

記号	色	地 質
В		埋土層
Ac		沖積粘土層
As		沖積砂層
Ag		沖積砂礫層
Ds1		洪積砂1層
Dg1		洪積砂礫1層
Ds2		洪積砂2層
Dg2		洪積砂礫2層
Dg3		洪積砂礫3層
Dc		洪積粘土層

図2.2.4 ABトラック広域汚染シミュレーション3次元地盤モデル(縦:横=10:1)

記号	色	地 質
В		埋土層
Ac		沖積粘土層
As		沖積砂層
Ag		沖積砂礫層
Ds1		洪積砂1層
Dg1		洪積砂礫1層
Ds2		洪積砂2層
Dg2		洪積砂礫2層
Dg3		洪積砂礫3層
Dc		洪積粘土層

断面

-

2.3 移流分散係数

解析に必要な移流分散に関するデータについては、表2.3.1のように設定した。

分散長は、一般にモデルスケール(モデルの大きさ、汚染物質の移動距離)に依存するこ とがわかっており、モデルスケールが大きいほど分散長も大きくなる。また、分散長は間隙 内流速とも比例するとされており、間隙内流速が大きくなればなるほど、分散長も大きくな るといわれている。

これは、分散長が流速のミクロな不均質性を表すものであるためで、対象領域が大きくな ればなるほど、領域内を正確にかつ詳細にモデル化するのが困難であることにある。

従って、AB トラック広域地下水汚染シミュレーションにおける分散長は、モデル領域が 大きいため、A 井戸詳細地下水汚染シミュレーションよりも大きくし、流速の速い Dg2、Dg3 層については、さらに大きな値とした。

その他、分子拡散係数は水と同等とし、遅延や減衰については A 井戸詳細地下水汚染シミ ュレーション同様考慮していない。

하고 바로소		分散長(m)		分子拡散係数	昆曲莱	运过这类	试喜区粉
記ち	地層石	縦	横	(m2/sec)	出田平	建建济数	
В	埋土層	100	5	1 × 10 ⁻⁹	1.0	1.0	0.0
Ac	沖積粘土層	100	5	1 × 10 ⁻⁹	1.0	1.0	0.0
As	沖積砂層	100	5	1 × 10 ⁻⁹	1.0	1.0	0.0
Ag	沖積砂礫層	100	5	1 × 10 ⁻⁹	1.0	1.0	0.0
Ds	洪積砂層	100	5	1 × 10 ⁻⁹	1.0	1.0	0.0
Dg1	洪積砂礫1層	100	5	1 × 10 ⁻⁹	1.0	1.0	0.0
Dg2	洪積砂礫2層	200	10	1 × 10 ⁻⁹	1.0	1.0	0.0
Dg3	洪積砂礫3層	400	20	1 × 10 ⁻⁹	1.0	1.0	0.0
Dc	洪積粘土層	100	5	1 × 10 ⁻⁹	1.0	1.0	0.0

表 2.3.1 移流分散物性值一覧

3. 解析条件

3.1 解析条件

コンクリート様の塊から溶出した DPAA が浸透降下し、汚染プルームが平成8年1月頃に コンクリート様の塊の直下の砂礫層に到達したとして、その後の汚染地下水の挙動について シミュレーションを行った。

3.2 解析プログラム

三次元飽和不飽和移流分散解析プログラム(Dtransu-3D・EL)

解析コードは、三次元飽和不飽和移流分散解析プログラム(Dtransu-3D-EL)としたが、 降雨や流量条件を変動境界にできるように改良して利用した。

3.3 解析領域界の境界条件

水位固定境界(1ヶ月単位変動)

解析の領域界はすべて水位固定境界とし、『汚染メカニズム中間報告書』の広域地下水シ ミュレーションで得られた地下水位および平成16年8月以降定期的に実施している地下水 位測定結果を参考に設定した。

また、常陸利根川については、付近で観測されている「賀」「日川」の河川水位の平均値 0.35mで水位固定とした。なお、両者はほとんど動水勾配を持たない(図3.3.1)。

3.4 降雨浸透条件

土地利用区分毎に設定した浸透率に有効雨量を入力

降雨の浸透は、土地条件によって異なる。また、今回のシミュレーションのように広域モ デルでは、降雨浸透量が全体の水収支に与える影響は大きく、地下水流動方向にも影響を与 える。このため、2500分の1都市計画図と平成15年撮影の航空写真により、解析領域にお ける土地利用区分を行い、その区分毎に浸透率(対有効雨量)を設定した(表4.3.1、図3.4.1)。

区分	浸透率	備考		
住宅地	0.2			
水田	0.5	灌漑期は1.6mm/日が浸透		
畑	0.5			
裸地	0.5			
森林	0.8			

表 4.3.1 浸透率区分

水田における灌漑期(4~9月)は、水田土壌試験から得られた1.6mm/日を設定 (平成18年度 第1回 国内における毒ガス弾等に関する総合調査検討会:資料6参照) 降雨は、神栖市役所内に設置してある降雨観測所データを基に、ソーンスウェイト式から

可能蒸発散量を差し引き有効雨量とした。

なお、入力においては、月単位の有効雨量とし蒸発散量が多く、有効雨量がマイナスになる月については有効雨量ゼロとした(図3.4.2)。