ナノ材料の用途、使用量、開発状況

1. 国内における代表的なナノ材料の製造等の状況

ナノ材料は現在盛んに研究開発や製品開発が進められている分野で、その製品の製造量や用途については、まとまった統計等はない。

ここでは、厚生労働省による「ヒトに対する有害性が明らかでない化学物質に対する労働者ばく露の予防的対策に関する検討会、ナノマテリアルの安全対策に関する検討会(合同会合)」(第1回及び第2回)で使用された資料を主に活用し、その他の新聞情報等の情報もあわせて集約した。

表1はナノ材料の使用状況の総括表である。

用途別には、化粧品、家電・電気電子製品、塗料・インクでの使用例が多く、素材 別に見ると、二酸化チタン、シリカ、ナノクレイの使用例が多い。

また、図1に同じく厚生労働省の合同部会での資料から、主要なナノ材料の使用量と粒子径の図を示した。ナノ材料の区分に入る粒子径(1~100nm)の素材について使用量別にみると、下記のような使用量があるものと推測されている。

○1000トン/年以上:カーボンブラック、シリカ、二酸化チタン、ニッケル

○100 トン/年以上: 顔料微粒子、アルミナ、酸化亜鉛、モンモリロナイト、

アクリル微粒子

○10 トン/年以上 : 複層カーボンナノチューブ、デンドリマー、銀+無機粒子

○1トン/年以上:フラーレン、酸化セリウム

さらに、表2に上記の厚生労働省第2回合同部会での資料及びその他の情報に基づいて、代表的なナノ材料の使用状況等についての情報を集約した。

各ナノ材料の使用状況の概要は下記のとおりである。

(1) カーボンブラック

カーボンブラックの 2006 年の使用量は約 83 万トンで、ナノ材料の中でも特に 多量に使用されている。なお、使用の 95%はタイヤへの使用(ゴムへの混練) とされている。

(2) シリカ

シリカはゴムや樹脂に混練されて使用されている。2006 年の年間使用量約13,500 トンのうち、約60%がシリコーンゴム向けで、その他 FRP や塗料に10%程度の使用があるものとされている。

(3) 二酸化チタン

二酸化チタンは、世界レベルでは、ナノサイズよりも大きい粒子のものが年間 500 万トンといったレベルでプラスチック等への混練として使用されているという情報があるが¹、我が国でのナノ材料としての二酸化チタンの 2006 年の使用量は 約 1,250 トンで、そのうち約 60%が化粧品、約 30%がトナーで、その他塗料等に 利用されている。

(4)酸化亜鉛

酸化亜鉛はゴムや樹脂に混練されて使用されている。2006年の年間使用量約480トンのうち、約80%が化粧品である。

(5) 単層カーボンナノチューブ

単層カーボンナノチューブは樹脂やセラミックに混合しての使用が予想されているが、現状では研究開発中であり、2006年の使用量も約100kg程度である。

(6) 多層(複層) カーボンナノチューブ

多層カーボンナノチューブは樹脂に混合させて使用されており、2006年の年間使用量約60トンのうち、半導体トレイに約90%が使用されているとされている。2010年には150トンと2.5倍の使用量が見込まれており、他のナノ材料の多くが年間数%の伸びが予測されているのに比べると、将来市場の伸びが大きく、具体的な生産計画に関する情報も多い。

(7) フラーレン

フラーレンは、2006 年の年間使用量約 2 トンのほとんど全てがスポーツ関連に使用されており、樹脂への混練の形態で使用されている。ただし、現状で使用されているサイズは 20- 40μ m と凝集した二次粒子の大きさとされている。

(8) カーボンナノファイバー

カーボンナノファイバーは、樹脂への混練の形態で 2006 年には年間で 60-70 トンが使用されており、そのうち約半量がリチウム電池への使用である。

(9) デンドリマー

デンドリマーは、紙のコーティングや化粧品中に使用されており、2006年の年間使用量は約50数トンで、95%が紙への塗布、5%が化粧品としての使用となっている。

なお、(独)産業技術総合研究所 化学物質リスク管理研究センターが提供するナノ材料を使用した製品情報²の集約表を末尾の参考に示す(2008年3月末時点)。 具体的なナノ物質名が記載されたものを抽出したものであるが、web site等に掲載

¹米国NGOのenvironmental DefenceとDupontが協働している Nanorisk Framework で、サンプルとして報告されている資料

http://www.environmentaldefense.org/documents/6914_CNTs_Worksheet.pdf http://staff.aist.go.jp/kishimoto-atsuo/nano/analysis_text.htm

された商品情報をそのまま使用しており、実際にナノ材料であるか等については未確認である点には注意を要する。世界レベルでは米国のWoodrow Wilson 国際センターのweb上に類似の情報が集約されているが、日本の製品に関する参考情報としてまとめたものである。

内容の詳細が未確認であるが、商品紹介において明らかに「ナノ〜」としたものは、 現状で270件余りあり、10件以上の製品-素材のものは下記のようであった。

- ○歯磨き一銀
- ○スキンケアー白金
- ○食品・飲料一白金
- ○掃除機ーチタン
- ○スポーツ用品-フラーレン
- ○スキンケアーフラーレン
- ○スポーツ用品-カーボン

また、素材別に見れば、白金、銀、フラーレン、チタンの使用例が多い。

2. ナノ材料の生産等の動向に関するその他の情報

ナノ材料の製造等の状況に関する情報は、EPAのNanotechnology White Paper³ や Royal Society の Nanoscience and Nanotechnologies: opportunities and uncertainties ⁴にも示されているが、材料と製品の関係が不明確になっており、現状で世界レベルでのナノ材料の生産等の動向に関する適した資料は数少ない。

素材別の将来動向の推定例として、表4に、UNEPのGEO Year Book 2007の Emerging challenge Nanotechnology and the Environment 5に掲載された世界でのナノ材料の商業ベースでの使用予測例を示す。

これによれば、シリカ、二酸化チタン、ニッケル、ポリ乳酸ファイバー、酸化イットリウム、カーボンファイバー、カーボンナノチューブの使用量の増大が推測されており、数年後にはフラーレンで300トン、酸化セリウムでは1万トンレベルでの使用が推測されている。

³ U.S.EPA (2007) Nanotechnology White Paper

⁴ Royal Society (2004) Nanoscience and Nanotechnologies: opportunities and uncertainties

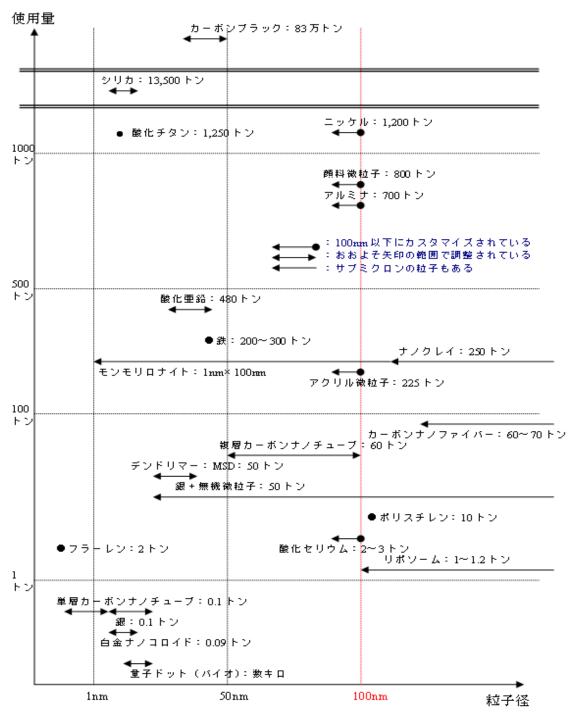

⁵ Emerging challenge Nanotechnology and the Environment http://www.unep.org/geo/yearbook/yb2007/PDF/7 Emerging Challenges72dpi.pdf

表 1 用途別ナノマテリアル別展開状況

	医薬 品等	食品・ パッケ ージ	化粧品	繊維	スポーツ	家電・電気 電子製品	塗料・ インク	その他紙加工	○の 素材 別計	△の 素材 別計	素材別合計
フラーレン	\triangle		\circ		\circ	\triangle			2	2	4
SWCNT						\circ			1	1	2
MWCNT	\triangle			\triangle		\circ	\bigcirc		2	2	4
銀	\triangle					$\bigcirc \triangle$		△触媒	1	3	4
銀+無機		\circ	\circ	\circ	\circ	\circ	\bigcirc		6	-	6
鉄						\circ			1	-	1
カーボンブラック			\circ			ОД	0	△高品 質タイヤ	3	2	5
酸化チタン			\circ	\circ	\circ	0	$\bigcirc \triangle$	\circ	6	1	7
アルミナ						$\bigcirc \triangle$	\triangle		1	2	3
酸化セリウム			\triangle			\circ			1	1	2
酸化亜鉛	\circ		\circ	\circ	\circ	\triangle	\bigcirc		5	1	6
シリカ	\circ	\circ	\circ	\circ		\circ	\bigcirc	\circ	7	-	7
ポリスチレン			\circ			\circ	$\bigcirc \triangle$		3	1	4
デンドリマー	\triangle		\circ			\triangle		\circ	2	3	5
ナノクレイ	\circ	\circ	\circ			\circ	\bigcirc	○農薬	6	1	7
カーボンナノ					\circ	\circ		△風力	2	2	4
ファイバー 顔料微粒子							0	発電	1	-	1
アクリル微粒子			0			0	0		3	1	4
リポソーム	\circ	\triangle	\circ						2	1	3
白金ナノコロ イド		\circ	\circ			Δ		○触媒	3	1	4
量子ドット	Δ					Δ		○研究 用試薬	1	2	3
ニッケル						0		711111	1	-	1
○の用途別計 △の用途別計	4 5	$\frac{4}{2}$	12 2	4 1	5 0	15 10	10 4	_ _			
用途別合計	9	6	14	5	5	25	14	-			

※調査結果を基に TRC/TBR 作成

※○:現状の用途、△:将来可能性のある用途、○△:将来用途分野が拡がる領域

※調査結果を基に TRC/TBR 作成

図1 主要ナノマテリアルの使用量と粒子径

表2(1) 代表的なナノ材料の使用状況

出典	項目	カーボンブラック	シリカ	二酸化チタン	酸化亜鉛		
※ 1	粒子径	16~50nm	乾式シリカ	15~100nm ルチル型結晶	20~40nm		
			$7{\sim}22\mathrm{nm}$				
	2006 年	▼ 約83万トン 約13,500トン		約 1,250 トン	約 480 トン		
	国内使用量						
	用途構成	タイヤ:95%、	シリコーンコ、ム向け:57%、	化粧品:60%、トナー:33%、自動車用塗料:	化粧品:80%、		
		顔料:4%、	FRP: 11%,	5%、その他:2%	その他:20%		
		導電性用途:1%	塗料:10%、	(日焼け止め製品やファンデーションに多く			
			その他:22%	使われている (※2))			
	使用形態	ゴムや樹脂に混	ゴムや樹脂に混練	塗料へ分散、樹脂に混練	化粧品基材へ混練		
		練、インクには分					
		散等					
	ナノ利用の	導電性・着色性	強度向上・絶縁性・	紫外線カット、電荷調節剤、光触媒	紫外線カット、透明性向上		
	メリット		耐水性 等				
	将来市場	横這いもしくは微	年率数%の伸び	年率数%の伸び	年率数%の伸び		
	_	減					
	将来用途	燃料電池・化粧	既存用途の成熟化	化粧品拡大、トナー・ディスプレイ用、反射防	透明導電膜利用(酸化インジウムス		
		品・高品質タイヤ		止フィルム	ズの代替)		
その	他の情報	・タイヤにはかな	・ファンデーション				
		り以前から使用	に 2%、歯磨に	リコーン、シリカ等が使われている。(※2)			
		されている(※					
		2)	ある (※2)	ョンには $5\sim20\%$ の処方例が紹介されている	いる (※2)		
			(※2)	・ファンデーションで 7%と			
				・工業的に利用されているのはルチル型とアナ	いう処方例がある(※2)		
				ターゼ型。製品により粒径などが異なる。			

※1:「第2回ヒトに対する有害性が明らかでない化学物質に対する労働者ばく露の予防的対策に関する検討会、第2回ナノマテリアルの安全対策に関する検討会(第2回合同会合)」、資料3:ナノマテリアルの用途・生産量調査結果報告

※2:同上 議事録

表2(2) 代表的なナノ材料の使用状況

出典	項目	単層カーボンナノチューブ	複層カーボンナノチューブ	フラーレン			
※ 1	粒子径	直径:0.8~1.4nm	直径:40~90nm	20~40μm (※二次粒子)			
		長さ: $0.1\sim1\mu$ m	長さ:数十μ m				
	2006 年	約 100kg	約 60 トン	約2トン			
	国内使用量						
	用途構成	研究開発中:100%	半導体トレイ:90%	スポーツ:100%			
			その他:10%				
	使用形態	樹脂やセラミックスに混練	樹脂への混練	樹脂への混練			
	ナノ利用の	軽量化、導電性付与	導電性付与、高強度、電磁シールド	反発性能の向上、軽量化、強度向上			
	メリット						
	将来市場	伸び悩み	2010年に150トンへ	現在の用途では使用量は変化せず			
	将来用途	高速動作トランジスタ、燃料電池、水素ガ	導電ペースト、蓄電デバイス、燃料	燃料電池、太陽電池、バイオ医療、化粧品			
		ス吸蔵 等	電池、医療 等				
その	他の情報	・バイエルマテリアル社は、MWCN	Γ の年間 260 トンの生産量うち、1/3	・三菱商事の子会社「ビタミン C60 バイオリ			
		をアジアで販売する計画。(2008/02	サーチ」がフラーレンを使った美白化粧水				
		・日精樹脂は CNT を樹脂に均一分散	を発売した。(2005/03/29, asahi.com)				
		トンを計画。(2007/08/28, 日刊工業	・半導体からボーリングのボールのコーティ				
		・カーボンナノチューブの 2006 年の	生産量は、リチウムイオン電池の電極	ングに商業的に使用されているフラーレ			
			:MWCNT で日本が 48%、研究段階	ンはトンレベルで日本の三菱の工場			
の SWCNT の供給でも日本は			を占めている。(2007/05/15, 日経産業	(Mitsubishi plant)で製造されている。			
		新聞)		(2004/09/13, Environmental Health			
		・物産ナノテク研究所は協業企業とま	Perspective. 112, 13. 741-747.				
			〔にも試験生産を始める。(2005/04/11,				
		日経産業新聞)		Maria BB 1 or 10 31 A to the or 11 A			

※1:「第2回ヒトに対する有害性が明らかでない化学物質に対する労働者ばく露の予防的対策に関する検討会、第2回ナノマテリアルの安全対策に関する検討会(第2回合同会合)」、資料3:ナノマテリアルの用途・生産量調査結果報告

表2(3) 代表的なナノ材料の使用状況

出典	項目	カーボンナノファイバー	デンドリマー
※ 1	粒子径	直径:150nm、長さ:10~20 μ m	紙用途:20~30nm、化粧品用途:2~3nm
	2006 年	60~70 トン	紙用途:約50トン、化粧品用途:数トン
	国内使用量		
	用途構成	リチウム電池:50%、その他:50%	紙用途:95%、その他:5%
	使用形態	樹脂への混練	紙コーティング剤、化粧品:リキッドファンデーション
	ナノ利用の	導電性付与、熱伝導率向上 他	紙:レオロジーコントロール、化粧品:撥水性、撥油性
	メリット		
	将来市場	2010年に200トンへ	紙用途:今後数年は横這い、化粧品用途:世界販売を展開
	将来用途	スポーツ、風力発電用ブレード、燃料電池	紙用途の拡大、医療、燃料電池
その	他の情報		

※1:「第2回ヒトに対する有害性が明らかでない化学物質に対する労働者ばく露の予防的対策に関する検討会、第2回ナノマテリアルの安全対策に関する検討会(第2回合同会合)」、資料3:ナノマテリアルの用途・生産量調査結果報告

<その他の情報>

- ・三ツ星ベルトは金属ナノ粒子の新製法を確立。銀ナノ粒子については数 10g オーダーでの供給体制を整えている。2010 年度には金属ナノ粒子関連で 5 億円の売上高を目指す。(2006/11/27、日刊工業新聞、)
- ・Woodrow Wilson センターのナノテクノロジー使用製品の目録では、銀ナノ粒子は現状で最も広く使用されている(381品目中67品目)。
- ・掃除機、洗濯機、絆創膏、医療器具、抗菌作用を持たせた台所用品、靴下、その他の繊維製品、清掃用品、フィルター、歯ブラシや歯磨き 粉、赤ん坊のおしゃぶり、その他の乳児用品、コンドーム、栄養補給剤
- ・銀ナノ粒子は二酸化チタンとともにコーティング剤に使用されており、香港地下鉄(MTR)の駅や周辺の商店街、(MTRの)事務所や休憩 施設に使用されている。

(以上 FoE の資料 (※4) から抜粋)

💥 4 : Nanosilver-a threat to soil, water and human health?

 $(\underline{http://nano.foe.org.au/filestore2/download/189/FoE\%20Nanosilver\%20report.pdf})$

表3 ナノ粒子の使用動向の推定例(UNEP GEO Year Book 2007)

Major types of nanoparticles anticipated to be commercially available in 2006 - 14 (Tonnes/year)

Product	2006 - 07	2008 - 10	2011 - 14
Nickel (carbon-coated) (Ni-C) powders	3, 500	7, 500	15, 000
Poly(L-lactic acid) (PLLA) nanofibres	500	2, 500	5, 000
Yttrium Oxide (Y ₂ O ₃) nanopowders	2, 500	7, 000	7, 500
Ceria (CeO ₂) nanoparticles, coatings	N/A	10, 000	N/A
Fullerenes	N/A	300	N/A
Graphite Particles	1, 000, 000	N/A	N/A
Silica (SiO ₂) nanoparticles, coatings	100, 000	100, 000	>100,000
Titania (TiO ₂) nanopowders thin layers	5, 000	5, 000	>10,000
Zinc Oxide (ZnO) nanopowders, thin films	20	N/A	N/A

(USD/year)

Product	2006 - 07	2008 - 10	2011 - 14
Carbon black	~8 billion	10 billion	12 billion
Carbon nanotubes	700 billion	3.6 billion	13 billion

Source: NanoroadSME, a research project funded by the European Commission, 2006

(参考表)ナノ材料を使用した製品-素材一覧(産業技術総合研究所 web 資料から作成:本文参照)

既存の製品の種類								ナノ物質	質の素材							小計
			白金	チタン	酸化チタン	酸化 亜鉛	金	ステンレス	ケ゛ルマニウム	かる素	アルミナ	フラーレン	カーホ゛ン	カーホ゛ンナノ チューフ゛	ダヤ	小計
スポーツ用品		2	_	6	1	_	_	_	_	_	_	20	12	8	_	49
	衣類	3	_	3	_	_		_	2	_	_	_	_	_	_	8
化粧品	UVケア	-	3	_	1	2	-	_	_	_	_	_	-	_	_	6
	スキンケア	3	43	-	2	1	4	_	_	-	_	13	ı	_	_	66
	ファンデーション	_	_	_	6	3	_	_	_	_	_	_	_	_	_	9
食	品・飲料	1	22	_	_	_	-	_	1	-	_	_		_	-	24
	エアコン	I	_	-	_	-	-	1	_	-	_		I	_	_	1
	ゴミ処理機	_	2	_	_	_	_	_	_	_	_	_	_	_	_	2
	加湿器	2	_	_	_	_	_	_	_	_	_	_	_	_	_	2
	乾燥機	_	_	2		_	_	_	_	_	_	_	_	_		2
	空気清浄機	_	_	2	1	_	_	_	_	_	_	_	_	_		3
電化製品	除湿機	_	_	1	_	_	_	_	_	_	_	_	_	_		1
.5.12.544	食器洗浄乾燥機	_	_	1	_	_	_	_	_	_	_	_	_	_		1
	洗濯機			6	_						_			_		6
	掃除機		3	11	_			_	_		_	_				15
	調理器具		_		_				_					_		1
	美顔器		4	2	_				_		_	_	<u> </u>	_		4
	冷蔵庫	_	_ 2		_						_	_	2	_		
	<u>コンディショナー</u> シャンプー		4		-	_	1		_			_	_			<u>2</u> 7
	ジャフラー ボディーソープ		1						_			1				3
	ー ホティーソーノ 歯磨き	13	1				3		_	_		_	_			17
	マスク	2					<u> </u>									2
	消臭・防カビスプ	1														1
	<u> </u>	3			_						1					4
日用品	洗浄剤	1	_	_	_	_		_	_	_		_	_	_		1
	脱臭材	1	_	2	_	_		_	_	_	_	_	_	_		3
	抗菌剤	2	_	_	_	_	_	_	_	_	_	_	_	_		2
	傘		_	_	_	_		1	_	_	_	_	_	_		1
	 傘入れ	1	_	_	_	_	_		_	_	_	_	_	_	_	1
	食品容器	1	_	_	_	_	_	_	_	_	_	_	_	_	_	1
	調理器具	1	_	_	_	_	_	_	_	_	_	_	_	_	_	1
	ミッションオイル	_	_	_	_	_	_	_	_	_	_	1	_	_	_	1
	ワックス	_	_	_	_	_	_	_	_	2	_	_	_	_	1	3
その他	光ディスクコーティング剤	1	_	_	_	_		_	_	_	_	_	_	_		1
	エンジンオイル添加剤	1	_	_	_	ı	I	_	_	-	_	6	1	_	2	10
	オーテ゛ィオケーフ゛ル	_	_	_	_	ı	1	_	_	1	_	_	-	_	_	1
	添加剤	-	_	_	_	1	ı	_	_	_	_	1	-	_	_	1
	電気接点改質剤	1	_	_	_	-	I	_	_	_	_	_	2	_	3	6
	小計	44	85	37	11	6	9	2	3	2	1	42	17	8	6	273