

「塗装小委員会報告資料」

(社)日本自動車工業会における VOC排出抑制の実態と要望

2004年9月 28日 (社)日本自動車工業会

<目次>

- 1.(社)日本自動車工業会の業界概要
- 2.VOC排出施設の概要
- 3.VOC排出施設数
- 4.VOC排出の形態
- 5.VOC排出施設からの排出実態
- 6. 裾きり外形基準と考えられる指標
- 7. VOC排出抑制対策と抑制効果
- 8.排出抑制対策に要するコスト
- 9. 自主取組の状況
- 10.自工会要望

1-1(社)日本自動車工業会の概要

- *加盟会社 = 14社(カバー率100%)
- *生産台数は03年四輪が1028千台、二輪が183万台

【2003年 四輪生產台数】

【2003年 二輪生產台数】

1-2(社)日本自動車工業会の概要

【四輪生産台数推移】

【二輪生産台数推移】

1-3(社)日本自動車工業会の概要

【四輪生産金額推移】

2-1 VOC排出施設の概要<設備一覧>

工程	排出個所	
ボディ塗装	塗装ブース、電着槽	
	乾燥炉	
バンパー (樹脂)塗装	塗装ブース	
	乾燥炉	
ユニット塗装 (エンジン・足回り部品)	塗装ブース	
	乾燥炉	
艤装組立・その他	防錆処理·補修他	

<参考>ボデー塗装の塗膜構成

2-2 VOC排出施設: ボディ塗装の概要

*電着・シーラー・中塗・上塗(ペース・クリア)の設備の後に各乾燥炉

3-1 VOC排出施設数

·VOC発生施設数は 塗装施設が約600、乾燥施設が約400

3-2 2000年度全国排出量内訳(環境省推計)

3-3 VOC排出施設別のVOC使用量比率

*上塗、中塗塗装で全工程使用量の約80%をカバー

4-1 VOC排出の形態 電着工程

- *電着工程は水系塗料を使用した浸漬塗装
- *VOC使用量100に対し、塗装装置からの排出は2、 乾燥炉からの排出は1と非常に少ない。

4-2 VOC排出の形態

中塗・上塗・バンパー塗装工程

5-1排出施設の排出実態(その1:塗装ブ

NO1~13排気口:排気口数=26箇所

	手吹きゾーン	自動機ゾーン	点検補正ゾーン
排出口濃度	中	大	小
濃度変動 (排出口)	同一排出口 変動幅最大2倍	同一排出口変動幅最大4倍	同一排出口変動幅 最大1.2倍
濃度変動(全体)		手吹きゾーンに対し最大10倍	

問題点

- ・排出口が多い
- ・同一排出口及びプース全体の 濃度変動幅大
- ・ブース全体の平均濃度実測は不可

最大濃度個所等の代表排出口 の選定が必要 (構造、使用量から推定可能)

5-2排出施設の排出実態(その2:塗装ブース)

省エネ対策のため ゾーンにより排気 循環を実施

循環のため濃度高い

- *循環止めれば濃度1/3に低減
- *ただし、増エネ(CO2排出増)となる

(インパーター制御による排気風量調整を 行っている施設も同様に高濃度になる)

6-1 裾きりの外形基準と考えられる指標 【VOC使用量】

6-2裾きりの外形基準と考えられる指標 【施設総排気風量=VOC排出量】

・施設総排気風量の大きい順にVOC使用量からVOC排出量を推計

施設総排気風量 (Nm 3 /min)	VOC排出量 カハ・- 率(%)
7,500以上	6 0
5,000以上	7 0
4,000以上	8 0

7-1 VOC排出抑制対策

7-2 VOC排出抑制対策と実施例

*発生源対策で5つの対策、 後処理対策として3つの燃焼処理対策が代表的な事例

施策	排出個所	対策内容	対策実施例
	塗着効率向上	静電ガン、メタリックベル塗装、 ロボット塗装化 他	
		使用量低減	洗浄用シンナー使用量低減・回収
発生源対策	塗装ブース	使用量心例	カートリッジタイプ塗料採用
		低VOC塗料の採用	ハイソリッド塗料の採用
			水系塗料の採用
後処理対策	乾燥炉	排ガス処理装置設置	直燃式/触媒式/蓄熱式 の各燃焼処理装置

7-2 塗着効率の向上:ロボット塗装化

対策前

コンベアと垂直方向に往復運動
・吹き付けした塗料のポデイへの
塗着ロスが多い

[レシプロ塗装機]

対策後

ロボッで3次元動作で効率的に塗装

・動作範囲が広く、塗装部位のみを 狙い打ちでロス少なく塗装

[アーム型塗装システム]

7-2 1 洗浄用シンナーの使用量低減 及び回収/再生 *シンナーにエアーを混合し 洗浄力を高め、使用量低減 エアー *使用後のシンナー回収・再生 (色替え用) ミキシング装置 (追加装置) 洗浄用シンナー シンナー使用量削減 エアー混合洗浄シンナー 塗料A カラー 塗料B ペイント チェンジ 塗料C バルブ 配管及び (CCV)塗装ガン内 洗浄用シンナ -回収) パルプ内 洗浄用シンナー回収) 回収タンク シンナーの回収・再生 再生

7-2 2 洗浄シンナー使用量低減例

7-2 カートリッジタイプ塗料利用による 洗浄シンナー使用量低減実施例

7-2 低 V O C 塗料の採用

*水系型・無溶剤型は、品質確保・コスト等で技術課題がかなり多い。

(主な分類)

区分	概要	技術的 課題
溶 剤 型 (ハイソリッド)	·溶剤又は希釈剤に有機溶剤を使用 ·溶剤含有率は低〈、固形分比率が高い	
水系型	・溶剤又は希釈剤の主体が水	多い
無溶剤型	・溶剤又は希釈剤を使用しない ・粉体塗装等	非常に多い

7-2 乾燥炉排ガス処理装置設置

* それぞれ長所・短所有り、ケースに応じて選定

項目	直接燃焼方式	触媒燃焼方式	蓄熱燃焼方式
処理方法	燃焼炉内で700 ~750 の高温 で酸化分解	白金等の触媒を利 用し、350 前後 の低温で酸化分解	800 の高温雰囲 気下の蓄熱式分解 炉で酸化分解
特徴	·処理性能は安定 ·高濃度に有利	・触媒劣化に伴い 処理能力低下 ・低濃度に有利	·処理性能は安定 ·高濃度に有利
除去効率	9 5 %	80~95%	9 5 %
設置スペース			
イニシャルコスト			~
ランニングコスト			

:有利 不利

7-3 排ガス処理装置 [直接燃焼方式]

7-3 排ガス処理装置 [触媒燃焼方式]

7-3 排ガス処理装置 [蓄熱燃焼方式]

7-4 自動車工業会の排出抑制対策と効果例

* VOC排出量原単位(g / m²)を管理指標として推進中

7-4 VOC排出抑制対策例と抑制効果

'94年: 88g/m²をベンチマークとして 42% ('02年:51g/m²)

排出個所	対策内容	対策実施例	抑制効果
	使用量低減	洗浄用シンナー使用量低減・ 回収	25%
		色替え・洗浄経路短縮化	2070
*	塗着効率向上 塗装ブース 低VOC塗料の採用	静電ガン、メタリックベル塗装、 ロボット塗装化 他	10%
」 空表ノー人 		ハイソリッド塗料の採用	7%
	使用量低減	カートリッジタイプ塗料採用	推進中
	低VOC塗料の採用	水系塗料の採用	推進中
乾燥炉	排ガス燃焼処理 装置設置	直燃式、触媒式、蓄熱式	推進中

8. VOC排出抑制対策効果とコスト

< 1ラインあたり >

抑制対策内容	削減量 (g/m²)	費用(億円)	備考
塗着効率向上	5	5 ~ 8	・ベル化
シンナー回収	20 ~ 30	1 ~ 3	·費用対効果大
ハイソリッド塗料	5	3 ~ 6	・材料コストアップ
水性塗料	20~30	80 ~ 100	・エネルギー増大・排水処理負荷増大・設置スペース大・設備改造規模大・廃棄物増大

9-1 自動車工業会の自主取組の状況

*管理指標はVOC排出量原単位を使用して推進してきた。

VOC排出量原単位(g/m²)

VOC含有量(塗料中)×塗料使用量ーVOC回収·処理量

自動車のボディ表面積合計(電着面積の合計)

9-2 自動車工業会の自主目標(案)

- *94年度を基点に02年度に42%削減
- *02年度までに、00年度基点で既に18%削減を実施済み
- *10年度目標を00年度基点で30%減を検討中

10. 自動車工業会の要望

- 1.対象施設に関して
 - ・上塗り、中塗りで全工程の使用量の大半をカバーしている。

*ボディの上塗り・中塗り工程の施設が適切他工程施設は除外が適当

且つ、電着(オーブン含む)については、水系塗料を 使用した浸漬塗装のため、施設として除外が適当

2.対象施設の外形基準について

VOC年間使用量 施設総排気風量

* 外形基準の候補

3.VOC排出濃度測定について

排出口が多く、濃度の変動幅も大きく、平均濃度は不可。 ・代表測定口の選定が必要

*最大濃度排出口の1個所が適当

省エネ対策のため、排気循環やインバータ制御を実施すると排出濃度が高くなる。

*測定濃度の風量補正が必要

水系塗料(電着等)は、排出濃度が他施設に比べ低い。

*対象施設からの除外が適当

4.自動車工業会の自主取り組みについて

管理指標をVOC排出量原単位(g/m²)として、根本的に 排出量を低減する対策を過去から実施。

- 94年度を基点に02年度には42%削減。
- 2010年度目標として00年度基点で30%減を検討中。

排出規制濃度は対策実施済みの 実状を十分に考慮すべき

《今後の課題》

- ·水系塗料への切り替えはVOC低減には効果があるものの、 エネルギー増、排水処理性、廃棄物増大等マイナス面の 課題も多い。
- ·発生源対策を実施中の施設(例:ブース)への後処理装置の設置になると、現状の自主的な根本対策推進を阻害する可能性あり。

おわり