E+13	6.5E+13	9.8E+13	3.3E+14	20
17:00	18:00								
2011/3/14	2011/3/14	1.5E+14	3.2E+14	3.6E+13	3.6E+13	5.8E+13	8.7E+13	2.9E+14	20
18:00	19:00								
2011/3/14	2011/3/14	6.3E+13	1.1E+14	1.3E+13	1.3E+13	2.5E+13	3.8E+13	1.3E+14	20
19:00	22:00								
2011/3/14	2011/3/15	6.0E+14	1.0E+15	1.2E+14	1.2E+14	2.4E+14	3.6E+14	1.2E+15	20
22:00	1:00								
2011/3/15	2011/3/15	5.2E+14	8.6E+14	1.0E+14	1.0E+14	2.1E+14	3.1E+14	1.0E+15	20
1:00	2:00								
2011/3/15	2011/3/15	5.0E+13	8.1E+13	1.0E+13	1.0E+13	2.0E+13	3.0E+13	1.0E+14	20
2:00	7:00								
2011/3/15	2011/3/15	1.6E+14	2.6E+14	3.3E+13	3.3E+13	6.6E+13	9.8E+13	3.3E+14	20-120
7:00	9:00								
2011/3/15	2011/3/15	1.1E+15	1.7E+15	2.2E+14	2.2E+14	4.3E+14	6.5E+14	2.2E+15	20-120
9:00	11:00								
2011/3/15	2011/3/15	6.8E+14	5.7E+14	7.6E+13	7.6E+13	6.4E+14	9.5E+14	2.3E+15	20-120
11:00	13:00								
2011/3/15	2011/3/15	3.0E+15	2.5E+15	3.4E+14	3.4E+14	2.8E+15	4.2E+15	1.0E+16	20-120
13:00	14:00								
2011/3/15	2011/3/15	6.6E+14	5.4E+14	7.3E+13	7.3E+13	6.2E+14	9.3E+14	2.2E+15	20-120
14:00	15:00								
2011/3/15	2011/3/15	4.8E+14	3.8E+14	5.3E+13	5.3E+13	4.4E+14	6.7E+14	1.6E+15	20-120
15:00	16:00								
2011/3/15	2011/3/15	6.0E+13	4.8E+13	6.7E+12	6.7E+12	5.6E+13	8.4E+13	2.0E+14	20-120
16:00	21:00								
2011/3/15	2011/3/16	1.0E+14	1.4E+14	2.0E+13	2.0E+13	4.0E+13	6.0E+13	2.0E+14	20

21:00	0:00								
2011/3/16	2011/3/16	1.4E+15	1.9E+15	2.8E+14	2.8E+14	5.7E+14	8.5E+14	2.8E+15	20
0:00	2:00								
2011/3/16	2011/3/16	6.0E+13	7.9E+13	1.2E+13	1.2E+13	2.4E+13	3.6E+13	1.2E+14	20
2:00	3:00								
2011/3/16	2011/3/16	7.4E+13	9.6E+13	1.5E+13	1.5E+13	2.9E+13	4.4E+13	1.5E+14	20
3:00	4:00								
2011/3/16	2011/3/16	1.4E+14	1.9E+14	2.9E+13	2.9E+13	5.7E+13	8.6E+13	2.9E+14	20
4:00	5:00								
2011/3/16	2011/3/16	2.5E+14	3.2E+14	5.0E+13	5.0E+13	1.0E+14	1.5E+14	5.0E+14	20
5:00	6:00								
2011/3/16	2011/3/16	3.1E+14	3.9E+14	6.2E+13	6.2E+13	1.2E+14	1.9E+14	6.2E+14	20
6:00	21:00								
2011/3/16	2011/3/17	1.6E+14	1.4E+14	3.1E+13	3.1E+13	6.3E+13	9.4E+13	3.1E+14	20
21:00	12:00								
2011/3/17	2011/3/17	1.5E+14	1.3E+14	3.0E+13	3.0E+13	6.0E+13	9.0E+13	3.0E+14	20
12:00	15:00								
2011/3/17	2011/3/17	1.1E+14	9.1E+13	2.1E+13	2.1E+13	4.2E+13	6.3E+13	2.1E+14	20
15:00	20:00								
2011/3/17	2011/3/17	6.7E+14	5.8E+14	1.3E+14	1.3E+14	2.7E+14	4.0E+14	1.3E+15	20
20:00	23:00								
2011/3/17	2011/3/18	9.2E+14	8.0E+14	1.8E+14	1.8E+14	3.7E+14	5.5E+14	1.8E+15	20
23:00	4:00								
2011/3/18	2011/3/18	7.5E+14	6.5E+14	1.5E+14	1.5E+14	3.0E+14	4.5E+14	1.5E+15	20
4:00	9:00								
2011/3/18	2011/3/18	6.9E+14	6.0E+14	1.4E+14	1.4E+14	2.7E+14	4.1E+14	1.4E+15	20
9:00	20:00								
2011/3/18	2011/3/19	6.6E+14	5.8E+14	1.3E+14	1.3E+14	2.7E+14	4.0E+14	1.3E+15	20
20:00	6:00								
2011/3/19	2011/3/20	7.9E+13	8.7E+13	3.0E+13	3.0E+13	3.2E+13	4.7E+13	1.6E+14	20
6:00	18:00								
2011/3/20	2011/3/20	8.9E+13	1.0E+14	4.2E+13	4.2E+13	3.4E+13	5.1E+13	1.7E+14	20
18:00	23:00								
2011/3/20	2011/3/21	1.4E+13	1.2E+13	5.2E+12	5.2E+12	1.1E+13	1.7E+13	4.2E+13	20
23:00	3:00								
2011/3/21	2011/3/21	2.4E+13	9.1E+11	4.1E+11	4.1E+11	1.4E+13	2.1E+13	5.9E+13	20
3:00	7:00								
2011/3/21	2011/3/21	1.4E+13	1.1E+13	5.2E+12	5.2E+12	1.1E+13	1.7E+13	4.2E+13	20
7:00	12:00								
2011/3/21	2011/3/22	5.4E+13	3.1E+12	1.6E+12	1.6E+12	4.4E+13	6.6E+13	1.6E+14	20

12:00	14:00								
2011/3/22 14:00	2011/3/23 15:00	1.3E+14	5.0E+12	3.3E+12	3.3E+12	5.2E+13	7.8E+13	2.6E+14	20
2011/3/23 15:00	2011/3/24 15:00	7.1E+12	7.6E+11	6.3E+11	6.3E+11	4.3E+12	6.5E+12	1.8E+13	20
2011/3/24 15:00	2011/3/26 2:00	1.3E+13	2.0E+12	2.2E+12	2.2E+12	1.1E+13	1.7E+13	4.1E+13	20
2011/3/26 2:00	2011/3/28 1:00	1.6E+12	4.4E+11	6.9E+11	6.9E+11	6.0E+12	8.9E+12	1.7E+13	20
2011/3/28 1:00	2011/3/29 12:00	2.8E+11	1.4E+12	3.1E+12	3.1E+12	1.4E+12	2.2E+12	3.9E+12	20
2011/3/29 12:00	2011/3/30 2:00	4.1E+12	2.0E+12	5.6E+12	5.6E+12	1.9E+12	2.9E+12	9.0E+12	20
2011/3/30 2:00	2011/3/30 15:00	1.8E+13	1.6E+13	4.9E+13	4.9E+13	1.6E+13	2.4E+13	5.9E+13	20
2011/3/30 15:00	2011/3/31 13:00	4.2E+12	7.3E+11	2.7E+12	2.7E+12	4.1E+12	6.1E+12	1.4E+13	20
2011/3/31 13:00	2011/4/2 0:00	6.1E+10	1.9E+11	8.9E+11	8.9E+11	3.4E+11	5.1E+11	9.2E+11	20
2011/4/2 0:00	2011/4/4 0:00	1.1E+12	4.7E+11	3.2E+12	3.2E+12	3.6E+12	5.4E+12	1.0E+13	20
2011/4/4 0:00	2011/4/7 8:00	4.1E+11	6.6E+10	7.9E+11	7.9E+11	1.4E+12	2.1E+12	3.9E+12	20
2011/4/7 8:00	2011/4/13 14:00	3.7E+10	1.0E+10	3.5E+11	3.5E+11	2.7E+11	4.0E+11	7.0E+11	20
2011/4/13 14:00	2011/4/30 15:00	3.7E+10	4.5E+08	1.8E+11	1.8E+11	2.7E+11	4.0E+11	7.0E+11	20

東京電力福島第一原子力発電事故における

住民の線量評価に関する包括研究

事故初期段階における住民の被ばく線量再構築

栗原 治(放射線医学総合研究所・チームリーダ)

研究要旨

東京電力福島第一原子力発電所事故に係る住民の初期内部被ばくの把握のため、個人の行動 情報を用いた線量推計方法を提案している。今年度は、放射線医学総合研究所が2011年6月27 日から同年7月28日までに174名に対して実施した先行調査の被検者の行動データの解析や大気 拡散シミュレーションを基礎とした内部被ばく線量推計システムの改良を中心に研究を進めた。 行動データの解析では、被検者の大半が各自治体の避難指示に従い事故翌日の3月12日中には避 難を開始していたことが確認された。個人の実効線量と原発から居場所までの距離には、明確 な相関関係が得られなかった。内部被ばく線量推計システムの改良では、最新の大気拡散シミ ュレーションによる放射性核種の大気中濃度マップの組み込みや計算の計算アルゴリズムの見 直しによる高速化を行った。

研究協力者:

- 石川 徹夫(福島県立医科大学・教授)
- 神谷 研二(福島県立医科大学・副学長)
- 安村 誠司(福島県立医科大学・教授)
- 大津留 晶(福島県立医科大学・教授)

I 研究目的

東京電力福島第一原子力発電所事故によって住民が受けた被ばく線量の把握は重要であり、こ れまでにも多くの報告がなされてきた。しかしながら、事故初期における放射性ヨウ素に代表さ れる短半減期核種による内部被ばく線量(特に、甲状腺等価線量)については、人及び環境の実 測データが不足しており、その評価を困難にしている¹⁴⁾。放射線医学総合研究所(以下、放医研) は、2012年度の環境省委託事業において、当時利用できた全ての人の実測データ及び大気拡散シ ミュレーションに基づき福島県住民の甲状腺等価線量の推計を試みたが⁵⁻⁷⁾、同推計は市町村毎の 住民に対する代表値(90%頻度値及び50%頻度値)のみであること、また、個人の実際の行動を全 く考慮していない等の課題があった。本研究では、より正確な線量評価を目的として、個人の行 動情報を取り入れた内部被ばく線量評価法の構築を行う。

II 研究方法

本研究は、東京電力福島第一原子力発電所事故における住民の線量評価に関する包括研究(研

キーワード:福島第一原子力発電所事故、初期内部被ばく、行動、大気拡散シミュレーション、 線量評価

究代表者:鈴木元(国福大))として他の研究分担者と連携して進めるとともに、個人の行動情報の提供元である福島県立医科大学(以下、福島医大)とも連携して行う(図1)。個人の行動情報を取り入れた内部被ばく線量評価法の構築のため、内部被ばく線量測定の実測データと行動データを有する個人を解析対象者として選定し、両データの関連性を調べるとともに、行動データと大気拡散シミュレーションを活用した吸入摂取を想定した体内残留量及び内部被ばく線量の計算を行い、実測データとの比較検証を試みる。なお、解析対象者のデータ利用に関しては、福島医大と放医研において研究倫理の承認を得る。また、前述の計算を速やかに正確に行うためソフトウエアの開発を行うとともに、最新の拡散シミュレーションの結果を適宜反映させる。同時に、新たな実測データの探索や既存の実測データの精度検証等の評価も実施する。

図1 研究方法及び研究体制

<解析対象者の選定>

下記の集団のうち、福島県が実施する県民健康調査⁸⁾への協力の同意が得られ、同調査での 行動調査票の回答が得られた者を選定する。

- 福島県の委託を受けて放医研が2011年6月27日から7月16日(後に7月28日まで延長) までに実施した内部被ばくの先行調査においてWBCによる内部被ばく検査を受 けた者(計174名)⁹⁾
- 国の原子力災害現地対策本部が2011年3月下旬に川俣町、いわき市、飯舘村において実施した小児甲状腺被ばくスクリーニング検査の受けた者(計1,080名)³⁾
- 福島県の委託を受けて日本原子力研究開発機構(以下、原子力機構)が2011年7
 月から2012年1月末までに行ったWBCによる内部被ばく検査を受けた者(計9,927名)¹⁰⁾

<使用するデータ>

以下のデータを福島医大において解析対象者毎に連結匿名化した後、本研究に使用する。

● 個人の内部被ばく線量測定の実測データとして、解析対象者の体内残留量、検査

日、検査場所、年齢及び測定における検出限界値

 福島県が実施する県民健康調査(基本調査)において、事故初期の外部被ばく線 量推計の目的のために用いられる個人の行動調査票(それが電子化されたものも 含む)

<内部被ばく線量の計算方法>

大気拡散シミュレーションによって得られる放射性核種の大気中濃度マップと解析対象者 の滞在場所を同一時間帯で合わせることにより、放射性核種の吸入摂取量を求め、これに国 際放射線防護委員会(ICRP)の刊行物に示される呼吸率と線量係数を乗じることで内部被ば く線量を計算する。この結果を、個人の内部被ばく線量測定の実測データを基に既に評価さ れた内部被ばく線量と比較し、本法の精度評価とパラメータ値の最適化を行う。また、大気 拡散シミュレーションによって得られた吸入摂取量の経時変化に基づき摂取シナリオを個人 毎に見直し、これを反映した内部被ばく線量の再評価を行う。

(倫理面への配慮)

本研究において,個人の行動情報の利用に関しては、福島医大と放医研の両機関において平成 25年度に研究倫理審査の承認を得ている。

III 研究結果

<先行調査被検者の解析>

昨年度に引き続き、放医研が2011年6月27日から同年7月28日に実施した福島県住民のWBC測定 結果(174名)を解析した。今年度の解析では、従前考慮されなかったWBC測定の結果である体 内セシウム量の体格補正を行った。使用したWBCの体内セシウムに対する検出感度の体格依存性 を調べるため、図2に示すように、大きさの異なるファントムをWBCに配置し、それぞれの計数 効率を評価した。使用したファントムは、米国国家規格協会(ANSI)において規定されたBOMAB ファントム¹¹⁾の仕様に準拠した4体のファントムであり、それぞれ、成人男性(AM)、成人女性

(AF)、10歳児(10-y)及び4歳児(4-y)の体格を模擬している。これらのファントムに対し、 2011年の先行調査の当時使用されたファントム(AM0)は、表1に示すように日本人男性の平均的 な体格と比べるとやや大きいものであった。図3には、AM0ファントムの計数効率(¹³⁷Cs)で規 格化した他のファントムの計数効率を、人体に適用される経験式を用いて算定したファントムの 体表面積を変数として表示した結果であるが、体表面積が小さいほど計数効率が増加する傾向が 見られた。これは、体格が小さくなるほど、ファントム内部から発生する光子の減衰が小さくな り、より多くの割合の光子がファントム外に透過する結果によるものと考えられる。また、こう したWBCの計数効率の体格依存性を考慮しなかった従来の評価では、特に小児の場合に体内セシ ウム量を3~4割程度過大に見積もっていた可能性が示唆された。実験の結果を踏まえ、国際放射線 防護委員会(ICRP)が算定した内部被ばく線量係数に適用される年齢区分と同様に体格補正係数 を設定し、被検者の体内セシウム量を補正した。

補正した体内セシウム量に基づき、被検者の実効線量を再評価した結果、図4に例示するように、 子ども(18歳未満)の実効線量は従来の評価と比較して減少する。また、成人と子どもで比較し た場合、体内セシウム(¹³⁴Cs)量は成人の方が子どもより有意に高い結果となったが(*p*=0.007)、

389

実効線量には有意差は認められなかった(p=0.264)。

図2体格別ファントムのWBCへの設置状況

衣 美験に使用したノアントムの主長、里重及び伴衣[

ファントム	AM0	AM	AF	10-у	4-у
体格	成人男性	成人男性	成人女性	10 歳児	4 歳児
全長(cm)	177	170	161	142	105.6
重量(kg)	69.4	67.0	48.8	33.8	17.3
体表面積(m²)	1.86	1.78	1.50	1.17	0.71

図4 体格補正前後の実効線量の変化(子ども)

<行動データの解析>

昨年度に入手した計422名分(先行調査112名分、小児甲状腺被ばくスクリーニング検査310名分) の行動データの解析を継続した。図5に示すのは、先行調査被検者の2011年3月12日0時と3月20日0 時の居場所の分布である。被検者の多くは浪江町の住民であるが、3月12日時点の居場所の分布か ら、被検者の大半は同町の沿岸部付近の住民であることが分かる。浪江町では、3月12日の午前6 時に10 km圏外への避難指示、これに引き続き午前11時に20 km圏内での避難指示が自治体独自に 出されており¹²⁾、行動データを解析した被検者の大半が同日中に避難したことが確認され、集団 の被ばく線量の低減に寄与した可能性が示唆された。また、各被検者の実効線量と福島第一原発 から居場所までの距離の相関を時系列で調べたところ、明確な有意差は認められなかった。小児 甲状腺被ばくスクリーニング検査の被検者に関しては、2011年3月中の行動データを解析し、福島 県内外の自主避難者の割合を日毎に集計した。その結果、飯舘村といわき市で検査を受けた被検 者では、3月22日時点での自主避難者は約半数であった。

図5 先行調査被検者の居場所

<内部被ばく線量推計システムの開発>

内部被ばく線量システムについては、今年度、Katataら(2015)¹³⁾が発表した新しいWSPEEDI-II の計算結果(大気中濃度マップデータ)の格納、計算アルゴリズムの見直しによる高速化等の改 良を進め、2016年1月に完了した。また、同システムの検証を行うための別システム(図6)の開 発も併行して進め、両システムの計算結果がほぼ一致することを確認した。また、これらのシス テムに入力する行動データが期間毎に異なる形式で与えられるために、欠損データの処理と併せ、 大気中濃度マップデータと同じ1時間毎のデータ配列となるように補完の方法を決定した。

図7に示すのは、先行調査被検者の1日毎の吸入摂取量の時系列を例示したものである。この様 な解析は、内部被ばく線量評価に重要な因子となる放射性核種の(吸入)摂取時期を推定に有用 である。全体的には大量放出のあった3月15日の摂取量が顕著な者が大半を占めるものの、それ以 外の日でも摂取量が多い者も存在し、必要に応じて摂取シナリオの見直しが必要となることが示 唆された。

図8に示すのは、小児甲状腺被ばくスクリーニング検査の被検者の内、行動データを有する者の 実測(甲状腺測定)と上記システム(大気中濃度マップはTeradaら(2012)¹⁴⁾によるもの)のそれ ぞれから推定した甲状腺等価線量(¹³¹I)を比較したものである。後者については、屋内滞在時に 見込まれる防護係数(屋内濃度の屋外濃度に対する比)を考慮した。防護係数を考慮しない場合 (SF=1)、大気拡散シミュレーションによる甲状腺等価線量は過大評価となるため、防護係数を 変更しながら計算を行った。この結果から防護係数の最適値は0.5程度と考えられるが、実測によ る甲状腺等価線量との乖離が依然として大きく、さらなる検討が必要と考えられた。その他、代 表的避難パターンとされる18のモデルケースについて、Terada(2012)とKatata(2015)のそれぞれの 大気中濃度マップデータから算定される内部被ばく線量を比較したところ、前者の方が高くなる モデルケースと後者の方が高くなるモデルケースと半々であった。

上:Google Earth 上に大気中濃度マップデータと評価対象者の居場所を表示した図、下:評価対象者の吸入摂取量の時間変化

No	1	核種名	Tera_I13	1	Terada2012CONC_I131					線量計数表対 応列	7 列	防御係数:p	0.5	
Pilot ID	年 齡	年齡区分	平均呼吸量 0.925	線量係数 2.940F-07										
日付		3月12日	3月13日	3月14日	3月15日	3月16日	3月17日	3月18日	3月19日	3月20日	3月21日	3月22日	3月23日	
屋外	時間	13 時間	10 時間	6 時間	11 時間	7 時間	3 時間	6 時間	2 時間	2 時間	4 時間	7 時間	13 時間	_
	濃度:Io	1.07	C	0	37966.85	0	0	0	0	0	56.32	0	522.6	
屋内	時間	11 時間	14 時間	18 時間	13 時間	17 時間	21 時間	18 時間	22 時間	22 時間	20 時間	17 時間	11 時間	
	濃度:Ii	6.66	C	0	4986.85	1020.06	0	0	0	0.45	384.84	5.2	210.89	
濃度/日	I=Io+p · Ii	4.4	C	0	40460.27	510.03	0	0	0	0.22	248.74	2.6	628.04	
構成比	%	0. %			96.5%	1.2%				0. %	0.6%	0. %	1.5%	
吸引量	Bq	4.07	C	0	37425.75	471.78	0	0	0	0.21	230.08	2.41	580.94	
等価線量	μSv	1.2	C	0	11003.17	138.7	0	0	0	0.06	67.64	0.71	170.8	
Pilot ID	年齡	年齡区分	平均呼吸量	線量係数]									

				0.925	2.940E-07										
日	付	•	3月12日	3月13日	3月14日	3月15日	3月16日	3月17日	3月18日	3月19日	3月20日	3月21日	3月22日	3月23日	3
屋外	外	時間	24 時間		10 時間										
		濃度:Io	1.34	0	0	0	0	0	0	0	0	0	0	0	
屋	内	時間		24 時間	14 時間	24 時間	24 時間	24 時間	24 時間	24 時間	24 時間	24 時間	24 時間	24 時間	
		濃度:Ii	0	0	0	11399.36	27.18	0	0	0	1001.68	34.92	5914.49	0	
濃度	€/日	I=Io+p · Ii	1.34	0	0	5699.68	13.59	0	0	0	500.84	17.46	2957.24	0	
構质	戎 比	%	0. %			61.2%	0.1%				5.4%	0.2%	31.7%		
吸弓	키 물	Bq	1.24	0	0	5272.2	12.57	0	0	0	463.28	16.15	2735.45	0	
等価	瞞線量	μSv	0.37	0	0	1550.03	3.7	0	0	0	136.2	4.75	804.22	0	

Pilot ID	年 齡	年齡区分	平均呼吸量	線量係数										
			0.925	2.940E-07										
日付		3月12日	3月13日	3月14日	3月15日	3月16日	3月17日	3月18日	3月19日	3月20日	3月21日	3月22日	3月23日	3
屋 外	時間	10 時間	7 時間	8 時間	6 時間	5 時間	9 時間	3 時間	8 時間					
	濃度:Io	286.17	0	0	167.14	0	0	0	0	0	0	0	0	
屋内	時間	14 時間	17 時間	16 時間	18 時間	19 時間	15 時間	21 時間	16 時間	24 時間	24 時間	24 時間	24 時間	
	濃度:Ii	51395.95	0	0	83995.74	0	0	0	0	0	242.11	0	651.75	
濃度/日	I=Io+p · Ii	25984.14	0	0	42165.01	0	0	0	0	0	121.05	0	325.88	
構成 比	%	37.8%			61.4%						0.2%		0.5%	
吸引量	Bq	24035.33	0	0	39002.63	0	0	0	0	0	111.97	0	301.44	
等価線量	μSv	7066.39	0	0	11466.77	0	0	0	0	0	32.92	0	88.62	

図7 先行調査対象者の吸入摂取量の日変化

図8 実測または大気拡散シミュレーションによる甲状腺等価線量推計値の比較

IV 考察

福島原発事故初期に住民が受けた内部被ばく線量を推計する上で、人の実測データを可能な限 り集めることが重要である。放医研では、これまでに国が実施した小児甲状腺被ばくスクリーニ ング検査や、原子力機構が福島県の委託により実施したWBC測定の結果(ただし、後者は成人被 検者の実効線量のみ)を受領し、福島県住民の初期内部被ばく線量推計の基礎資料としてきた。 昨年度からは、放医研が実施した先行調査の被検者174名分のWBC測定の結果及び内112名分の行 動データが利用できるようになった。この先行調査は2011年6月27日から7月28日までの限定した、 かつ、事故初期に行われたWBCによる内部被ばく検査であり、検出されたのは放射性セシウム (¹³⁴Cs、¹³⁷Cs)のみであったものの、初期内部被ばく線量の推計に有益な情報を与えるものと予 想される。今年度は、この先行調査で得られた測定結果を中心に解析を進めた。

体格補正後の体内セシウム量について、成人と子どもの間には有意差が認められた(p=0.007)。 これは、吸入量は成人の方が大きく(ICRP標準人のデータでは、1日呼吸量は成人男性が22.2 m³、 5歳児が5.16m³である)、セシウムの体内半減期は成人の方が一般的に長いことから、自然な結果 である。一方、実効線量に関しては、成人と子どもには有意差は認められなかった(p=0.264)。 放射性セシウムの実効線量係数に年齢区分間の違いがさほど無く、吸入量については前述したと おりであることを踏まえると、成人の方が子どもの実効線量よりも数倍程度高くなるはずである。 なお、子どもの被検者で実効線量が最大となった者の年齢区分は、5歳区分(3歳以上8歳未満)で あった。検出された体内セシウム量はWBCの検出下限値を僅かに超える程度であったものの、こ れを全身残留率で除して算定された摂取量は、成人被検者の摂取量と比較的高いレベルに相当し た。図8に示すのは、¹³⁷Csの吸入摂取後の全身残留率関数であり、これを用いて摂取量が計算され る。同図から、先行調査の実施期間における成人の全身残留率は0.15程度であるが、5歳区分では その1桁低くなる。したがって、同じ体内セシウム量が両者で検出された場合、5歳区分の実効線 量は成人の実効線量の約10倍になる。子どもの実効線量がその親の実効線量に比べて高くなる事 例はMomoseら(2012)¹⁰⁾が報告しているが、その理由として事故発生から時間が経過した後の偶発 的な摂取、あるいは、ごく微量の着衣の汚染の可能性が考えられる。このことから、検出限界値 に近い低い体内セシウム量から実効線量を算定する場合、特に子ども(小児)では、類似した行 動をした成人の実効線量も参考にして行う必要があることが本解析からも示唆された。

図 8 ¹³⁷Cs の吸入摂取後の全身残留率関数 (2011 年 3 月 12 日を摂取日に仮定)

行動データの解析結果に関しては、先行調査の被検者の多くは自治体の避難指示に従って速や かに避難をしたこと、小児甲状腺被ばくスクリーニング検査の被検者についても自主避難者の割 合が比較的多かったことが分かった。こうした避難行動が住民の内部被ばく線量が低く抑えられ た主要な要因と考えられるが、避難開始時期や原発からの距離等の因子と個人の内部被ばく線量 と間に明確な相関関係は得られなかった。一方、放射性セシウムの検出率を見ると、性別による 違いは成人では大きく、子どもでは小さかった。成人被検者において男性の方が女性よりも検出 率が高いことは、呼吸による摂取量の違いや生物半減期の違い(男性の方が女性に比べて長い) を考えると自然な結果であると言える。摂取量の違いは、屋内外の滞在時間の違いにも大きく依 存すると考えられるが、成人男性の場合はその職業を調査することも重要かと思われる。

大気拡散シミュレーションによる内部被ばく線量の推計には未だ精度上に課題を残している。 シミュレーション自体の不確実性に加えて、呼吸率や代謝パラメータ等の個人間変動による影響 も考えられる。引き続き多くの事例について検証する必要がある。

V 結論

東京電力福島第一原子力発電所事故に係る事故初期の内部被ばくの実態把握に資するため、昨 年度に引き続き、個人の行動情報を用いた内部被ばく線量推計方法の検討を進めた。同推計の基 礎資料となる人の実測データに関しては、放医研が実施した先行調査において当時考慮されなか ったホールボディカウンタ(WBC)の計数効率の体格依存性を補正し、被検者の実効線量の再評 価を行った。その結果、成人と子ども(18歳未満)の間には、体内セシウム(¹³⁴Cs)量に対して は有意差があり、実効線量に対しては有意差が認められなかった。このことから、子ども(特に 小児)の実効線量には過大評価の可能性が示唆され、今後の推計作業において留意すべき事項の 一つとして考えられた。先行調査の被検者の行動に関しては、その多くが自治体の避難指示に従 って迅速な避難を行っていたことが確認された。一方、被検者全体の解析では、個人の実効線量 と原発から居場所までの距離には明確な相関関係は得られず、屋内外の滞在時間の違い等の要因 も今後検討する必要がある。その他、内部被ばく線量評価システムの改良を行い、その検証計算 を実施した。

VI 次年度以降の計画

次年度の計画は以下のとおりである。

- 原子力機構が実施したWBC測定の被検者の行動データの受領を予定している。これらのデー タの解析を行う。
- 新規の大気拡散シミュレーションを取り入れた内部被ばく線量推計を行い、従来のシミュレーションとの推計精度の比較検証を行う。
- これまでの研究成果に基づき、最も有効と考えられる初期内部被ばく線量の推計方法を提示 する。

- この研究に関する現在までの研究状況、業績
 - 1)環境省. 平成24年度原子力災害影響調査等事業「事故初期のヨウ素等短半減期による内部被 ばく線量評価調査」.2012.
 - 2)環境省. 平成25年度原子力災害影響調査等事業「東京電力福島第一原子力発電所事故に係る 被ばく線量の把握調査等」.2013.
 - 3) National Institute of Radiological Sciences. The 1st NIRS symposium on reconstruction of early internal dose in the TEPCO Fukushima Daiichi nuclear power station accident, NIRS-M-252, 2012.
 - 4) Kurihara O Kim E Fukutsu K et al. NIRS's project for the reconstruction of early dose to inhabitants in Fukushima after the nuclear disaster, Radiation Monitoring and Dose Estimation of the Fukushima Nuclear Accident, Springer Open, 2013; 177-188.
 - 5) 栗原治,金ウンジュ,徐素熙 他.東京電力福島第一原子力発電所事故における福島県住民 の初期内部被ばく線量推計,KEK-Proceedings 2013-7, 2013; 7-16.
 - 6) 栗原治. 被ばく線量評価のための大気拡散シミュレーション-東京電力福島第一原子力発電 所事故における周辺住民の初期内部被ばく線量再構築,日本原子力学会誌,2013;55:34-38.
 - 7) Akahane K Yonai S Fukuda S et al. NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident, Sci. Rep., 2013; 3: 1670.
 - 8) Tani K Kurihara O Kim E et al. Implementation of iodine Implementation of iodine biokinetic model for interpreting I-131 concentration in breast milk after the Fukushima nuclear disaster. Sci. Rep. 2015; 5: 12426.
 - 9) Kim E Kurihara O Tani K et al. Intake ratio of ¹³¹I to ¹³⁷Cs derived from thyroid and whole-body doses to Fukushima residents. Radiat. Prot. Dosim. (in press, 2015).
- 10) Kim E Tani K Kunishima N et al. Estimation of early internal doses to Fukushima residents after the nuclear disaster based on the atmospheric dispersion simulation. Radiat. Prot. Dosim. (in press, 2015).
- 11) Kurihara O Nakagawa T Takada C et al. Internal doses of three persons staying 110 km south of the Fukushima Daiichi Nuclear Power Station during the arrival of radioactive plumes based on direct measurements. (Accepted, 2015).

引用文献

- Tokonami S Hosoda M Akiba S et al. Thyroid doses for evacuees from the Fukushima nuclear accident, Sci. Rep. 2012; 2: 507.
- Matsuda N Kumagai A Ohtsuru A et al. Assessment of internal exposure doses in Fukushima by a whole body counter within one month after the nuclear power plant accident, Radiat. Res. 2013; 179: 663-668.
- 3) Kim E Kurihara O Suzuki T et al. Screening survey on thyroid exposure for children after the Fukushima Daiichi nuclear power station accident. Proceedings of the 1st NIRS symposium on reconstruction of early internal dose in the TEPCO Fukushima Daiichi nuclear power station accident. NIRS-M-252, 2012: 59-66.
- Kamada N Saito O Endo S et al. Radiation doses among residents living 37 km northwest of the Fukushima Dai-ichi nuclear power plant, J. Environ. Radioact. 2012; 110: 84-89.

- 5) 環境省. 平成 24 年度原子力災害影響調査等事業「事故初期のヨウ素等短半減期による内部被 ばく線量評価調査」. 2012.
- 6) 栗原治,金ウンジュ,徐素熙 他.東京電力福島第一原子力発電所事故における福島県住民 の初期内部被ばく線量推計,KEK-Proceedings 2013-7, 2013; 7-16.
- 7) 栗原治. 被ばく線量評価のための大気拡散シミュレーション-東京電力福島第一原子力発電 所事故における周辺住民の初期内部被ばく線量再構築,日本原子力学会誌,2013;55:34-38.
- Yasumura S Hosoya M Yamashita S et al. Study protocol for the Fukushima health management survey, J. Epidemiol. 2014; 22: 375-383.
- 9) 福島県. 第3回「県民健康調査」検討委員会(平成23年7月24日開催) 2012.
- 10) Momose T Takada C Nakagawa T et al. Whole-body counting of Fukushima residents after the TEPCO Fukushima Daiichi nuclear power station accident, Proceedings of the 1st NIRS symposium on reconstruction of early internal dose in the TEPCO Fukushima Daiichi nuclear power station accident. NIRS-M-252, 2012; 67-81.
- American National Standard. Specifications for the bottle manikin absorption phantom, ANSI/HPS N13.35-1999 (1999).
- 12) 東京電力福島原子力発電所事故調査委員会. 国会事故調報告書 2012.
- 13) Katata F Chino M Kobayashi T Terada T et al. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model. Atoms. Chem. Phys. Discuss.2014; 14: 14725-14832.
- 14) Terada H Katata F Chino M Nagai H. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environ. Radioact. 2012; 112: 141-154.

Dose reconstruction of Fukushima residents in the early stage of the nuclear disaster

Osamu Kurihara

National Institute of Radiological Sciences

Keywords: Fukushima Daiichi nuclear power plant accident; early internal dose; individual behavior; atmospheric dispersion simulation; dose assessment

Abstract

To understand the levels of internal exposure doses received by Fukushima residents in the early stage of the TEPCO Fukushima Daiichi Nuclear Power Plant accident, we have proposed a new dose estimation method using the information on individual behaviors. In this year (FY 2015), we have performed mainly analyses on individual behavior data of 174 subjects of the pilot survey that was conducted by the National Institute of Radiological Sciences (NIRS) during a period between June 27, 2011 and July 28, and have made improvements in the internal dose estimation system based on the atmospheric transport and dispersion model (ATDM) simulations of radionuclides. In the analyses on the individual behavior data, it was found that most subjects evacuated within March 12, the next day after the accident in accordance with the evacuation order by the local governments.. There was not a clear correlation between individual effective doses and distances between the plant of the accident and the whereabouts of the subjects. Regarding the system, we have incorporated radionuclide air concentration maps from the latest ATDM simulation and achieved speed-up of the system by revising calculation algorisms.

土壌中I-129 の分析によるI-131 土壌沈着量等の推計

松崎 浩之 (東京大学・教授)

研究要旨

福島第一原子力発電所の事故により多種多様の放射性核種が放出されたが、¹³¹Iは、希ガスを 除くと初期段階では最も放射能が高く、初期被ばくに大きく寄与したと考えられる。また、体 内に取り込まれると甲状腺に濃縮され、甲状腺がんを引き起こす懸念があるため、被ばく評価 上重要である。しかし、物理的半減期が8.02日と短いため、事後の計測により初期段階の線量 や地表への沈着量を推定する事が難しい。平成23年6月に文部科学省が中心となり、福島第一 原子力発電所を中心に概ね 80km 以内の領域で、約 2,200 地点から合計約 10,000 の表層土壌試 料が採取され、放射性核種沈着分布のサーベイが行われた(これらの土壌試料を以下では、"文 科省コレクション"と称する)。放射性セシウム (¹³⁷Cs、¹³⁴Cs) については、ガンマ線スペクト ロメトリにより、ほぼ全試料で定量され、汚染マップが作成されたが、この時点で事故後3ヶ 月を経過しており、¹³¹Iについてデータは極めて限定的であった。本研究では、¹³¹Iと同時に放 出された¹²⁹I(半減期 1,570 万年)に着目し、これを指標として、¹³¹Iの沈着量を復元すること を試みた。¹²⁹I は半減期が極めて長いため、物理的崩壊を考える必要が無く、環境中に長く留ま る。また、同位体であるため¹³¹Iとは環境中での化学的挙動が同一であり、¹²⁹Iの沈着分布はそ のまま¹³¹Iの沈着分布と解釈する事ができる。¹²⁹Iは半減期が長いため(放射能が極めて微弱な ため)、放射線計測で測定するよりも、核種そのものの濃度が測定対象となるが、その濃度は極 めて低い。本研究では、土壌からヨウ素を化学分離し、加速器質量分析法(AMS = Accelerator Mass Spectrometry)を用いて測定した。はじめに、¹³¹I が検出されている土壌について¹²⁹I を測 定し、¹²⁹Iと¹³¹I濃度の直線的関係から、事故起源のヨウ素の同位体比(¹²⁹I/¹³¹I比)を推定した。 推定された同位体比は、炉内燃焼シミュレーションコード(ORIGEN)の結果とも誤差範囲内 で一致した。次に、文科省コレクションの試料中の¹²⁹Iを測定し、放射性ヨウ素の沈着量分布 を復元した。得られた沈着量マップは、多くの研究機関で行われている放射性核種の拡散・沈 着シミュレーションによる結果では再現できない、分布の微細構造情報を持つことが示された。 したがって、本研究の結果は、「大気拡散シミュレーション」(JAEA)のパラメータに有用な制 約を与えることが期待される。また、「被ばく線量再構築に関する研究」(放医研・県立医大) 及び「事故初期の被ばく線量評価」(国福大・県立医大)に対しても、直接の知見を提供できる と考える。

キーワード:¹²⁹I、¹³¹I、放射性ヨウ素沈着量、再構築

研究協力者

村松康行(学習院大学·教授)

I 研究目的

福島第一原子力発電所から放出された放射性物質の沈着状況等を詳細に調査し、その変化傾向 を把握することは、住民の被ばく線量を精度良く推定する上でも重要である。特に放射性ヨウ素 は人体に取り込まれると甲状腺に濃縮するため、住民の初期被ばくを評価する上で詳細な沈着量 を調べることが求められている。しかし、ヨウ素 131 は半減期が 8 日と短いため事故後数ヶ月た つと減衰してしまい、環境中ではほとんど検出されない。そのため、沈着量に関する情報は非常 に不足している。文部科学省により行われた平成 23 年 6 月の調査では、約 2,200 地点で各 5 試 料の土壌試料が採取された(合計約 10,000 試料)。それらの試料は、様々な大学や研究機関、お よび日本分析センターにおいてゲルマニウム半導体検出器を用いて放射性核種の定量が行われた。 ほとんど全ての試料について放射性セシウムが検出され、セシウム 137 とセシウム 134 の沈着量 マップが作成された。しかし、ヨウ素 131 については、半減期が短いため、試料採取時点ではす でに多くが減衰しており、検出下限値以上の測定結果が得られた地点は全体の 2 割未満であった ¹⁾。このように、放射性ヨウ素の土壌濃度マップは放射性セシウムに比べデータ数が少ないのが現 状である。

本研究では、ヨウ素 131 と同時に放出されたと考えられる長半減期の放射性同位体であるヨウ素 129 (I-129;半減期 1,570 万年)に注目した。ヨウ素 129 は極めて半減期が長いため、放射線 計測の手法では感度が足りない。本研究では、試料からヨウ素を化学分離した後、加速器質量分 析法 (AMS = Accelerator Mass Spectrometry)を用いて測定した。

はじめに、¹³¹Iが検出されている土壌について¹²⁹Iを測定し、¹²⁹Iと¹³¹I濃度の直線的関係から、 事故起源のヨウ素の同位体比(¹²⁹I/¹³¹I比)を推定した。推定された同位体比は、炉内燃焼シミュ レーションコード(ORIGEN)の結果とも誤差範囲内で一致した。これにより、ヨウ素 129 の測 定値から、ヨウ素 131 が復元できる。そこで、本研究では、文科省コレクションの試料中の¹²⁹I を測定し、放射性ヨウ素の沈着量分布を復元している。

本研究の目的は、

- i) これまでデータの得られていない地域の測定データを拡充し、放射性ヨウ素沈着マップ を精緻化すること
- ii) それにより、沈着分布の微細構造を明らかにし、WSPEEDI 等の大気拡散シミュレーションのパラメータに有用な制約を与え、もって、シミュレーションの精度向上に資する こと

である。上記目的を達するため、土壌中ヨウ素 129 の測定によるデータの蓄積を進めながら、測 定結果に対する誤差・信頼性の評価、得られた沈着マップの分布と大気拡散シミュレーションの 結果との比較の方法論の検討を行う。

さらに、沈着分布情報から、ヨウ素 131 被ばく線量評価にも直接の知見を提供できると考えられる。

これまでのデータで得られた沈着量マップでは、すでに多くの研究機関で行われている放射性 核種の拡散・沈着シミュレーションによる結果では再現できない、分布の微細構造情報を持つこ とが示された。したがって、本研究の結果は、「大気拡散シミュレーション」(JAEA)のパラメー タに有用な制約を与えることが期待される。また、「被ばく線量再構築に関する研究」(放医研・ 県立医大)及び「事故初期の被ばく線量評価」(国福大・県立医大)に対しても、直接の知見を提 供できると考える。 放射性ヨウ素の沈着マップ作成は、チェルノブイリ事故においてはなし得なかったことであり、 本研究の成果は、我が国独自の取り組みとして評価されるであろう。

II 研究方法

これまでの研究において、土壌中の¹²⁹Iを分析し、¹³¹Iの沈着量に関するデータを得るための研究 手法は確立している。本研究の目的のうち、データ補完に関しては、文科省コレクションより、

- ・ データ密度が疎である南西方向の地点(一部茨城県も含む)の測定
- ・ データ密度が疎である福島第一原子力発電所から 20km 圏内の地点の測定
- 同一地点でのばらつきを評価するための測定(文科省コレクションの同一メッシュから採取された5試料を測定して評価する)

を2年をかけて行う。また、もう一つの目的である、シミュレーションとの比較の方法論については、まず、本研究で得られている分布データをメッシュ分布図として表現して比較することを 検討する。その基礎として、得られた測定データの誤差の評価を重要視する。

具体的な測定手順は以下の通りである。

(1) 土壌試料とその調整

分析対象土壌試料は平成 23 年 6 月に採取された文科省コレクションより選んだ。土壌試料を U8 容器から取り出し、ビニール袋中で良く混ぜ合わせ、均一にした。これより一部を取り、乾燥 させメノウ製のボールミルにかけ粉砕し、分析用の粉末試料を作った。

分析を行う場合、土壌試料よりヨウ素を分離し、溶液に溶かす必要がある。そこで、ヨウ素が揮発し易い性質を利用し、試料を石英管中で加熱することで試料からヨウ素を揮発分離させ、トラップ溶液に捕集する方法をとった。試料(100~800mg)を燃焼ボートに秤量し、それに、五酸化バナジウムを混ぜた。試料をのせた燃焼ボートを石英管に入れ、水蒸

図1.加熱気化法を用いたヨウ素回収法

気を含んだ酸素気流を流した。電気管状炉(1000°C)により石英管を加熱し、揮発してきたヨウ素を TMAH (tetramethyl ammonium hydroxide)溶液(2%)入りのトラップで捕集した。なお、ヨウ素の化学分離法は、Muramatsu et al. (2008)によった²⁾。

(2) ヨウ素 127 とヨウ素 129 の測定

トラップ溶液の一部を用い、ICP-MS(Agilent 7500)により、ヨウ素 127(安定ヨウ素)を測定し、土壌中の安定ヨウ素濃度を求めた。

また、残りのトラップ溶液を用い溶媒抽出・逆抽出を行い、ヨウ素を分離・精製し、それに硝酸銀を加えて AgI を作成した。この AgI をターゲットとし、東京大学タンデム加速器研究施設にて、加速器質量分析 (AMS) により、¹²⁹I/¹²⁷I 比を測定した。AMS の測定条件などは、Matsuzaki et al.(2015)に従った³⁾。

(3) ヨウ素 131 の沈着量の算出
ヨウ素 131 沈着量 (Bq/m²) は以下の手順で求めた。AMS で得られた試料中の¹²⁹I/¹²⁷I 比と加え たキャリア量により試料中のヨウ素 129 濃度を (Bq/kg) が求められる。(なお、土壌中に含まれ るヨウ素 127 量は、キャリアとして加える量に比べて微量なため、無視しても大きな違いは出な いが、より正確には、ICP-MS で測定したヨウ素 127 の濃度を加味して補正する。) 濃度の値をヨ ウ素 129 の沈着量 (Bq/m²) に変換し、沈着量を¹²⁹I/¹³¹I 比で除することにより、ヨウ素 131 の沈 着量 (Bq/m²) が算出される。福島第一原子力発電所起源の放射性ヨウ素の同位体比 (¹²⁹I/¹³¹I) は、 et al. (2015)のものを用いた⁴⁾。

(倫理面への配慮)

本研究は、土壌中の微量放射性ヨウ素の分析が主であり、安全性に問題はない。また、個人情 報にあたる可能性のある陰膳試料中のヨウ素濃度の発表などに際しては、関係部署とも連絡を取 り、慎重に行う。分析作業や放射線の取り扱いに際しては、規則を遵守し、安全面でも細心の注 意を払う。

III 研究結果

(1) これまでに再構築されたヨウ素 131 沈着分布

これまでに、900 地点あまりにおけるヨウ素 131 再構築データが得られている。これらの結果 を図2に示す。

図 2. 本研究でこれまでに得られた¹³¹I 沈着量(Bq/m²)のマップ

さらに、これを WSPEEDI 等の拡散シミュレーションによる予測分布と比較するため、メッシュ分布図としたのが、図3になる。図3を見ると、分布の微細構造が鮮明に表現されていること

が分かる。シミュレーションの結果との定量的な比較については、今後の課題である。

(2) データの誤差評価

得られたヨウ素 131 沈着量に含まれる誤差を図4のように評価した。オーバーオールで 30%以下と見積もられる。

Longitude

図 3. ヨウ素 131 の沈着マップ(メッシュ変換したもの) 沈着量のスケールは図 2.と共通

図4. 再構築されたヨウ素 131 値の誤差の評価

IV 考察

福島第一原子力発電所から 80km 圏内におけるヨウ素 131 の沈着量は、5 桁に渡って分布してい る。現在の再構築データ精度 30%は十分精緻なマップを作成することのできる精度である。今後 さらに精度を上げるための一つのポイントは、同一サンプリングサイト内でのばらつきであろう。 文科省コレクションはほとんど同一地点と見なされる領域から 5 試料の土壌試料を採取している。 この 5 試料の放射性セシウムの測定値は、同一ではなく、ばらつきを持つが、そのばらつきが代 表的には 17%程度になる。このようなばらつきを本質的に持ち得る試料コレクションを実測する 場合、そのサンプリングサイトの代表的な沈着量を精度良く推定することは難しい。基本的には 放射性核種が地表面に均一に沈着しないことがばらつきの原因だと思われる。したがって、ある 程度の数を測定し、平均を取る、というのが唯一の方法である。

本研究で得られたヨウ素 131 の沈着分布は、十分な情報を持っているが、例えば、分布の微細 構造を定量的に抽出するのは今後の課題である。現段階では、シミュレーション結果と異なる事 が視覚的には了解されても、その違いを定量的には表現できない。今後は分布の違いを定量的に 評価する方法論の導入が必要である。

V 結論

本研究では、文科省コレクションの試料中の¹²⁹Iを測定し、放射性ヨウ素 131 の沈着量分布を 復元した。得られた沈着量マップは分布の微細構造情報を持つことが示された。本研究の結果は、 「大気拡散シミュレーション」のパラメータに有用な制約を与えることが期待される。また、「事 故初期の被ばく線量評価」に対しても、直接の知見を提供できると考える。放射性ヨウ素の沈着 マップ作成は、チェルノブイリ事故においてはなし得なかったことであり、本研究の成果は、我 が国独自の取り組みとして評価され得るものである。

VI 次年度以降の計画

ヨウ素 129 測定データ点を増やし、マップの精緻化を進める。また、同一メッシュ内における 放射性核種の分布のばらつきの性質を調べ、より適切な代表値を推定する方法を検討する。同時 に、実測マップと計算機シミュレーションの結果を定量的に比較し、その結果をシミュレーショ ンのパラメータ選択にフィードバックする。それによって、高精度な時系列分布状況を復元し、 被ばく線量評価の高精度化に貢献する。

この研究に関する現在までの研究状況、業績

 Muramatsu Y Matsuzaki H Toyama C et al. Analysis of ¹²⁹I in the soils of Fukushima Prefecture: Preliminary reconstruction of 131I deposition related to the accident at Fukushima Daiichi nuclear power plant, Journal of Environmental Radioactivity 2015; 139: 344-350. 引用文献

- 文部科学省,"文部科学省による放射線量等分布マップ(ヨウ素131の土壌濃度マップ)の作成について(第1次分布状況等調査:H23年9月21日)",文部科学省ホームページ http://radioactivity.mext.go.jp/ja/contents/6000/5047/view.html
- 2) Muramatsu Y Takada Y Matsuzaki H et al. AMS analysis of ¹²⁹I in Japanese soil samples collected from background areas far from nuclear facilities, Quaternary Geochronology 2008; 3: 291-297.
- 3) H. Matsuzaki, C. Nakano, Y.S. Tsuchiya, S. Ito, A. Morita, H. Kusuno, Y. Miyake, M. Honda, A.T. Bautista VII, M. Kawamoto, H. Tokuyama (2015) The status of the AMS system in its 20th year, Nuclear Instrument and Method of Physics Research B361, 63-68. DOI:10.1016/j.nimb.2015.05.032.
- Y. Miyake, <u>H. Matsuzaki</u>, K. Sasa, T. Takahashi (2015) Measurement of long-lived radionuclides in surface soil around F1NPP accident site by Accelerator Mass Spectrometry, Nuclear Instrument and Method of Physics Research B361, 627-631. DOI: 10.1016/j.nimb.2015.05.017.

Retrospective reconstruction of Ioidne-131 distribution released from the Fukushima Daiichi Nuclear Power Plant accident through the analysis of Ioidne-129

Hiroyuki Matsuzaki

The University Museum, The University of Tokyo

Keywords: ¹²⁹I; ¹³¹I; Fukushima soil; deposition density; reconstruction

Abstract

Iodine-131 is one of the most critical radionuclides to be monitored after release from reactor accidents due to the tendency for this nuclide to accumulate in the human thyroid gland. However, there are not enough data related to the reactor accident in Fukushima, Japan to provide regional information on the deposition of this short-lived nuclide (half-life = 8.02 d). In this study we have focused on the long-lived iodine isotope, ¹²⁹I (half-life of $1.57*10^7 \text{ y}$), and analyzed it by accelerator mass spectrometry (AMS) for surface soil samples collected at various locations within 80 km region from Fukushima Daiichi Nuclear Power Plant. In order to reconstruct a deposition map of ¹³¹I, we determined the ¹²⁹I concentrations (Bq/kg) in over 800 soil samples. The Overall error for reconstruction ¹³¹I value is estimated to be within 30% which is enough to observe detailed distribution structure. The knowledge obtained from this reconstruction model" of radioiodine which will result in the more precise time course deposition history of ¹³¹I.

東京電力福島第一原子力発電所事故における住民の線量評価に関する包括研究

放射性ヨウ素の血中動態並びに甲状腺集積率の予測

楠原洋之 (東京大学大学院薬学系研究科教授)

研究要旨

近年の日本人における放射性ヨウ素の甲状腺集積率は平均して15%程度で有り、1958年以降 の文献報告値と比較しても低い値である。種々曝露シナリオに従って、放射性ヨウ素の甲状腺 集積率を推定するためには、放射性ヨウ素のほか、安定同位体ヨウ素の摂取状況等種々の情報 を統合する必要がある。本研究では、曝露シナリオに従って、放射性ヨウ素の血漿中濃度なら びに甲状腺集積率の時間推移を推定するため、日本人における体内動態パラメータの決定なら びにモデル構築を行った。甲状腺取り込みクリアランスに関しては、1967年当時と絶対値が同 程度であることを確認した。各体内動態パラメータの平均値と分散に基づいて、パラメータセ ットをランダムに発生させ、甲状腺集積率の分布を得、集団に関する分布を推定する方法を確 立した。甲状腺集積率の非線形性に関して、日本人での測定データに基づいて、パラメータを 決定し、モデルに導入した。ラットに放射性ヨウ素の経気道投与を行い、12時間後に15%程度 の集積が認められた。

キーワード:体内動態、日本人パラメータ、甲状腺集積率、モデル解析、経気管投与

研究協力者: 前田和哉(東京大学大学院薬学系研究科講師)

I 研究目的

¹³¹I によらず遊離ヨウ素は生体内で甲状腺へと顕著に集積し、血漿中から甲状腺内へと濃縮される。甲状腺内では、甲状腺ホルモン(triiodothyronine ならびに thyroxine)の前駆体であるモノ ヨードチロシン(MIT)やジヨードチロシン(DIT)に取りこまれ、最終的に、甲状腺ホルモンと して血漿中へと分泌される。そのため、¹³¹I の物理学的半減期は 8 日であるのに対して、平均的 な成人の甲状腺では、ヨウ素の生物学的半減期は約 80 日と非常に長い。放射性ヨウ素への曝露は、 甲状腺がんの発症リスクを高める。福島第一原発の事故後、放射性ヨウ素の測定を開始した時点 では、すでに¹³¹I は減衰しており、¹³¹I の被曝線量に関する情報は推定するほかない。

ICRPのreference man では、体内に吸収された放射性ヨウ素の30%が甲状腺に集積すると想定 している。血漿中から甲状腺内へのヨウ素の移行は、非線形性を示し、安定同位体ヨウ素の摂取 により、甲状腺集積率ならびに甲状腺移行速度定数は低下する。従来から、日本人は欧米人に比 較して、昆布などの安定同位体ヨウ素含量の高い食品を日常的に摂取する機会が多いことから、 甲状腺集積率は低いとされている。この点を、平成25年度に、甲状腺機能が健常な壮年男性を対 象として、経口投与24時間後の甲状腺集積率ならびに血漿中濃度の時間推移、尿中排泄量を測定 した。本研究では、放射性ヨウ素の種々曝露シナリオに基づいて、仮想的な日本人集団における 甲状腺集積率およびその結果生じる内部被曝線量推定の精緻化を図ることを目的として、これま でに日本人で測定された放射性ヨウ素の実測値と、平成25年度に得た測定結果を統合的に解析す

408

ることで、日本人における甲状腺集積率の中央値ならびに分散を推定する。また、個体間変動要 因として、安定同位体ヨウ素摂取量が想定されるため、数理モデルを用いて、血中あるいは尿中 の安定同位体ヨウ素量と甲状腺集積率とを関連付け、日本人集団における甲状腺集積率を推定す る方法論を開発することを目的とする。

Ⅱ 研究方法

①文献情報の収集

既存の文献データベース(PubMed、Medical Online 等)に対して、非線形性ならびに甲状腺容 積に関する文献収集を行った。

②甲状腺移行率に関するモデル解析

平成25年度に実施した臨床試験のデータ(血中濃度の時間推移、甲状腺蓄積率、尿中排泄)を 説明するための数理モデルを構築し、非線形性最小二乗法により、体内動態パラメータ(吸収速 度定数、分布容積ならびに甲状腺移行クリアランス)の最適化を実施した。腎クリアランスは実 測値を用いた。血中濃度の時間推移を表す線形1-コンパートメントモデルあるいは2-コンパート メントモデルに、中心コンパートメントから尿中排泄に関連した腎クリアランス、甲状腺移行ク リアランスを設定した。投与経路に関しては、臨床試験デザインに即して、基本的に吸収速度定 数(*k*_a)を用いた一次速度に従う吸収を仮定したほか、非常に早く吸収が完了し、初期の立ち上 がりが認められない事例では、時間0に外挿した放射性ヨウ素濃度を用いて、静脈内瞬時投与を 仮定した解析を実施した。血中濃度の時間推移ならびに甲状腺集積の時間推移の同時当てはめ計 算とした。また、吸収速度定数、分布容積、甲状腺移行クリアランスをフリーパラメータ、腎ク リアランスは実測値を固定値として、非線形性最小二乗法を実行した。本解析には、すべて Napp¹⁾ を利用して行った。

③Virtual clinical trial に基づいた放射性ヨウ素の甲状腺集積に関する個人間変動の推定

平成26年度のモデル解析の結果、得たパラメータの平均値ならびに分散値に基づいて、体内動 態パラメータ(分布容積、腎クリアランスならびに甲状腺取り込みクリアランス)のセットを、 Kato M らの報告に従ってランダムに発生させた²⁾。甲状腺取り込みクリアランスに関しては、平 均値と分散が同定度であったことから、Nagataki らの報告値³⁾も含めている。

分布容積(Vd)と腎クリアランス(CL_R)ならびに甲状腺取り込みクリアランス(CL_{thyroid})から、静脈 内投与後から 24 時間後までの血液中放射性ヨウ素の時間推移-時間曲線下面積 AUC を下記の式 に基づいて算出した。

$$AUC = \frac{Dose}{CL_{thyroid} + CL_R} \left[1 - \exp(-\frac{CL_{thyroid} + CL_R}{Vd} 24) \right]$$

24 時間までの甲状腺移行率(F24)は

$$F_{24} = \frac{CL_{thyroid}AUC}{Dosee} = \frac{CL_{thyroid}}{CL_{thyroid} + CL_R} \left[1 - \exp(-\frac{CL_{thyroid} + CL_R}{Vd} \times 24) \right]$$

に従い計算した。各パラメータの平均値と分散に基づいて、以下の通り、対数正規分布を仮定 して、ランダムに 500 件のパラメータセットを発生させた。

 $z_i = (-2 \ln u_i)^{0.5} \cos(2 \pi u_{i+1})$

 $z_{i+1} = (-2 \ln u_i)^{0.5} \sin(2 \pi u_{i+1})$ parameter = exp[$\mu \times (1+\sigma z)$] $\mu = \ln (arithmetic mean) - \sigma^2/2$ $\sigma = \{\ln[(CV/100)^2 + 1]\}^{0.5}$

その場合、ポピュレーションサイズ(500件)からするとごくわずか(数例)ではあるが F₂₄が 50% を超える事例も出てきてしまう点が、観察される甲状腺集積率からすると過大であると指摘された。本件に関して、以下の修正を行った。

- 各パラメータの最大値と最小値を除いて、平均と分散を算出した。
- 非線形性最小二乗法で得たパラメータを用いて、F₂₄を計算すると、実測値を 10%程度上回る。全 15 例における平均値を算出し、24 時間値の算出にあたりこの割合(0.878)を乗じた。
- 試行回数を10回として、各ヒストグラムの区間の人数を試行回数の平均値とした。

さらに、任意の摂取タイミングで、安定同位体ヨウ素を摂取した際の、放射性ヨウ素の甲状腺 集積を推定するため、Python上で微分方程式の数値解法プログラムを構築した。 ④甲状腺取り込みクリアランスの非線形性について

放射性ヨウ素の甲状腺集積は過剰な安定同位体ヨウ素存在下で低下することが知られている。 この非線形性に関して、分子メカニズムに基づいた非線形性に関する文献情報を収集した。また、 Nagataki らの報告²⁾では、血漿中の遊離形無機ヨウ素濃度を測定し、同時に甲状腺移行クリアラ ンスが測定されていた。この濃度と取り込み速度の関係から、Michaelis-Menten 式に従い、K_mな らびに V_{max} 値を決定した。

In vivo での有用性を検証するため、林らの報告⁴⁾に従い、1mg、5mg、100mg を分割投与後の甲 状腺放射線移行率(安定同位体を投与後、24、48、72 時間後の回復過程も評価されている)を測 定した臨床試験の再現性を評価した。甲状腺移行クリアランスに Michaelis-Menten 式に基づいた 飽和性を含め、血液中濃度の時間推移を再現するとともに、放射性ヨウ素の甲状腺集積率を推定 した。線形条件下での甲状腺集積率は 30%程度となるが、報告値(14.6%)を再現するため、平 均して K_m値の 1.4 倍の安定同位体ヨウ素が血液中に存在することを想定した。分割投与として、 0、5、11 時間後に非標識体を投与し、最終投与時に放射性ヨウ素を 24 時間間隔で3回投与した ものとして、前述の Python 上にて構築したプログラムを用いて、甲状腺集積率の時間推移に関す るシミュレーションを行った。

⑤ ラット経肺投与後の、甲状腺移行率の時間推移の測定

既報では、蒸気(Vapor)による放射性ヨウ素の曝露試験が行われているが、放射性ヨウ素の放射 活性の大部分は腸管に存在し^{5,6}、経口吸収を主に反映していると考えられる。ペンセンチュリ ーを用いることで、エアロゾルとして放射性ヨウ素を投与することが可能である。ラットにイソ フルランを吸引させることで麻酔をかけ、125-I 薬液 50μL (6.5uCi/匹、リン酸緩衝生理食塩水)を 経気管投与し、12/24/72 時間後、麻酔下にて、採血後に甲状腺を摘出した。放射線量はγカウ ンターで測定した。

(倫理面への配慮)

臨床データは、文献また平成25年度に実施した¹²⁵Iを用いた体内動態試験の結果である。平成25年度に実施した臨床試験では、東京大学、長崎大学、相生会博多クリニックの倫理委員会の承

認を得た。

動物実験に関しては、「研究機関等における動物実験等の実施に関する基本指針」及び細則を遵 守の上、所属研究機関の承認を得て実施した。

III 研究結果

①甲状腺容積に関する文献情報の収集

平成 25 年に我々が実施した臨床試験において、超音波により甲状腺容積を測定した。その平均 値は 12g (1 例の外れ値を除くと 10g)と ICRP reference man (20g)⁷⁾に対して低い値であった。過去 の日本人での評価事例では、autopsy による摘出した甲状腺の重量測定では平均値はほぼ 20 g 程 度 (10~30g の幅を示す)であり⁸⁾、CT での測定報告⁹⁾では、20g 程度(4 人)と 10g 程度(2 人)の群 に分かれているように見える。少なくとも以前は、ICRP reference man と同定度⁷⁾の 20g 程度であ った。我々と同じく超音波を体積測定に用いた福島での報告例¹⁰⁾でも、同様に甲状腺容積の絶対 値が小さい。方法論に関しては、超音波での測定でも、MRI などと同定度の精度が得られること を示す文献¹¹⁾もある。専門家へのインタビューの結果、日常の診療上、甲状腺容積の絶対値を精 密に測定することが特に不可欠ではないことから、超音波での甲状腺容積測定の精密さが担保さ れていない等の理由によりその絶対値の信頼性は担保されていない。MRI で甲状腺容積を精密に 測定するためのプログラムが開発されていない、CT での測定では被験者への被曝が懸念される など、生体において甲状腺容積を精密に評価するには至っていない。甲状腺容積が、ICRP reference man に比較して小さいとした場合、甲状腺移行率は ICRP reference man に比較して小さいとした場合、甲状腺移行率は ICRP reference man と同定度と推定される。

②甲状腺移行における非線形性に関する文献情報の収集

血液から甲状腺内への移行に関しては、基底膜側からの取り込みに働く Na/I symporter (NIS)、 細胞内から濾胞内への分泌に働く pendrin ならびに濾胞内のペルオキシダーゼが想定される。NIS ならびにペルオキシダーゼのミカエリス定数はそれぞれ 9 μ M¹²⁾、約 200 μ M¹³⁾と測定されている。 pendrin に対しては、直接的に K_m値を決定した論文は見いだせなかったが、アフリカツメガエル 卵母細胞を用いた発現系において、50 μ M の放射性ヨウ素(¹²⁵I)存在下で有意な取り込みが観察さ れていること、5mM の安定同位体ヨウ素存在下で 10%程度に低下していることから¹⁴⁾、その K_m 値は NIS よりも大きいと想定される。仮に、pendrin 発現細胞での取り込みが全て pendrin による ものとすると、500 μ M 程度の K_m値であることが推定される。一方で、Nagataki らは、血漿中の 遊離形無機ヨウ素と甲状腺取り込みクリアランスの関係を報告しており、以下の解析では、報告 された臨床データを採用した。

③放射線ヨウ素の血中動態ならびに甲状腺移行率の体内動態モデル解析

昨年度に引き続き、血液中ヨウ素濃度の時間推移は、コンパートメントモデルを用いて解析した。その結果、個体に応じて、吸収が速やかに生じ、静脈内瞬時投与と見なせる事例のほか、1次の吸収速度からなる事例など、個体差も認められた。また、11例が1-コンパートメントモデル、4例が2-コンパートメントモデルを用いた当てはめ計算が適当であった。中心コンパートメント から甲状腺への移行に関しては、甲状腺から血液中への戻りを想定していない。本体内動態解析により、放射性ヨウ素の腎クリアランスならびに甲状腺移行クリアランスについて、図1に示す

図1 123-Iにおける日本人体内動態パラメータの平均と分散

甲状腺移行クリアランスに関して、1967年 の報告³⁾と比較した結果、平均値ならびに分 散に関して大きな変動は認められなかった (図2)。そのため、以下の解析では、この報 告値も含めている。

④Virtual clinical trial に基づいた放射性ヨウ素の甲状腺集積に関する個人間変動の推定体内動態パラメータからの平均値ならびに分散を用いて、対数正規分布を用いてパ

図2 甲状腺取り込みクリアランスの比較

ラメータをランダムに 500 件発生させた。パラメータの分布は、元となった臨床データと一致していた。各パラメータセットに対して、24 時間までの血液中濃度時間曲線下面積並びに甲状腺集 積率を推定し、甲状腺集積率に関するヒストグラムを作成した。独立してパラメータを抽出する ため、組み合わせによっては非常に高い集積率

(>50%)を示すパラメータセットも確率論的に 発生してしまう。II 研究方法の項に記載した通 りのアプローチにより、改善が認められた。そ れでも、40%という高い値を示す事例が 3/500 の割合で発生している。Expert Judgement として、 ある閾値以上の移行率を示すパラメータセット は、甲状腺集積率を計算に含めないことも検討 する必要がある。

上記のパラメータセットを用いること で、種々曝露シナリオ(安定同位体ヨウ 素、放射性ヨウ素の摂取量・時間)に従 って、モンテカルロ法により放射性ヨウ

図3 甲状腺取り込みクリアランスのヒストグラム 赤:補正なし、青:最大値・最小値の削除、緑:F24 の補正

素の甲状腺集積率を推定することができる。曝露シナリオごとに異なる摂取・曝露時間、曝露量 に対応するため、スクリプト言語 Python 上で、Runge-Kutta-Gill 法を用いた数値解法プログラム を構築した。

at the factor college and	
2 (h 2 2 2 0 − 5 − 4 + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>i = 2 - Comparisont model = 2 - C = CA, D = S & D &</pre>
7 😼 70 😤 3	2Comp.py × Tkinter.py × iodide_runge.py × jissyu_HXI.py × ticker.py × MoIPK_Example.py × jissyu_LXI.py × stream.py ×

図4 Python 上で構築した体内動態シミューレションプログラムのスクリーンショット

⑤甲状腺移行の非線形性に関するシミュレーション

Nagataki らの報告による遊離形無機ヨウ素濃 度と甲状腺移行クリアランスの関係から、Km 値と V_{max} 値を、それぞれ 0.148µM と 872ml/hr と算出した。Python 上にて構築した微分方程式 の数値解法プログラムを用いて、甲状腺への移 行に飽和過程があることを想定した数理モデル を構築し、安定同位体ヨウ素摂取時の放射性ヨ ウ素の甲状腺移行率を推定した。1mg服用時に は、安定同位体ヨウ素摂取の効果が、若干過大 に評価される傾向にあるものの、Nagataki らの 報告³⁾に基づいた体内動態パラメータで、安定 同位体ヨウ素の摂取に関する時間推移をほぼ説 明することができた。林らの報告⁴⁾では、安定 同位体ヨウ素非服用時(試験開始前)の甲状腺 集積率は14.6%であり、これを非線形性のみで 達成するためには、Km値の1.4倍の遊離形ヨウ 素の存在を仮定する必要がある。1mgの安定同 位体ヨウ素服用で得られる最大濃度は0.1µMで あることから、日本人の安定同位体ヨウ素摂取 量からすると、妥当な数字ではないかと思われ る。Km値をさらに2倍に増大させると、1mg 服用時の効果は認められなくなるが、そのた

めに必要な遊離形安定同位体ヨウ素濃度も増加するため、日常的に安定同位体ヨウ素摂取量の観 点からも妥当性を検証する必要がある。

臨床データで得られている K_m 値と、ヨウ素の甲状腺移行の分子メカニズムから得られている K_m 値との間には、大きな乖離が存在し、さらなる解析を必要とする。

⑥ラット経気管内投与後の放射性ヨウ素(125-I)甲状腺移行率の時間推移の測定

ラットに放射性ヨウ素をエアロゾルにて経肺投与試験をおこなった。投与5分後には、肺、気 管、胃および小腸で放射線量を測定した結果、これらの組織の中では95%が肺および気管に存在 しており、経気管投与が実施できていることが確認された。また、5分後の血液には平均して10% 程度(2例のラットにおいて13%、5.8%であった)の放射線量が検出されており、経肺投与後、 速やかな血液中への移行も認められた。12、24、72時間後に、甲状腺へは投与量の13.3±1.7、11.4±1.2 および7.52±0.59%が甲状腺へと集積していた。

IV 考察

食事制限の有無の違いはあるものの、1958年以降の日本人データと比較して、放射性ヨウ素の 甲状腺集積率は低い数字を示した。また、国内の別の機関で近年実施された臨床データ(関東で 実施)との比較において、平均値は一致しており、長崎で実施した我々の臨床試験において、甲 状腺集積率に関して地理的な要因を排除できると考えられる。また、1967年の報告値と甲状腺移 行クリアランスの平均値ならびに分散は一致しており、少なくともここ数十年で、甲状腺集積に 関する体内動態パラメータは大きく変動していないことがわかる。

一方で、甲状腺の大きさに関しては議論の余地がある。超音波法で測定した甲状腺容量に関し ては、過去の報告やICRP reference man に比較して小さい傾向を示した。これは福島県立医科大 学で実施した試験においても、同様である。超音波での測定方法による甲状腺容積の絶対値に対 する信頼性については、10g 程度の甲状腺容積から、MRI や他の手法と比較しても遜色(20%程 度の誤差)ないことが報告されている。我々の臨床試験を実施した臨床試験施設ならびに福島県 立医科大学の先生に本件に関してインタビューした結果、これまで甲状腺容積の絶対値が診療上 重要視されてこなかった背景もあり、本方法での甲状腺容積の絶対値に関する信頼性について結 論に至ることはできなかった。甲状腺容積は被曝線量を推定する際に不可欠のパラメータである ことから、今後精緻な測定法などを利用して、さらに解析を必要とする。現状では MRI で断層像 を得ることができるが、容積計算のアルゴリズムが登載されていないため、仮に定量したとして 測定値がどの程度真の値を示しているか、検討する必要がある。CT での測定がもっとも、信頼 できるとのことである。測定に際して、被験者への被曝を伴うことが懸念事項である。

モデル解析の結果、¹²³ I の血中動態は解析事例の追加により、1-コンパートメントモデル、2-コンパートメントモデルに従う事例が見出されたが、1-コンパートメントモデルに従う事例が多 数を示した。中心コンパートメントは細胞外容積に近い値を示し、それと同等のボリュームに相 当するコンパートメントを置く必要があった。モデル解析により、甲状腺移行の時間推移も説明 できるパラメータを決定することができた(図1)。

各動態パラメータが対数正規分布に従うとして、Excelのランダム関数を利用して、個々のパ ラメータの CV 値に従った多数のパラメータセットを発生させた。本パラメータセットを用いて、 甲状腺集積に関する個人間変動を推定した(図3)。パラメータを臨床データの平均値ならびに分 散に従って、ランダムに発生させた場合には、確率論上、甲状腺集積率が高い値を生じることが あり得る。そこで、パラメータに制限を加えた結果、こうした事例の発生数を抑制することがで きた。臨床試験で観察された範囲外の甲状腺集積率を示すパラメータセットを除外するなど、実 測値に基づいた制限(Expert Judgement)についても検討する余地がある。

体内動態モデルならびに上記任意に発生させたパラメータセットを利用することで、種々曝露 シナリオに従った放射性ヨウ素の甲状腺集積率の分布を推定することが可能になる。①種々曝露 シナリオに従った際の甲状腺集積率を推定するため、任意の時間でのヨウ素摂取を物質収支式に 組み込むためことが必要である。従来のプログラムは定規格の薬物量を一定時間間隔で服用する 際のプログラムであったため、新たに Python 上でプログラムを構築した。②甲状腺移行クリアラ ンスの非線形性に関する情報収集を行った。その結果、既知の動態パラメータを利用することで、 別個の臨床試験結果を再現することができた(図 5)ことから、本パラメータを用いて、食事等によ る安定同位体ヨウ素の摂取を考慮した放射性ヨウ素の甲状腺集積推定に貢献するものと考えてい る。

ラット経気管内投与について、放射性ヨウ素を生理食塩水にてエアロゾルでの経気管投与法を 確立した。経気管投与時でも、静脈内投与時と同様に放射性ヨウ素が甲状腺へと集積することを 確認することができた。ただし、投与5分後のマスバランスとして、半分程度の放射線量が既存 の測定組織(肺、気管、胃、小腸、血液)で説明できる。放射性ヨウ素は速やかに吸収されるこ とを示している。

V 結論

放射性ヨウ素の血中濃度の時間推移は1-コンパートメントモデルないし、2-コンパートメント モデルにより説明することができ、血液中濃度の時間推移、尿中排泄量ならびに甲状腺移行の時 間推移をすることができるパラメータを、被験者ごとに得ることができた。本モデルならびにパ ラメータの平均値ならびに分散から発生させたパラメータセットを利用することで、種々曝露シ ナリオに基づいて、放射性ヨウ素の甲状腺集積率の分布を推定することが可能である。

実験動物における経気管投与の方法を確立し、放射性ヨウ素が肺から速やかに吸収され、甲状腺に蓄積することを確認した。

VI 次年度以降の計画

本年度構築した血液中ならびに甲状腺移行に関する数理モデルを発展させるため、小児におけ る甲状腺移行率を評価するため、主に腎機能に関する文献情報を収集し、加齢に伴う変動を評価 する。

この研究に関する現在までの研究状況、業績

当初の予定どおり、日本人の甲状腺集積率に関する情報収集を行い、放射性ヨウ素の甲状腺 集積率が ICRP の reference man よりも低い値であることを確認した。甲状腺移行クリアランス について、ここ 50 年程度では大きな変動が認められないことを確認した。集団における甲状腺 集積率の推定法、非線形性に関する情報統合も進め、健常成人の甲状腺集積に関するシミュレ ーションによるブラッシュアップを行った。15th International Congress of Radiation Research のサ テライトワークショップ"Updating the dose reconstruction for residents in Fukushima Nuclear Accident"(平成 27 年 5 月 25-29 日、京都)にて、これらの成果を発表した。(Kusuhara H and Maeda K, Evaluation of Japanese kinetic parameters for thyroid accumulation of radioiodide)

引用文献

- Hisaka A, Sugiyama Y. Analysis of nonlinear and nonsteady state hepatic extraction with the dispersion model using the finite difference method. J Pharmacokinet Biopharm. 1998;26:495-519
- 2) Kato M, Chiba K, Ito T, Koue T, Sugiyama Y. Prediction of interindividual variability in pharmacokinetics for CYP3A4 substrates in humans. Drug Metab Pharmacokinet. 2010;25:367-78
- Nagataki S, Shizume K, Nakao K. Thyroid function in chronic excess iodide ingestion: comparison of thyroidal absolute iodine uptake and degradation of thyroxine in euthyroid Japanese subjects. J Clin Endocrinol Metab. 1967;27:638-47
- 4) 林和徳、ヨード含有薬剤の甲状腺機能検査に及ぼす影響、日本内分泌学会雑誌、1972;48:182-94
- 5) Willard DH, Bair WJ. Behavior of I-131 following its inhalation as a vapor and as a particle. Acta radiol. 1961;55:486-96
- 6) Barry PJ. The deposition of radioiodine in the thyroids of rats following inhalation of the vapour. Health Phys. 1961 4:305-7
- 7) ICRP publication 89 Basic anatomical and physiological data fro use in radiological protection: reference values
- 8) Tanaka G. Anatomical and physical characteristics for Asian Reference Man. NIRS-M-95, 1993
- 9) 中村修、秋山三郎、佐野芳知、内山暁 CT による甲状腺重量(体積)の測定、日本放射線技術学会雑誌、1986;42:612-619
- 10) Suzuki S, Midorikawa S, Fukushima T, Shimura H, Ohira T, Ohtsuru A, Abe M, Shibata Y, Yamashita S, Suzuki S. Systematic determination of thyroid volume by ultrasound examination from infancy to adolescence in Japan: the Fukushima Health Management Survey. Endocr J. 2015;62:261-8
- 11) van Isselt JW, de Klerk JM, van Rijk PP, van Gils AP, Polman LJ, Kamphuis C, Meijer R, Beekman FJ. Comparison of methods for thyroid volume estimation in patients with Graves' disease. Eur J Nucl Med Mol Imaging 2013;30(4):525-31
- 12) Dayem M, Basquin C, Navarro V, Carrier P, Marsault R, Chang P, Huc S, Darrouzet E, Lindenthal S, Pourcher T. Comparison of expressed human and mouse sodium/iodide symporters reveals differences in transport properties and subcellular localization. J Endocrinol. 2008;197:95-109
- 13) Pommier J, Deme D, Nunez J. Effect of iodide concentration on thyroxine synthesis catalysed by thyroid peroxidase. Eur J Biochem. 1973;37(3):406-14
- 14) Scott DA1, Wang R, Kreman TM, Sheffield VC, Karniski LP. The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet. 1999;21(4):440-3.

Prediction of blood disposition and thyroid accumulation of radioiodide

Hiroyuki Kusuhara, Kazuya Maeda

Graduate School of Pharmaceutical Sciences, the University of Tokyo

Keywords: disposition, parameters in Japanese population, thyroid accumulation, model-based analysis

Abstract:

Iodide accumulates in the thyroid gland upon exposure. The purpose of this study was to construct a methodology for estimating the thyroid accumulation of radioiodide in Japanese people following various exposure scenarios during the Fukushima nuclear accident. Parameter estimation (clearance for thyroid uptake, distribution volume and absorption rate constant) to account for the time profiles of blood concentrations and thyroid accumulation of 123-I was conducted using 1- or 2-compartment model, assuming 1st order absorption or otherwise, rapid absorption. The thyroid uptake clearance of 123-I with regard to the blood concentration in our study was comparable to those reported in1967 in Japanese. Five hundred parameter sets of kinetic parameters of radio-iodide were randomly generated using arithmetic mean, and deviation of each parameter. Using the parameter sets, distribution of the thyroid accumulation of radio-iodide for 24 hours was calculated. To estimate the thyroid accumulation of radioiodide for 24 hours upon various exposure scenarios, a program was constructed on Phython to obtain numerical solution of simultaneous differential equation. Finally, the parameters (K_m and V_{max}) related to the non-linearity in the thyroid uptake clearance were estimated assuming the Michaelis-Menten equation. Introduction of the non-linearity in the model analysis could provide the thyroid uptake values similar to the observed values when subjects who received 1, 5 and 100 mg excess stable iodide. Taken together, the blood concentration time profiles and thyroid accumulation of radio-iodide could be simulated by integrating information about the ingestion of stable iodide, and exposure to radio-iodide.