物 質 名	3-クロロ-2-メチル-1-プロペン			DB-10
別名	3-クロロ-2-メチルプロパ-1-エン、2-	構造式		
	メチル-1-ブテニルクロライド、モノ	н с		
	クロロブテン、イソブテニルクロラ イド		H ₃ C	`CI
CAS 番号	563-47-3		II CH _a	
PRTR 番号	1-131		2	
化審法番号	2-117 (モノクロロブテン) 2-2367 (3-クロロ-2-メチル-1-プロペン)			
分子式	C ₄ H ₇ Cl	分子量	90.55	
沸点	71.5°C¹)	融点	$< -18^{\circ}C^{2)}$	
蒸気圧	1.02×10 ² mmHg(20℃、実測値) ³⁾	換算係数	1 ppm = 3.70 mg/	m^3 (25°C)
分配係数(log Pow) 2.48(推定値) ⁴⁾		水溶性	$1.4 \times 10^3 \text{ mg/L}(25)$	5℃、実測値)⁵)

急性毒性

動物種	経路		致死量、中毒量等
マウス	経口	LD_{50}	1,370 mg/kg ⁶⁾
ラット	経口	LD_{50}	848 mg/kg ⁶⁾
マウス	吸入	LC_{50}	7,000 mg/m ³ (2hr) ⁶⁾
ラット	吸入	LC_{50}	$> 5,000 \text{ mg/m}^3 (4\text{hr})^{6}$

申、長期毒性

- ・ラットに 0、20、60、180 mg/kg/day を 2 週間強制経口投与した結果、180 mg/kg/day 群の前胃の上皮の過形成を認めた 70 。この結果から、NOAEL を 60 mg/kg/day とする。
- ・ラットに 0、50、100、200、300、400 mg/kg/day を 13 週間(5 日/週)強制経口投与した結果、300 mg/kg/day 群の雄 5/10 匹及び雌 2/10 匹及び 400 mg/kg/day 群の雌雄の全数(各 10 匹)、が死亡した。200、300 mg/kg/day 群の雄で体重増加の抑制、300 mg/kg/day 以上の群の雌雄で被毛の粗剛化、肝臓での限局性の炎症(急性から慢性まで)、肝細胞の壊死を認めた ⁸⁾。この結果から、NOAEL を 100 mg/kg/day(ばく露状況で補正:71 mg/kg/day)とする。
- ・ラットに 0、75、150 mg/kg/day を 103 週間(5 日/週)強制経口投与した結果、75 mg/kg/day 以上の群の雌雄の前胃で上皮の過形成、鼻腔の炎症、腎症、150 mg/kg/day 群の雄で体重増加の抑制を認めた ⁸⁾。この結果から、LOAEL を 75 mg/kg/day(ばく露状況で補正: 54 mg/kg/day)とする。
- ・マウスに 0、100、200 mg/kg/day を 103 週間 (5 日/週) 強制経口投与した結果、100 mg/kg/day 以上の群の雌及び 200 mg/kg/day 群の雄で試験期間を通して体重増加の軽微な抑制がみられた。100 mg/kg/day 以上の群の雌雄で前胃の炎症や上皮の過形成、鼻腔の炎症、腎症を認めた ⁸⁾。この結果から、LOAEL を 100 mg/kg/day(ばく露状況で補正:71 mg/kg/day)とする。

生殖·発生毒性

- ・ラットに 0、75、150 mg/kg/day を 103 週間(5 日/週)強制経口投与した結果、75 mg/kg/day 以上の群の雌雄で投与に関連した生殖器への影響はなかった。また、マウスに 0、100、200 mg/kg/day を 103 週間(5 日/週)強制経口投与した試験でも、100 mg/kg/day 以上の群の雌雄で投与に関連した生殖器への影響はなかった 80 。
- ・ラットに 0、20、60、180 mg/kg/day を交尾前(少なくとも 2 週)から交尾期間を経て、雄に

は交尾期間後まで、雌には哺育 4 日までの 54 日間強制経口投与した結果、180 mg/kg/day 群の雌で総ビリルビン及び肝臓酵素への影響(詳細不明)、着床後胚損失の増加、前胃の上皮の過形成を認めた。仔では、180 mg/kg/day 群で出生時の生存数の減少を認めた 7 。この結果から、母ラット及び仔の NOAEL を 60 mg/kg/day、父ラットの NOAEL を 180 mg/kg/day 以上とする。

ヒトへの影響

・催涙性がある。眼、皮膚、気道を刺激する。中枢神経系に影響を与える。高濃度にばく露すると、意識低下を引き起こすことがある。眼に入ったり、皮膚に付くと、発赤、痛み、吸入すると咳、咽頭痛、息切れ、頭痛を生じる。反復または長期の接触により、皮膚感作を引き起こすことがある⁹⁾。

発がん性

IARC の発がん性評価: 3 10)

実験動物及びヒトでの発がん性に関して十分な証拠がないため、IARCの評価では3(ヒトに対する発がん性については分類できない)に分類されている。

許容濃度

ACGIH	_
日本産業衛生学会	_

暫定無毒性量等の設定

経口ばく露については、ラットの中・長期毒性試験から得られた LOAEL 75 mg/kg/day(前胃の組織の変性、鼻腔の炎症など)を採用し、ばく露状況で補正して 54 mg/kg/day とし、LOAEL であることから 10 で除した 5.4 mg/kg/day を暫定無毒性量等に設定する。

吸入ばく露について、暫定無毒性量等は設定できなかった。

引用文献

- 1) Budavari, S. (ed.) (1996): The merck index Encyclopedia of chemicals, drugs and biologicals. 12th ed. Merck and Co., Inc. Rahway, N.J.
- 2) Gerhartz, W. (ed.) (1985): Ullmann's Encyclopedia of Industrial Chemistry. 5th ed.Vol A1: Deerfield Beach, FL: VCH Publishers, 1985 to Present. p. VA2 311.
- 3) Parmeggiani, L. (1983): Encyclopaedia of Occupational Health and Safety. 2: 1811.
- 4) Meylan, W.M. and P.H. Howard (1995): Atom/fragment contribution method for estimating octanol-water partition coefficients. J. Pharm. Sci. 84: 83-92.
- 5) 日本化学物質安全・情報センター(JETOC) (1992):既存化学物質安全性点検データ集.
- 6) US National Institute for Occupational Safety and Health Registry of Toxic Effects of Chemical Substances (RTECS) Database.
- 7) Krishnappa, H. (2002): Combined repeated dose toxicity study with the reproduction/developmental toxicity screening test by gavage with methallyl chloride RAL 129 in wistar rats. Rallis Research Centre, FMC Study A1999-5052. Unpublished report. Cited in: U.S.EPA (2007): Screening-level hazard characterization of high production volume chemicals. Sponsored chemical. Methallyl chloride. (CAS No. 563-47-3).
- 8) NTP (United States National Toxicology Program) (1986): Toxicology and carcinogenesis studies of 3-Chloro-2-methylpropene (Technical Grade Containing 5% Dimethylvinyl Chloride) (CAS No. 563-47-3) in F344/N Rats and B6C3F₁ Mice (Gavage Studies). TR-300.
- 9) IPCS (2008): International Chemical Safety Cards. 1341. 3-Chloro-2-methyl-1-propene.

10) IARC (1995): IARC Monographs on the Evaluation of the Carcinogenic Risks to Human. Vol. 65.							