
"The Hokkaido Study of Environment and Children's Health" --- Exploiting Gene-Environment Interaction to Detect Adverse Health Effects of Environmental Chemicals on the Next Generation

> Reiko Kishi, MD, PhD, MPH Department of Public Health Sciences Hokkaido University, School of Medicine Sapporo, JAPAN

The Hokkaido Study on Environment and Children's Health

Populations: 5,6 millions: epidemiological studies

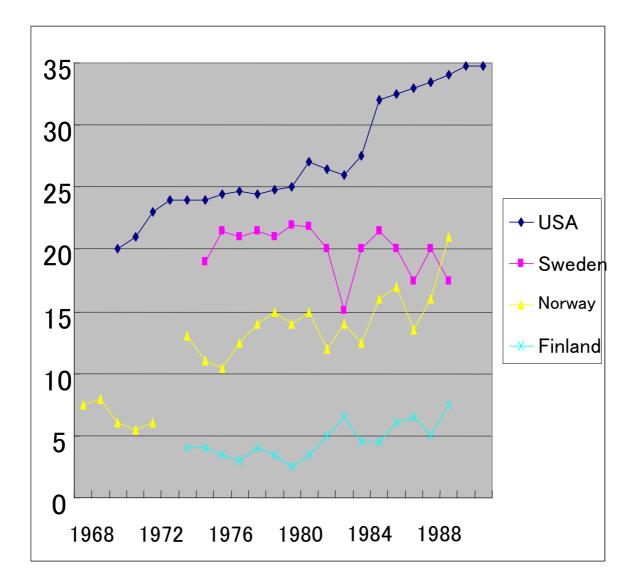
1. Hypospadias and its genetic and environmental risk factors

2. Prenatal exposure to PCBs Dioxin, birth weight, & developments

3. Maternal smoking, polymorphisms & birth size

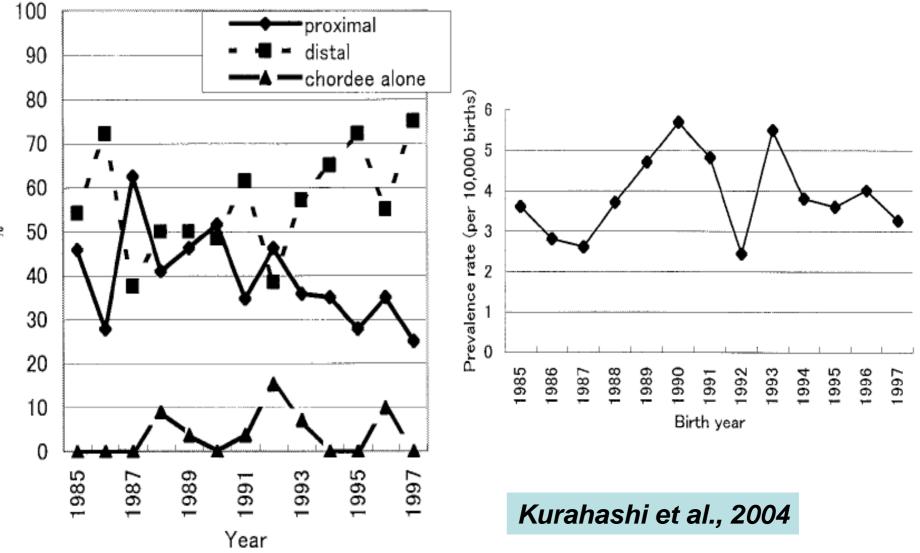
1. Hypospadias and its genetic and environmental risk factors

Hypospadias


A common congenital anomaly,

the incomplete fusion of the urethral folds

The urethral opening is ventral surface of the penis, or on the scrotum, or the perineum


Photo by Department of Renal and Genitourinary Surgery, Hokkaido University Hospital, Sapporo

Transition of Incidence of Hypospadias

Toppari et al. (2001)

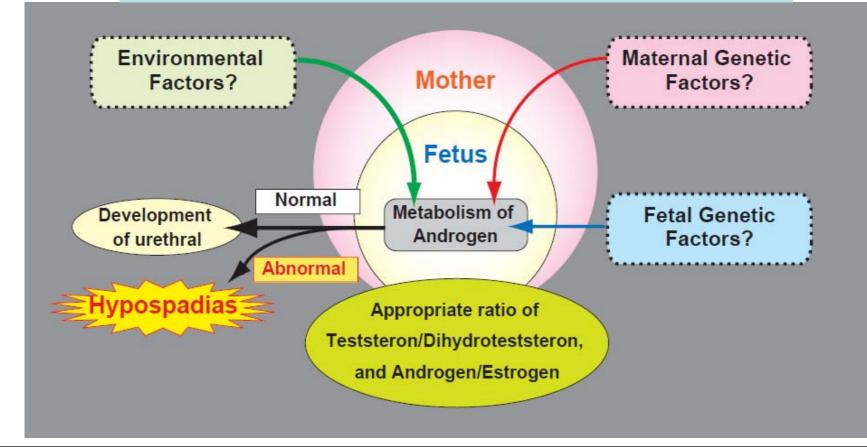
Prevalence of hypospadias from 1985 to 1997 in Hokkaido

%

Environmental risk factors for hypospadias reported previously

drugs	progestins
	Diethylstilbestrol (DES)
	antiepileptic drugs
chemicals	pesticides
	residence near landfill sites
natural toxins	mycotoxins
phytoestrogens	vegetarian diet
Accidents or	Seveso accident
Disasters	Agent Orange exposure in
	the Vietnam War

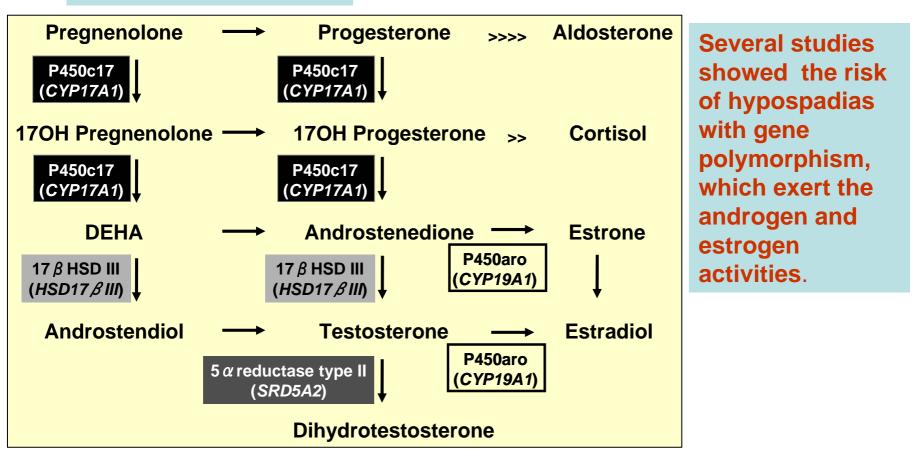
Studies on the environmental exposure and risk of hypospadias


Study	Exposure	Statistical inference
Kristensen et al.	Farmers	No significant association
(1997)	Tractor spraying equipment and grain	OR = 1.51 (CI = 1.00-2.26)
Weidner IS <i>et al.</i> (1998)	Parents in farming or Gardening	No significant association
Longnecker MP <i>et al.</i> (2002)	Maternal serum DDE levels during pregnancy	No significant association
Pierik FK <i>et al.</i> (2004)	Paternal smoking	OR = 3.8 (Cl = 1.1-13.4)
Carmichael SL <i>et al.</i> (2004)	Maternal smoking	No significant association
Meyer KJ <i>et al.</i>	Diclofop-methyl (per 0.05 lb applied)	OR = 1.08 (CI = 1.01-1.15)
(2006)	All study pesticides (per 0.5 lb applied)	OR = 0.82 (CI = 0.70-0.96)
	Applications of permethrin	OR = 0.37 (Cl = 0.16-0.86)
Carbone P <i>et al.</i> (2006)	"Pesticide impact" on the basis 3 quantitative criteria on intensity of agricultural activities of population	Higher association of the birth prevalence of hypospadias with "Pesticide impact" (<i>P</i> =0.003)
Carbone P <i>et al.</i> (2007)	EDC at work, Work in agriculture, pesticides	No significant association

The associations of hypospadias with maternal and fetal characteristics

Study	Design	Population and sample size	Mother/ Infant	Factor	Statistical inference
II	Casa aantaal	51 ages 7820 have and 7202		Birth weight 🔻	<i>P</i> < 0.0001
U	Case-control, US	51 cases, 7839 boys and 7393	Infant	Birth length 🔻	<i>P</i> < 0.0001
(1997)	05	girls in ALSPAC (1991-1992)		Head circumference 🔻	<i>P</i> < 0.0001
				Birth weight 🔻	$\mathbf{R}^2 = 0.98, P < 0.0001$
Hussain <i>et al</i> .	Retrospective	112 cases of 6738 male infants in	Infant	Birth length 🔻	$R_2^2 = 0.93, P < 0.02$
(1998)	cohort, US	NICUs (1987-2000)		Head circumference 🔻	$\mathbf{R}^2 = 0.98, P = 0.0004$
			Mother	More than 2nd born	<i>P</i> < 0.001
			Mother	Having health problems	OR = 1.25 (CI = 1.14-1.38)
			WIOUIEI	Parity (more than 1)	P < 0.001
Aschim <i>et al</i> .	Case-control,	N = 961,396, 2382 cases, live		Retained placenta	OR = 1.67 (CI = 1.18-2.37)
(2002)	Norway	Born in 1967-1998	Intont	Gestational age 🔻	P = 0.002
				Birth weight 🔻	P < 0.001
				Other malformation	OR = 2.72 (CI = 2.30-3.20)
Picric <i>et al</i> .	Case-control, Netherlands	56 cases and 313 controls	Mother	Height 🔻	<i>P</i> < 0.05
				Educational level 🔻	<i>P</i> < 0.05
(2004) 110	i vetner failus			General health 🔻	<i>P</i> < 0.05
	Prospective			Birth weight 🔻	P = 0.027
Boise et al.	cohort, with 3	n =1,072, with 74.4% completing		Birth length 🔻	P = 0.030
· /	yr follow-up,	In the study	manı	Head circumference 🔻	P = 0.030
	Denmark			Weight for gestational age 🔻	P = 0.011
			Mother	Preeclampsia	OR = 3.90 (1.50-10.14)
				Very low birth weight	OR = 14.12 (5.48-36.39)
U U	Case-control, Singapore	27 cases and 6511 controls, 1999- 2005	Infant	Small for gestational age	OR = 3,23 (1.25-8.37)

Fetal small birth physique and maternal health problem may be related with hypospadias.


Etiology of hypospadias

The etiology of hypospadias is regarded as a complex disorder that has both maternal/fetal genetic and environmental factors that influence to androgen dependent development of the urethral and external genital system CYP17A1, CYP19A1, ESR1 & ESR2, HSD17 and SRD5A2 influence estrogen and androgen activity. CYP17A1 catalyzes 2 sequential reactions in steroid metabolism. The gene *CYP17A1 m*ediates both 17 α hydroxylase and 17, 20 lyase activity in steroid biosynthesis, while *CYP19A1* mediates the step in the metabolites in both testosterone & androstenedione to estrogens. The gene ESR1 and ESR2 encode the estrogen receptor.

Steroid synthesis

e

Studies about the associations of hypospadias and fetal gene polymorphisms

Aschim et al. (2004)Case-control (51 cases, 210 controls), CaucasianAndrogen receptor gene (CAG/GGN repeats) Θ GGN numbers were significantly higher in subjects with penile hypospadias compared with controls (P = 0.003). The frequency of cases with GGN 24 or more/GGN = 23, differed significantly among subjects with penile—hypospadias (69/31%) compared with controls (31/54%).Thai et al. (2005)Case-control (58 cases, 96 controls), Swedish, Turkish, and Middle EasternSRD5A2 (V89L) Θ A significant negative association for Val/Val genotype in hypospadias (OR = 0.24; CI = 0.14-0.41)Beleza- Meireles et al. (2006)Case-control (92 case, 94 controls), Swedish, Turkish, and Middle EasternESR2 (2681-4A>G, CA repeat) Θ The CA repeat polymorphism is prolonged in hypospadias compared with controls (P < 0.05).Radpour et al. (2007)Case-control (92 cases, 190 controls), FranianAndrogen receptor gene (CAG/GGN repeats) Θ GGN numbers were significantly higher in subjects with penile hypospadias compared with controls (P < 0.05).Radpour et al. (2007)Case-control (92 cases, 190 controls), FranianAndrogen receptor gene (CAG/GGN repeats)Of GGN numbers were significantly higher in subjects with penile hypospadias compared with controls (P = 0.001).	Study	Design	Gene polymorphism	Statistical inference
Thai et al. (2005)(58 cases, 96 controls), Swedish, Turkish, and Middle EasternSRD5A2 (V89L)•A significant negative association for Val/Val genotype in hypospadias (OR = 0.24; CI = 0.14-0.41)Beleza- Meireles et al. (2006)Case-control (92 case, 94 controls), Swedish, Turkish, and Middle EasternESR2 (2681-4A>G, CA repeat)•The CA repeat polymorphism is prolonged in hypospadias compared with controls (P < 0.05).		(51 cases, 210 controls),	gene	hypospadias compared with controls (P = 0.003). The frequency of cases with GGN 24 or more/GGN = 23, differed significantly among subjects with penile—hypospadias (69/31%) compared
Beleza- Meireles et al. (2006)Case-control (92 case, 94 controls), Swedish, Turkish, and Middle Eastern $ESR2$ (2681-4A>G, CA repeat)with 		(58 cases, 96 controls), Swedish, Turkish, and	SRD5A2 (V89L)	
Radpour <i>et</i> al (2007) (92 cases, 190 controls), $gene$ (92 cases, 190 controls), $gene$ by pospadias compared with controls (P = 0.001)	Meireles <i>et</i>	(92 case, 94 controls), Swedish, Turkish, and		with controls (<i>P</i> < 0.05). ●The heterozygous genotype of 2681-4A>G polymorphism was a
	-	(92 cases, 190 controls),	gene	

These polymorphisms decrease the androgen/estrogen activity as a result of being hypospadias.

Maternal genetic polymorphisms had <u>not been studied.</u>

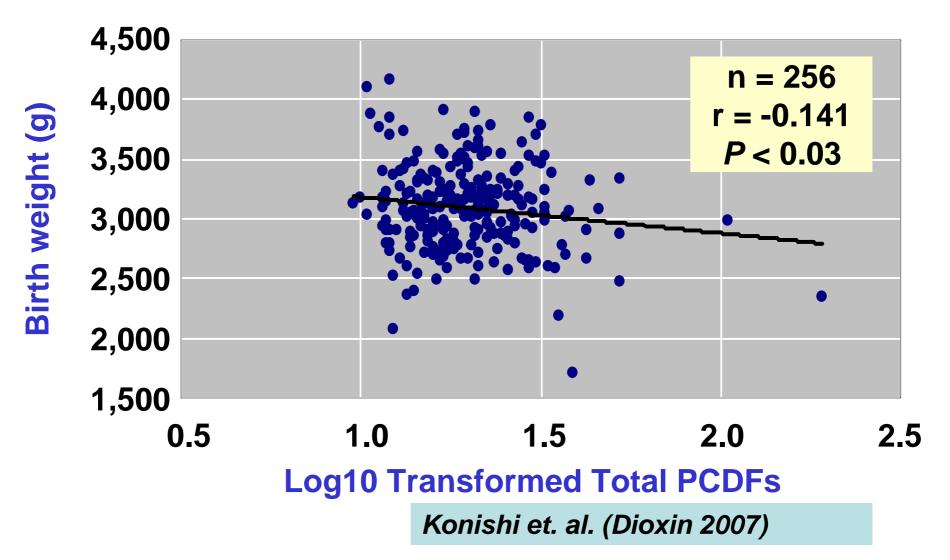
- We, (Kurahashi et. al. 2005) studied 31 case mothers and 64 control mothers. The frequency of <u>low birth weight</u> was significantly higher in hypospadias.
- The heterozygous CYP1A1 and hetero and homo-zygous CYP1A1 were less frequent in case mothers. We found no effect of maternal smoking on the hypospadias risks among the gene polymorphisms.

3. <u>CYP1A1 metabolizes not only environmental chemicals but</u> <u>also metabolizes endogenous estrogens</u>. A maternal genetic factor related to bio-transformation enzymes to estrogen metabolism, CYP1A1 may affect the risk of hypospadias.

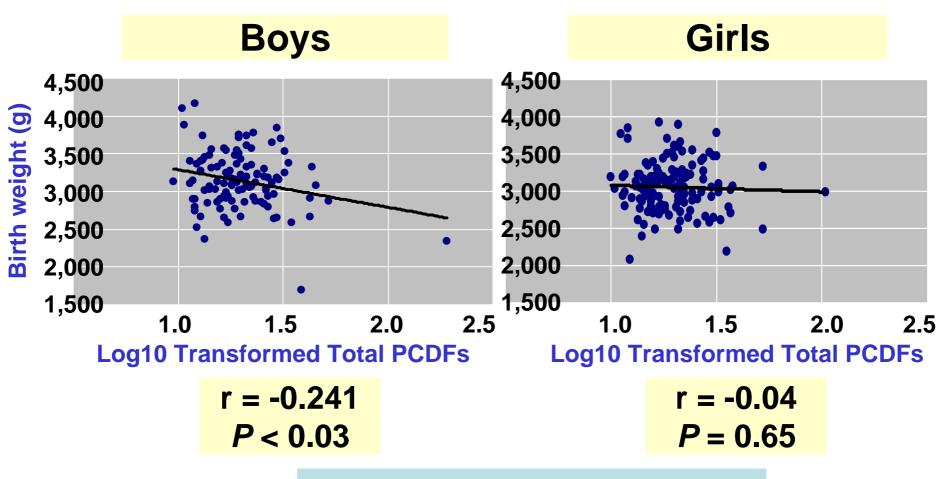
Kurahashi et. al. Molecular Human Reproduction (2005)

Association of the risk of hypospadias with maternal *CYP1A1* polymorphism

Genotype	Cases (n = 31) %	Controls (n = 64) %	OR	95% CI	Р
GSTM 1					
Present	41.9	49.2	1.00		
Null	58.1	50.8	1.11	0.34-3.64	0.87
GSTT1					
Present	61.3	54.2	1.00		
Null	38.7	45.8	1.14	0.34-3.79	0.83
CYP1A1 Msp I					
<i>m1/m1</i>	48.4	28.1	1.00		
<i>m1/m2</i>	29.0	54.7	0.17	0.04-0.74	0.02*
m2/m2	22.6	17.2	0.73	0.14-3.90	0.71
<i>m1/m2</i> or <i>m2/m2</i>	51.6	71.9	0.28	0.08-0.97	0.04*
		16	bach! of	a1(2005)	


Kurahashi et. al. (2005)

Summary of environmental and genetic factors for hypospadias



Until now, hypospadias has been studied from either the environmental or the genetic side. Further studies are necessary to examine gene –environment interaction. 3. Birth weight, developments & prenatal exposure to PCBs · Dioxin

Correlation of birth weight with Log10 transformed Total PCDFs levels of maternal blood - Among all children -

Correlation of birth weight with Log10 transformed Total PCDFs levels of maternal blood - Among boys and girls -

Konishi et. al. (Dioxin 2007)

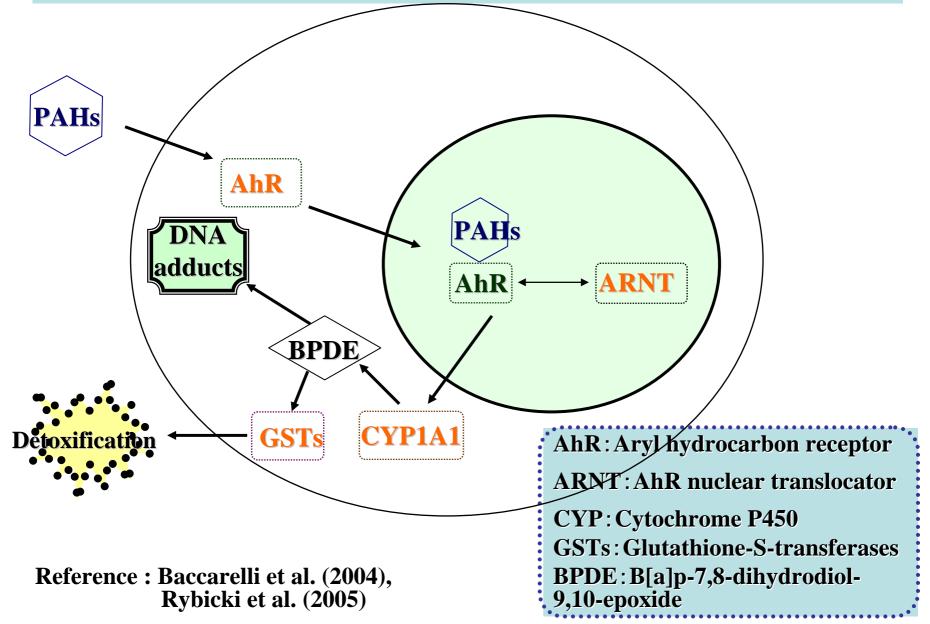
MDI and PDI Scores for Infants in Relation to the Level of Isomers of PCBs and Dioxins in Maternal Blood (1)

		MDI			PDI	
	β	t	p	β	t	p
<pcdd></pcdd>						
2,3,7,8-TCDD	-0.150	-1.714	0.089	-0.105	-1.235	0.219
1,2,3,7,8-PeCDD	0.067	0.771	0.442	-0.036	-0.423	0.673
1,2,3,4,7,8-HxCDD	-0.035	-0.394	0.694	-0.124	-1.462	0.146
1,2,3,6,7,8-HxCDD	0.023	0.259	0.796	-0.045	-0.520	0.604
1,2,3,7,8,9-HxCDD	0.002	0.026	0.979	-0.189	-2.284	0.024 *
1,2,3,4,6,7,8-HpCDD	-0.219	-2.395	0.018 *	-0.240	-2.749	0.007 **
OCDD	-0.173	-1.864	0.065	-0.172	-1.927	0.056
<pcdf></pcdf>						
2,3,7,8-TCDF	-0.050	-0.584	0.560	-0.178	-2.175	0.031 *
1,2,3,7,8-PeCDF	0.014	0.158	0.875	-0.196	-2.412	0.017 *
2,3,4,7,8-PeCDF	0.022	0.252	0.801	-0.046	-0.544	0.588
1,2,3,4,7,8-HxCDF	-0.107	-1.199	0.233	-0.137	-1.615	0.109
1,2,3,6,7,8-HxCDF	-0.099	-1.117	0.266	-0.167	-1.990	0.049 *
2,3,4,6,7,8-HxCDF	0.026	0.302	0.763	-0.167	-2.012	0.046 *
1,2,3,7,8,9-HxCDF	ND	ND	ND	ND	ND	ND
1,2,3,4,6,7,8-HpCDF	-0.042	-0.482	0.631	-0.064	-0.763	0.447
1,2,3,4,7,8,9-HpCDF	ND	ND	ND	ND	ND	ND
OCDF	-0.057	-0.656	0.513	-0.032	-0.390	0.697

Adjusted for gestational age, smoking during pregnancy, and blood sampling time. * p < 0.05; ** p < 0.01

Nakajima et al., Env. Health Perspectives, 2006

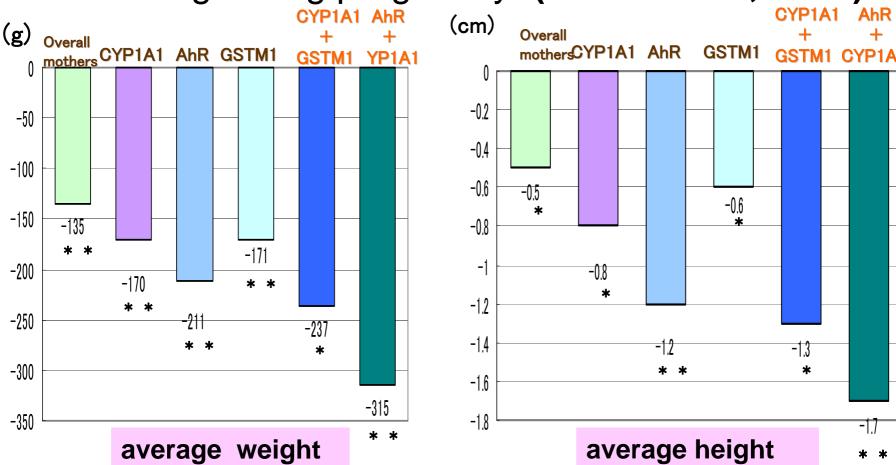
MDI and PDI Scores for Infants in Relation to the Level of Isomers of PCBs and Dioxins in Maternal Blood (2)


		MDI			PDI	
	β	t	р	β	t	р
<non-ortho pcb=""></non-ortho>						
33'4'4'-TCB(#77)	0.035	0.405	0.686	-0.007	-0.082	0.935
344'5-TCB(#81)	ND	ND	ND	ND	ND	ND
33'44'5-PenCB(#126)	-0.005	-0.056	0.956	-0.106	-1.277	0.204
33'44'55'-HxCB(#169)	0.008	0.091	0.928	-0.075	-0.898	0.371
<mono-ortho pcb=""></mono-ortho>						
233'44'-PenCB(#105)	-0.007	-0.082	0.935	-0.090	-1.083	0.281
2344'5-PenCB(#114)	-0.030	-0.348	0.729	-0.110	-1.325	0.187
23'44'5-PenCB(#118)	-0.020	-0.232	0.817	-0.111	-1.334	0.185
2'344'5-PenCB(#123)	0.032	0.367	0.714	-0.081	-0.970	0.334
233'44'5-HexCB(#156)	-0.007	-0.077	0.939	-0.077	-0.932	0.353
233'44'5'-HexCB(#157)	-0.045	-0.519	0.604	-0.126	-1.521	0.131
23'44'55'-HexCB(#167)	-0.018	-0.211	0.833	-0.112	-1.353	0.178
233'44'55'-HpCB(#189)	-0.106	-1.232	0.220	-0.117	-1.420	0.158
<di-ortho pcb=""></di-ortho>						
22'33'44'5-HpCB(#170)	-0.033	-0.386	0.700	-0.110	-1.327	0.187
22'344'55'-HpCB(#180)	-0.030	-0.349	0.728	-0.074	-0.891	0.374

Adjusted for gestational age, smoking during pregnancy, and blood sampling time. * p < 0.05; ** p < 0.01

Nakajima et al., Env Health Perspectives, 2006

3. Maternal smoking, Birth size (weight, height, head circumstance), & Polymorphisms


Metabolic pathways of polycyclic aromatic hydrocarbons (PAHs)

Epidemiological studies on the associations of birth size with gene polymorphisms by smoking

Author	Design	Gene	Outcome
Wang e <i>t al.</i>	Nested	CYP1A1	Maternal genetic polymorphisms in the PAH- metabolizing enzymes, i.e., CYP1A1 and GSTT1 genotypes modified the association between
$(2002 \text{ USA}) \mid case$	control	GSTT1	cigarette smoking and infant birth weight. The greatest reduction in birth weight was found among smoking mothers with the CYP1A1 Aa/aa and GSTT1 absent genotype.
	Cohort	AHR	Birth weight and length were significantly lower
Sasaki <i>et al.</i> (2005, Japan)		CYP1A1	for infants of continuously smoking mother in the AhR wild type + CYP1A1 variant group and in
(,,,,,,, _		GST M1	the CYP1A1 variant + GSTM1 null group.
Sram <i>et al.</i>	Cohort	CYP1A1	The risk of low birth weight and prematuring was significantly increased by genotypes of GSTM1
<i>(</i> 2006,Czech)	Conort	GST M!	and CYP1A1*2C and the combination.
Sasaki <i>et al.</i> (in press,		CYP2E1	The adverse effects of maternal smoking on infant birth size were modified by the maternal genetic polymorphisms in the N-nitrosamines-
Japan)	Cohort	NQO1	metabolizing enzymes NQO1 wild genotype and CYP2E1 genotype.

combined effects between maternal genetic polymorphisms of AHR, CYP1A1 and GSTM1 and smoking during pregnancy (Sasaki et al, 2005)

Adjusted for maternal age, height, weight before pregnancy, alcohol consumption during pregnancy, history of delivery, newborn sex, gestational weeks, house income * p<0.05 * * p<0.01

Birth size and smoking, by maternal polymorphism of NQO1 (N-nitrosamine metabolizing enzymes)

Genotypes	status during pregnancy		Birth weight, (g)		Birth length, (cm)		Birth head circumference, (cm)	
		β	P	β	Ρ	β	Ρ	
NQO1								
	Nonsmoking	Ref.		Ref.		Ref.		
Pro/Ser+	Quitting	-21	.664	0.2	.469	0.05	.808	
Ser/Ser	smoking	-58	.302	-0.1	.661	-0.3	.260	
	Nonsmoking	37	.372	0.1	.526	-0.02	.921	
Pro/Pro	Quitting	-8	.903	-0.2	.647	0.1	.656	
	smoking	-207	.001	-0.8	.015	-0.7	.004	
Interaction		-202	.001	-0.8	.06	-0.7	.003	

Sasaki et. al, (in press, 2007)

Infant birth size by maternal CYP2E1 Nnitrosamine-metabolizing enzymes genotypes

Genotypes	status during pregnancy	Birth weight, (g)			length, :m)	Birth head circumference, (cm)	
		β	Ρ	β	Ρ	β	Ρ
CYP2E1							
	Nonsmoking	Ref.		Ref.		Ref.	
c1/c2+	Quitting	18	.776	0.5	.102	0.4	.144
c2/c2	smoking	-158	.019	-1.0	.004	-0.6	.027
	Nonsmoking	-64	.120	-0.4	.049	-0.1	.403
c1/c1	Quitting	-119	.028	-0.7	.013	-0.2	.284
	Smoking	-185	.002	-0.5	.079	-0.5	.040
Interaction		-137	800.	-0.3	.316	-0.4	.063

Sasaki et. al. (2007, in press)

Conclusions and further directions

- 1. Prenatal environmental factors might have possible adverse effects on low birth weight, developments and congenital anomalies.
- 2. There may be a high risk group by genetic susceptibility factors.
- 3. Should be included
 - Genetic factors to chemical metabolites
 - Genetic factors susceptible to diseases
- Consider about additive effects of various chemicals which surround our daily lives (e.g. smoking, PCBs, Dioxins, PFOS, mercury, pesticide, etc.).
- 5. Follow up the children for a long period

Collaborating Institutions

Hokkaido University Graduate School of Medicine Department of Obstetrics and Gynecology Department of Renal and Genitourinary surgery

Sapporo Medical University Department of Obstetrics and Gynecology

Asahikawa Medical College Department of Obstetrics and Gynecology

Sapporo City Institute of Public Health

Hokkaido University Graduate School of Veterinary Medicine Department of Environmental Veterinary Sciences

Fukuoka Institute of Health and Environmental Sciences

Hoshi University School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry

Hokkaido Association of Obstetricians and Gynecologists (40 institutes)

Sapporo Toho Hospital