1. 物質に関する基本的事項

(1) 分子式・分子量・構造式

物質名：ピレン	CAS番号：129-00-0
CAS番号：129-00-0	化審法官報公示整理番号：4-782
化審法官報公示整理番号：4-782	RTECS番号：UR2450000
RTECS番号：UR2450000	分子式：C_{16}H_{10}
分子式：C_{16}H_{10}	分子量：202.25
分子量：202.25	换算係数：1 ppm = 8.27 mg/m^{3} (気体、25 ℃)
換算係数：1 ppm = 8.27 mg/m^{3} (気体、25 ℃)	構造式：

(2) 物理化学的性状

本物質は無色板状晶である。

<table>
<thead>
<tr>
<th>性質</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>融点</td>
<td>150.62 ℃</td>
</tr>
<tr>
<td>沸点</td>
<td>254 ℃ (760 mmHg)</td>
</tr>
<tr>
<td>密度</td>
<td>1.271 g/cm^{3} (23 ℃)</td>
</tr>
<tr>
<td>蒸気圧</td>
<td>2.45 × 10^{-6} mmHg (=3.27 × 10^{-4} Pa) (25 ℃)</td>
</tr>
<tr>
<td>分配係数(1-オクタノール/水)(log Kow)</td>
<td>4.88</td>
</tr>
<tr>
<td>解離定数(pKa)</td>
<td>3.3</td>
</tr>
<tr>
<td>水溶性(水溶解度)</td>
<td>0.135 mg/L (25 ℃)</td>
</tr>
</tbody>
</table>

(3) 環境運命に関する基礎的事項

生物分解性

<table>
<thead>
<tr>
<th>性質</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>好気的分解</td>
<td></td>
</tr>
<tr>
<td>分解率</td>
<td>BOD、TOC、GC の平均値 71% (試験期間：1 週間、被験物質濃度：5 mg/L)</td>
</tr>
<tr>
<td>化学分解性</td>
<td>OH ラジカルとの反応性（大気中）</td>
</tr>
<tr>
<td>反応速度定数</td>
<td>50.0 × 10^{-12} cm^{3}/(分子・sec) (25 ℃)</td>
</tr>
<tr>
<td>半減期</td>
<td>1.3 時間 ～ 13 時間 (OH ラジカル濃度を 3 × 10^{6} ～ 3 × 10^{5} 分子/cm^{3} と仮定し)</td>
</tr>
</tbody>
</table>
計算）
加水分解性
加水分解性の基を持たない^{10}。

生物濃縮性
生物濃縮係数(BCF)：
・魚類
 457（試験濃度：1 mg/L、試験生物：キンギョ）^{11}
・藻類
 16,760（試験生物：緑藻類(Selenastrum capricornutum)、試験期間：1日、試験濃度：0.5 mg/L）^{12}
・甲殻類
 16,600（C^{14}を用いた試験。試験生物：端脚類(Pontoporeia hoyi)、試験期間：6時間、試験濃度：50 µg/L）^{13}
 2,702（試験生物：ミジンコ(Daphnia pulex)、試験期間：1日）^{14}
・その他
 6,588（C^{14}を用いた試験。試験生物：貧毛類(Stylodrilus heringianus)、試験期間：6時間）^{15}
 6,430（試験生物：オオノガイ(Mya arenaria)、試験期間：4日、試験濃度：1.7 µg/L）^{16}
 700（試験生物：ゴカイ科(Nonis virens)、試験期間：4日、試験濃度：1.7 µg/L）^{16}

土壌吸着性
土壌吸着定数(Koc)：1,290^{17}〜3,240,000^{17}（幾何平均値^{17}より集計：77,600）

("製造輸入量及び用途

- 生産量・輸入量等

本物質を含む多環芳香族炭化水素（PAHs）は非意図的に生成され、環境中へ排出される。PAHsの環境中への排出源は燃焼由来と非燃焼由来に分けられるが、燃焼由来が90%以上を占めると考えられている^{18}。

主な発生源としては、コークスとアルミニウムの製造プロセス、石油精製、タイヤ用カーボンブラックの生産やアスファルトへの空気の吹き込みなどのPAHsを含む原料を扱うプロセス、PAHsを多量に含むコールタールおよび関連製品の製造・使用などが挙げられる^{18}。その他の他には、木材の燃焼、剪定くずや農業廃棄物などのバイオマスの不完全な燃焼、自動車の排ガスなどが挙げられている^{18}。

- 用途

本物質はコールタール中に含まれている^{19}。コールタールの主な用途は、タール製品原料、
防錆塗料、魚網染料、油煙、燃料、道路舗装、屋根塗装、鋳鉄管塗装、防水塗装、電極粘結剤とされている。

(ii) 環境施策上の位置付け

本物質は有害大気汚染物質に該当する可能性がある物質に選定されている。また、多環芳香族炭化水素類は水環境保全に向けた取組のための要調査項目に選定されている。
2. ばく露評価

環境リスクの初期評価のため、わが国の一般的な国民の健康や水生生物の生存・生育を確保する観点から、実測データをもとに基本的には化学物質の環境からのばく露を中心に評価することとし、データの信頼性を確認した上で安全側に立った評価の観点から原則として最大濃度により評価を行っている。

(Ⅰ) 環境中への排出量

本物質は化学物質排出把握管理促進法（化管法）第一種指定化学物質ではないため、排出量及び移動量は得られなかった。

(Ⅱ) 媒体別分配割合の予測

化管法に基づく排出量及び移動量が得られなかったため、Mackay-Type Level III Fugacity 模型により媒体別分配割合の予測を行った。予測結果を表2.1に示す。

<table>
<thead>
<tr>
<th>媒体</th>
<th>大気</th>
<th>水域</th>
<th>土壌</th>
<th>大気/水域/土壌</th>
</tr>
</thead>
<tbody>
<tr>
<td>排出速度（kg/時間）</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000（各々）</td>
</tr>
<tr>
<td>大気</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>水域</td>
<td>0.1</td>
<td>7.2</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>土壌</td>
<td>99.0</td>
<td>1.4</td>
<td>99.8</td>
<td>98.7</td>
</tr>
<tr>
<td>底質</td>
<td>0.7</td>
<td>91.4</td>
<td>0.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

注: 数値は環境中で各媒体別に最終的に分配される割合を質量比として示したもの

(Ⅲ) 各媒体中の存在量の概要

本物質の環境中等の濃度について情報の整理を行った。媒体ごとにデータの信頼性が確認された調査例のうち、より広範囲の地域で調査が実施されたものを抽出した結果を表2.2に示す。

<table>
<thead>
<tr>
<th>媒体</th>
<th>平均値</th>
<th>下限値</th>
<th>上限値</th>
<th>検出率</th>
<th>調査地域</th>
<th>調査年</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般環境大気</td>
<td>µg/m³</td>
<td></td>
<td></td>
<td></td>
<td>東京都</td>
<td>2001</td>
<td>2)</td>
</tr>
<tr>
<td></td>
<td>0.0055</td>
<td>0.0042</td>
<td>0.0071</td>
<td>0.0009</td>
<td>2/2</td>
<td>東京都</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td>0.0025</td>
<td>0.0053</td>
<td>0.006</td>
<td>0.00005</td>
<td>13/13</td>
<td>全国</td>
<td>1999</td>
</tr>
<tr>
<td></td>
<td>0.00053</td>
<td>0.00054</td>
<td>0.00065</td>
<td>-</td>
<td>2/2</td>
<td>新潟県、仙台市</td>
<td>1997</td>
</tr>
<tr>
<td></td>
<td>0.0022</td>
<td>0.00037</td>
<td>0.0068</td>
<td>0.0002</td>
<td>13/13</td>
<td>全国</td>
<td>1989</td>
</tr>
<tr>
<td>室内空気</td>
<td>µg/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>食物</td>
<td>µg/g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td><0.00005</td>
<td>0.001</td>
<td>0.00005</td>
<td>10/11</td>
<td>仙台市</td>
<td>2006</td>
</tr>
<tr>
<td>飲料水</td>
<td>µg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><0.005</td>
<td><0.005</td>
<td><0.005</td>
<td>0.005</td>
<td>0/11</td>
<td>仙台市</td>
<td>2006</td>
</tr>
<tr>
<td>地下水</td>
<td>µg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><0.006</td>
<td><0.006</td>
<td><0.006</td>
<td>0.006</td>
<td>0/10</td>
<td>全国</td>
<td>2003</td>
</tr>
</tbody>
</table>
表2.3 各媒体中の濃度と一日ばく露量

<table>
<thead>
<tr>
<th>媒 体</th>
<th>平均値</th>
<th>算術最小値</th>
<th>算術最大値</th>
<th>検出下限値</th>
<th>検出率</th>
<th>調査地域</th>
<th>測定年度</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>土 壌</td>
<td><0.006</td>
<td><0.006</td>
<td><0.006</td>
<td>0.006</td>
<td>0/30</td>
<td>全国</td>
<td>2003</td>
<td>7)</td>
</tr>
<tr>
<td>公共用水域・淡水</td>
<td><0.006</td>
<td><0.006</td>
<td>0.0099</td>
<td>0.006</td>
<td>1/4</td>
<td>全国</td>
<td>1999</td>
<td>3)</td>
</tr>
<tr>
<td>公共用水域・海水</td>
<td><0.006</td>
<td><0.006</td>
<td><0.006</td>
<td>0.035</td>
<td>2/11</td>
<td>全国</td>
<td>1989</td>
<td>5)</td>
</tr>
<tr>
<td>検出値</td>
<td><0.009</td>
<td><0.009</td>
<td><0.009</td>
<td>0.009</td>
<td>1/24</td>
<td>全国</td>
<td>1999</td>
<td>5)</td>
</tr>
<tr>
<td>検出値</td>
<td><0.009</td>
<td><0.009</td>
<td><0.009</td>
<td>0.010</td>
<td>1/10</td>
<td>全国</td>
<td>2003</td>
<td>7)</td>
</tr>
<tr>
<td>検出値</td>
<td><0.009</td>
<td><0.009</td>
<td><0.009</td>
<td>0.013</td>
<td>1/12</td>
<td>全国</td>
<td>1989</td>
<td>5)</td>
</tr>
<tr>
<td>検出値</td>
<td>0.064</td>
<td>0.11</td>
<td>0.017</td>
<td>0.32</td>
<td>0.0062</td>
<td>全国</td>
<td>1999</td>
<td>3)</td>
</tr>
<tr>
<td>検出値</td>
<td>0.10</td>
<td>0.18</td>
<td><0.006</td>
<td>0.44</td>
<td>0.006</td>
<td>全国</td>
<td>1989</td>
<td>5)</td>
</tr>
<tr>
<td>検出値</td>
<td>0.13</td>
<td>0.18</td>
<td>0.028</td>
<td>0.39</td>
<td>0.0062</td>
<td>全国</td>
<td>1999</td>
<td>3)</td>
</tr>
<tr>
<td>検出値</td>
<td>0.21</td>
<td>0.52</td>
<td>0.027</td>
<td>3.1</td>
<td>0.006</td>
<td>全国</td>
<td>1989</td>
<td>5)</td>
</tr>
<tr>
<td>検出値</td>
<td>0.0061</td>
<td>0.00079</td>
<td><0.00034</td>
<td>0.0014</td>
<td>0.00034</td>
<td>全国</td>
<td>1999</td>
<td>3)</td>
</tr>
<tr>
<td>検出値</td>
<td><0.001</td>
<td>0.001</td>
<td><0.001</td>
<td>0.0034</td>
<td>0.001</td>
<td>全国</td>
<td>1999</td>
<td>5)</td>
</tr>
<tr>
<td>検出値</td>
<td><0.00034</td>
<td><0.00034</td>
<td><0.00034</td>
<td>0.000034</td>
<td>0.00034</td>
<td>全国</td>
<td>1999</td>
<td>3)</td>
</tr>
<tr>
<td>検出値</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.000014</td>
<td>0.001</td>
<td>全国</td>
<td>1999</td>
<td>5)</td>
</tr>
<tr>
<td>検出値</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.0014</td>
<td>0.001</td>
<td>全国</td>
<td>1999</td>
<td>5)</td>
</tr>
</tbody>
</table>

注：a) 検出下限値の欄の斜体で示されている値は、定量下限値として報告されている値を示す。
b) 報告されていない

（平）人に対するばく露量の推定（一日ばく露量の予測最大値）

一般環境大気及び地下水の実測値を用いて、人に対するばく露の推定を行った（表2.3）。化学物質の両一日ばく露量の算出に際しては、人の一日の呼吸量、飲水量及び食事量をそれぞれ15 m³、2 L及び2,000 gと仮定し、体重を50 kgと仮定している。

表2.3 各媒体中の濃度と一日ばく露量

<table>
<thead>
<tr>
<th>媒 体</th>
<th>濃 度</th>
<th>一 日 ばく 露 量</th>
</tr>
</thead>
<tbody>
<tr>
<td>大 気 一般環境大気</td>
<td>0.0025 µg/m³ 程度(1999)</td>
<td>0.00075 µg/kg/day 程度</td>
</tr>
<tr>
<td>室内空気</td>
<td>データは得られなかった</td>
<td>データは得られなかった</td>
</tr>
<tr>
<td>水 質 飲料水</td>
<td>データは得られなかった（限られた地域で0.005 µg/L未満程度の報告がある(2006)）</td>
<td>データは得られなかった（限られた地域で0.0002 µg/kg/day未満程度の報告がある）</td>
</tr>
<tr>
<td>地下水</td>
<td>0.006µg/L未満程度(2003)</td>
<td>0.00024 µg/kg/day未満程度</td>
</tr>
<tr>
<td>公共用水域・淡水</td>
<td>0.005µg/L未満程度(2003)</td>
<td>0.00024 µg/kg/day未満程度</td>
</tr>
<tr>
<td>食 物</td>
<td>データは得られなかった（限られた地域で0.0002 µg/kg/day程度の報告がある）</td>
<td>データは得られなかった（限られた地域で0.008 µg/kg/day程度の報告がある）</td>
</tr>
<tr>
<td>土 壌</td>
<td>データは得られなかった</td>
<td>データは得られなかった</td>
</tr>
<tr>
<td>大 気 一般環境大気</td>
<td>0.0025 µg/m³ 程度(1999)</td>
<td>0.00075 µg/kg/day 程度</td>
</tr>
<tr>
<td>室内空気</td>
<td>データは得られなかった</td>
<td>データは得られなかった</td>
</tr>
<tr>
<td>水 質 飲料水</td>
<td>データは得られなかった（限られた地域で0.005 µg/L未満程度の報告がある(2006)）</td>
<td>データは得られなかった（限られた地域で0.0002 µg/kg/day未満程度の報告がある）</td>
</tr>
</tbody>
</table>

注：a) 検出下限値の欄の斜体で示されている値は、定量下限値として報告されている値を示す。
b) 報告されていない
ピレン

媒体

<table>
<thead>
<tr>
<th>値</th>
<th>濃度</th>
<th>一日ばく露量</th>
</tr>
</thead>
<tbody>
<tr>
<td>地下水</td>
<td>0.006µg/L 未満程度 (2003)</td>
<td>0.00024 µg/kg/day 未満程度</td>
</tr>
<tr>
<td>公共用水域・淡水</td>
<td>0.006µg/L 未満程度 (2003)</td>
<td>0.00024 µg/kg/day 未満程度</td>
</tr>
<tr>
<td>食物</td>
<td>データは得られなかった（限られた地域で 0.001 µg/g 程度の報告がある (2006)）</td>
<td>データは得られなかった（限られた地域で 0.04 µg/kg/day 程度の報告がある）</td>
</tr>
<tr>
<td>土壌</td>
<td>データは得られなかった</td>
<td>データは得られなかった</td>
</tr>
</tbody>
</table>

人の一日ばく露量の集計結果を表 2.4 に示す。

吸入ばく露の予測最大ばく露濃度は、一般環境大気のデータから 0.006 µg/m³程度となった。

経口ばく露の予測最大ばく露量は、地下水のデータから算定すると 0.00024 µg/kg/day 未満程度であった。なお、限られた地域ではあるが食物のデータから算出すると 0.04 µg/kg/day 程度の報告があり、また、詳細な調査結果は明らかではないが、全国 7 都市で試料を購入し各食品群に含まれる量を測定した調査結果より一日摂取量 0.03 µg/kg/day の発表がある9)。

<table>
<thead>
<tr>
<th>媒体</th>
<th>平均ばく露量 (µg/kg/day)</th>
<th>予測最大ばく露量 (µg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>大気</td>
<td>一般環境大気</td>
<td>0.00075</td>
</tr>
<tr>
<td></td>
<td>室内空気</td>
<td>0.0018</td>
</tr>
<tr>
<td>水質</td>
<td>飲料水</td>
<td>{0.0002}</td>
</tr>
<tr>
<td></td>
<td>地下水</td>
<td>0.00024</td>
</tr>
<tr>
<td></td>
<td>公共用水域・淡水</td>
<td>(0.00024)</td>
</tr>
<tr>
<td>食物</td>
<td></td>
<td>{0.008}</td>
</tr>
<tr>
<td>土壌</td>
<td></td>
<td>0.04</td>
</tr>
</tbody>
</table>

| 経口ばく露量合計 | 0.00024 | 0.00024 |
| 総ばく露量 | 0.00075 + 0.00024 | 0.0018 + 0.00024 |

注: 1) アンダーラインを付した値は、ばく露が「検出(定量)下限値未満」とされたものであることを示す
2) 総ばく露量は、吸入ばく露として一般環境大気を用いて算定したものである
3) () 内の数字は、経口ばく露量合計の算出に用いていない
4) { } 内の数字は、限られた地域における調査データから算出したものである

(1) 水生生物に対するばく露の推定（水質に係る予測環境中濃度：PEC）

本物質の水生生物に対するばく露の推定の観点から、水質中濃度を表 2.5 のように整理した。

水質について安全側の評価値として予測環境中濃度（PEC）を設定すると、公共用水域の淡水水では 0.006 µg/L 未満程度、海水域では 0.010 µg/L 程度となった。

<table>
<thead>
<tr>
<th>水域</th>
<th>平均濃度</th>
<th>最大濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>淡水</td>
<td>0.006 µg/L 未満程度 (2003)</td>
<td>0.006 µg/L 未満程度 (2003)</td>
</tr>
<tr>
<td>海水</td>
<td>0.006 µg/L 未満程度 (2003)</td>
<td>0.010 µg/L 程度 (2003)</td>
</tr>
</tbody>
</table>

注: 淡水は、河川河口域を含む。
３．健康リスクの初期評価

健康リスクの初期評価として、ヒトに対する化学物質の影響についてのリスク評価を行った。

(1) 体内動態、代謝

14Cでラベルした本物質2〜15 mg/kgをラットに静脈内投与又は経口投与した結果、静脈内投与では血液中の放射活性及び遊離の本物質は急速に減少していたが、6〜8時間後に一時的なリバウンドがみられ、腸肝循環の結果を示す現象と考えられた。経口投与では、血液中の放射活性及び遊離の本物質は45分後にはピークに達してその後急速に減少し、代謝物は15分後に血液中に現れて1〜2時間後にピークに達して減少した。血液からの消失は2相性で、第2相の半減期には用量依存性がなく、平均値は本物質で244分、放射活性で478分であったが、他のパラメーターは投与量の増加に伴って減少したことから、非線形の動態が強く示唆された。

静脈内投与及び経口投与時のAUC（薬物血中濃度時間曲線下面積）から求めたバイオアベイラビリティ（生物学的利用能）は本物質で49〜72%、放射活性で65〜84%であった。投与6時間後の放射活性は脂肪組織で最も高く、脳や心臓、脾臓、精巣では低く、肝臓や腎臓、肺ではそれらの中間にあった。どちらの投与経路でも6日間で投与量の約40%が尿中に、約45%が糞中排泄されたが、尿中にはそのほとんどが1日以内に排泄されており、糞中については初回分析時（2日後）がそのほとんどを占めた1)。

20 mg/kgを強制経口投与したラットでは、本物質の血液中ピークは1時間後にみられて急速に減少したが、他の多環芳香族炭化水素（PAH）と混合して投与したところ、本物質のバイオアベイラビリティは有意に増加した2)。また、ラットに50 µgを強制経口投与した24時間後に体内分布を調べたところ、消化管から24 µgが回収されたが、肺や腎臓、肝臓、気管からは検出されなかったことから、これらの組織では消失は速やかであると考えられた3)。

本物質のエアロゾル（500 mg/m³、中央粒径0.3〜0.8 µm）を1時間吸入させた結果、30分後の本物質濃度は気管及び胃で最も高く（約28 µg/g）、次いで肺及び鼻腔（約15 µg/g）、腎臓（約10 µg/g）、肝臓及び腸（約5 µg/g）、筋肉（1.7 µg/g）の順であった。また、350 mg/m³を1時間吸入させ、経時に体内濃度を調べたところ、肺では1日後には初期濃度（30分後）の69%まで減少し、さらに2日後には5%、4日後には2%まで減少した。1日後の気管又は鼻腔では初期濃度の約80%であったが、その後急速に減少し、肝臓や腎臓、胃でも急激に減少して2日後には初期濃度の約17%までになった。腸では1日後に初期濃度の約4倍まで増加したが、その後は急速に減少し、4日後にはほぼすべてが排泄された。このように、吸入された本物質は気管や気管支の粘液線毛運動によって気管から速やかに取り除かれるとともに、気道から吸収された本物質は肝臓や腎臓に輸送され、主に消化管を経由して排泄されると考えられた3)。

本物質を腹腔内投与したラット及びウサギの尿4)で1-Oヒドロキシピレン（1-OHP）や1,4,5-トリヒドロキシ-4,5-ジヒドロピレンの硫酸抱合体やグルクロン酸抱合体、メルカプツール酸のN-アセチル-S-(4,5-ジヒドロ-4-ヒドロキシ-5-ピレニル)-L-システイン、経口投与したプタの尿5)で1-OHPが検出されており、ラットの肝ミクロソームを用いたin vitro実験では1,4,5-トリヒドロキシ-4,5-ジヒドロピレンも検出された6)。

本物質や本物質を含む溶剤を皮膚に塗布したヒトの尿中で、10〜15時間後に1-OHPのピークがみられており7)、ヒトや実験動物での検討結果から、1-OHPは本物質や本物質を含むPAH混
合物ばく露のバイオマーカーとして有用と考えられている7-10)。

(二) 一般毒性及び生殖・発生毒性

<table>
<thead>
<tr>
<th>動物種</th>
<th>経路</th>
<th>致死量、中毒量等</th>
</tr>
</thead>
<tbody>
<tr>
<td>ラット</td>
<td>経口</td>
<td>LD50 2,700 mg/kg</td>
</tr>
<tr>
<td>マウス</td>
<td>経口</td>
<td>LD50 800 mg/kg</td>
</tr>
<tr>
<td>マウス</td>
<td>経口</td>
<td>TDLo 6,068 mg/kg</td>
</tr>
<tr>
<td>ラット</td>
<td>吸入</td>
<td>LC50 170 mg/m^3</td>
</tr>
</tbody>
</table>

日光に当たると本物質の皮膚への刺激作用が誘発され、慢性的な皮膚変色の原因となることがある。皮膚に付いたり眼に入ると発赤を生じる12)。急性経口投与試験及び急性吸入試験時のラットで眼や鼻の持続的な刺激、興奮、筋緊張又は発症が報告されている11)。

中・長期毒性

ア）肝臓を部分切除したラット（Holzman 又は Charles River）に種々の PAH を 10 日間混餌投与した結果、アセナフテン（13 匹、0.1%濃度で添加）及びフルオレン（11 匹、0.5%濃度で添加）では肝臓重量の有意な増加がみられ、肝臓の再生が示唆されたが、本物質（12 匹、1%濃度で添加）では肝臓重量の有意な増加はなく、増殖反応を誘発しないと考えられた13)。

イ）雌ラット 3～6 匹を 1 群とし、基本食で 18 日間飼育した後に 0.2%の濃度で本物質を餌に添加して 32 日間投与したところ、体重増加の抑制がみられた。このため、本物質の投与を継続したまま、0.4%濃度で L-システイン又は 0.5%の濃度で DL-メチオニンを餌に添加して 14 日間投与したところ、体重増加の抑制は改善されたが、L-システイン又は DL-メチオニンの添加を止め 21 日間投与すると再び体重増加が抑制された14)。なお、数匹に肝臓の肥大や脂肪変性がみられたとされていたが、具体的な発生状況の記載はなかった。

ウ）7 匹のSwiss マウスを 1 群とし、1%濃度で餌に添加して 11 日間混餌投与を一旦 5%に増量して 7 日間混餌投与しても影響は現われなかったが、25%に増量すると体重の減少が始まり、8 日目には体重が 2 匹が死亡したため、試験を終了した。組織検査では肝臓に影響はなかったが、腎臓では明白な影響として尿細管の拡張がみられた15)。

エ）CD-1 マウス雌雄各 20 匹を 1 群とし、0、75、125、250 mg/kg/day を 13 週間強制経口投与した結果、尿細管の再生像を主とし、多くの場合に間質のリンパ球浸潤や線維化を伴ったごく軽微から軽微な腎症が対照群を含む各群の雄で 4、1、1、9 匹、雌で 2、3、7、10 匹にみられ、腎臓の絶対及び相対重量は 125 mg/kg/day 以上の群で雌雄で増加した16)。また、125 mg/kg/day 以上の群の雄及び 250 mg/kg/day の雄で肝臓相対重量が増加し、75 mg/kg/day 以上の群の雄で赤血球数及びヘマトクリット値、ヘモグロビン濃度の減少が観察される血液影響がみられたが、軽度なものであった17)。この結果から、NOAEL を 75 mg/kg/day とする。

オ）雄の Fischer344 ラットから採取した気管を同種の雄（15 匹/群）の肩甲骨後方に移植（2ヶ所/匹）し、4 週間後に種々の PAH のばく露を行ったが、この時点で気管は十分に血管新
生し、形態学的にも正常で、粘液も分泌していた。PAH 1 g を含む蜜蝋のペレットを作成し、これを移植した気管内に挿入してばく露させ、8 週間後までの組織変化を調べた。本物質の場合、投与の 1 週間後までにほぼ 90% がカプセルから血液中に移行し、その時点で気管上皮の約 70% を過形成（主に杯状細胞の過形成）、約 20% を移行上皮が占めており、その後、正常細胞の割合が増加したが、8 週間後も過形成は上皮の約 30% でみられた。

生殖・発生毒性

ア）妊娠 3 週に入った 3 系統の雌マウス（BALB/c、C3H/a、C57BL × CBA の F1）に 4 mg を毎日筋肉内投与し、19-21 日齢の胎仔から取り出した腎臓を組織培養した結果、培養 22 日の生存率は対照群の 4.4% に対して 45.7% と高く、また、増殖性変化の割合も対照群の 1.8% に対して 17.9% と高かった。このため、本物質は胎盤を通過し、影響を及ぼすと考えられた。なお、4 mg のベンゾ[a]ピレン（BaP）を同様にして投与した群でも同様の変化がみられたが、生存率（52.6%）及び増殖性変化の割合（26.5%）はともに本物質投与群よりも高かった。

イ）CBA マウス雄 × BALB マウス雌の F1 雄 5 匹を 1 群とし、0、50、100、250、500 mg/kg/day を 5 日間腹腔内投与し、その 5 週間後に精子頭部の異常を調べた結果、本物質による影響はなかった。

ヒトへの影響

ア）本物質を含む高濃度の PAH にばく露されたコークス炉労働者で軽度の免疫抑制を認めたとした報告があるが、PAH の中のどの成分によるものかは明らかになっていない。

発がん性

主要な機関による発がんの可能性の分類

国際的に主要な機関での評価に基づく本物質の発がんの可能性の分類については、表 3.2 に示すとおりである。

<table>
<thead>
<tr>
<th>機関 (年)</th>
<th>分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO IARC (*)</td>
<td>3</td>
</tr>
<tr>
<td>EU</td>
<td>-</td>
</tr>
<tr>
<td>USA EPA (1991)</td>
<td>D</td>
</tr>
<tr>
<td>ACGIH (1999)</td>
<td>-</td>
</tr>
<tr>
<td>NTP</td>
<td>-</td>
</tr>
<tr>
<td>日本日本産業衛生学会</td>
<td>-</td>
</tr>
<tr>
<td>ドイツ DFG</td>
<td>-</td>
</tr>
</tbody>
</table>

注：現在、IARC Monographs on the Evaluation of Carcinogenic Risk to Human の Volume 92 として印刷中である。
発がん性の知見

遺伝子傷害性に関する知見

in vivo 試験系では、ショウジョウバエで伴性劣性致死突然変異[74]、経口投与したマウスの消化管（前胃、十二指腸、近位結腸）上皮で核異常[75]、末梢血で小核[76]、腹腔内投与したマウスの骨髄で姉妹染色体異常を誘発した[77]、小核[78,79]、皮膚塗布したマウスの皮膚で小核[80,81]を誘発しなかった。また、皮膚塗布したマウスの皮膚でDNA付加体は検出されなかった[82]。

実験動物に関する発がん性の知見

シリアンハムスター雄48匹を1群とし、0、3mgを30週間毎週1回気管内投与し、その後飼育を継続した結果、50週間後には24匹、90週間後には7匹が生存していた。本物質投与群では1匹に気管腫瘍、2匹に悪性リンパ腫（組織球性）を認めたが、対照群（82匹）では気道系の腫瘍は発生しなかった[83]。

種々の系統のマウスの皮膚に週2-3回の頻度で1-2年間塗布した結果、皮膚腫瘍の発生増加はみられなかった[84-88]。また、BaPでイニシエート[89]、クロトン油[90]や12-O-テトラデカノイルホルホール酸塩（TPA）[90,91]でプロモートした本物質の皮膚二段階発がん試験では、本物質の塗布箇所をTPAでプロモートした群の5匹塩腫瘍の発生（対
照群での発生はなし）を認めた一つの報告（90）を除くと、すべて陰性の結果であった。

Jackson A 系マウス雌雄 30 匹を 1 群とし、4 ヶ月毎に 10 mg を左側腹部に皮下投与した結果、1 年後に 23 匹、18 ヶ月後に 9 匹の生存数であったが、投与部に腫瘍の発生はみられなかった（92）。また、A 系統の雌マウスに 6 mg を妊娠 18、19 日に皮下投与し、出産させて親仔（F0、F1）を 1 年間飼育した結果、F0 及び F1 の肺、乳腺、肝臓で腫瘍の有意な発生率増加はみられなかった（93）。

しかし、本物質を塗布した後に BaP を塗布してイニシエートし、その後 TPA を繰り返し塗布した CD-1 マウス（94）、本物質とともに BaP を塗布した ICR/Ha マウス（88, 95）の発がん性試験では、皮膚腫瘍の発生数や発生率に増加がみられたことから、本物質は BaP に対して軽い助発がん作用を有することが示唆されており、CD-1 マウスの皮膚に本物質を BaP とともに塗布すると、BaP の DNA 付加体生成は 59% 増加した（96）。一方、本物質を含む PAH を BaP とともに皮下投与した C57Black マウスでは、投与部位の肉腫発生率が減少したことから、本物質を含む PAH が BaP の皮膚発がん性を阻害したと考えられた（97）。

皮膚発がん物質では、皮膚のメラニン芽細胞のメラニン産生を誘発することがあるため、本物質を含む PAH について C57BL/6 マウスでメラニン細胞の活性化能を調べた結果、本物質を 2 日間塗布しても活性メラニン細胞数の増加がみられなかった（98）。

□ ヒトに関する発がん性の知見

ヒトでの発がん性に関する情報は得られなかった。

(□) 健康リスクの評価

□ 評価に用いる指標の設定

非発がん影響については一般毒性に関する知見が得られているが、生殖・発生毒性等については十分な知見が得られていない。また、発がん性については十分な知見が得られており、ヒトに対する発がん性の有無については判断できない。このため、閾値の存在を前提とする有害性について、非発がん影響に関する知見に基づき無毒性量等を設定することとする。

経口外露については、中・長期毒性試験のマウスの試験から得られた NOAEL 75 mg/kg/day（肝臓及び腎臓の相対重量増加、雌の腎症）を試験期間が短いことから 10 で除した 7.5 mg/kg/day が信頼性のある最も低用量の知見と判断し、これを無毒性量等に設定する。

吸入外露については、無毒性量等の設定はできなかった。

□ 健康リスクの初期評価結果

<table>
<thead>
<tr>
<th>表 3.3 経口外露による健康リスク（□□□の算定）</th>
<th>経口外露経路・媒体</th>
<th>平均外露量</th>
<th>予測最大外露量</th>
<th>無毒性量等</th>
<th>MOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>飲料水</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>地下水（+ 食物）</td>
<td>0.00024 µg/kg/day 未満程度</td>
<td>0.00024 µg/kg/day 未満程度</td>
<td>7.5 mg/kg/day</td>
<td>マウス</td>
<td>3,100,000 超 (19,000)</td>
</tr>
</tbody>
</table>

注：(□) 内は、全国レベルのデータではない食物からの外露量を加味した場合を示す。
経口ばく露については、公共用水域・淡水を摂取すると仮定した場合、平均ばく露量、予測最大ばく露量はともに 0.00024 µg/kg/day 程度であった。無毒性量等 7.5 mg/kg/day と予測最大ばく露量から、動物実験結果より設定された知見であるために 10 で除して求めた MOE（Margin of Exposure）は 3,100,000 超となる。また、参考として局所地域のデータとして報告のあった食物からのばく露量を加味すると予測最大ばく露量は 0.04 µg/kg/day 程度となるが、これから MOE を求めると 19,000 となる。
従って、本物質の経口ばく露による健康リスクについては、現時点では作業は必要ないと考えられる。

<table>
<thead>
<tr>
<th>吸入ばく露による健康リスク（MOEの算定）</th>
</tr>
</thead>
<tbody>
<tr>
<td>ばく露経路・媒体</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>吸入</td>
</tr>
<tr>
<td>環境大気</td>
</tr>
<tr>
<td>室内空気</td>
</tr>
</tbody>
</table>

吸入ばく露については、無毒性量等が設定できず、健康リスクの判定はできなかった。
なお、参考として吸収率を 100% と仮定し、経口ばく露の無毒性量等を吸入ばく露の無毒性量等に換算すると 25 mg/m³ となるが、これと一般環境大気中の予測最大ばく露濃度から算出した MOE は 420,000 となる。このため、吸入ばく露による健康リスクの評価に向けて吸入ばく露の知見収集等を行う必要性は低いと考えられる。

詳細な評価を行う候補と考えられる。| 情報収集に努める必要があると考えられる。| 現時点では作業は必要ないと考えられる。
4．生態リスクの初期評価

水生生物の生態リスクに関する初期評価を行った。

(4) 水生生物に対する毒性値の概要

本物質の水生生物に対する毒性値に関する知見を収集し、その信頼性及び採用の可能性を確認したものを生物群（藻類、甲殻類、魚類及びその他）ごとに整理すると表4.1のとおりとなっ

<table>
<thead>
<tr>
<th>生物群</th>
<th>急性</th>
<th>慢性</th>
<th>毒性値 [µg/L]</th>
<th>生物名</th>
<th>生物分類</th>
<th>エンドポイント / 影響内容</th>
<th>ばく露期間（日）</th>
<th>光条件</th>
<th>試験の信頼性</th>
<th>採用の可能性</th>
<th>文献No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>藻類</td>
<td>□</td>
<td></td>
<td>48.5</td>
<td>Scenedesmus</td>
<td>緑藻類</td>
<td>EC50 GRO</td>
<td>14時間明/10時間暗、蛍光灯、350µEs/m²</td>
<td>C C</td>
<td>1)-94007</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>1,360</td>
<td>Pseudokirchneriella</td>
<td>緑藻類</td>
<td>NOEC GRO(RATE)</td>
<td>3</td>
<td>人工照明</td>
<td>B'</td>
<td>C'</td>
<td>3)2</td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>1,600</td>
<td>Pseudokirchneriella</td>
<td>緑藻類</td>
<td>NOEC GRO(AUG)</td>
<td>3</td>
<td>人工照明</td>
<td>B'</td>
<td>C'</td>
<td>2)-1</td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>2,400</td>
<td>Pseudokirchneriella</td>
<td>緑藻類</td>
<td>EC50 GRO(AUG)</td>
<td>3</td>
<td>人工照明</td>
<td>B'</td>
<td>C'</td>
<td>2)-1</td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>>2,660</td>
<td>Pseudokirchneriella</td>
<td>緑藻類</td>
<td>EC50 GRO(RATE)</td>
<td>3</td>
<td>人工照明</td>
<td>B'</td>
<td>C'</td>
<td>3)2</td>
</tr>
<tr>
<td>甲殻類</td>
<td>□</td>
<td></td>
<td>0.89</td>
<td>Americamysis</td>
<td>アミ科</td>
<td>LC50 MOR</td>
<td>2</td>
<td>UV-A 397、UV-B 134µW/cm²</td>
<td>C C</td>
<td>1)-18274</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>2.7</td>
<td>Callinectes</td>
<td>ブルークラブ</td>
<td>LC50 MOR</td>
<td>2</td>
<td>1時間 (29時間+)+28時間無ばく露 (4時間UV+24時間暗)</td>
<td>C C</td>
<td>1)-85952</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>4</td>
<td>Daphnia magna</td>
<td>オオミジンコ</td>
<td>LC50 MOR</td>
<td>2</td>
<td>1時間 UV-A 13W/m²</td>
<td>C C</td>
<td>1)-11437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>4.33</td>
<td>Daphnia magna</td>
<td>オオミジンコ</td>
<td>EC50 IMM</td>
<td>2</td>
<td>可視光 56μmol/m²/s + UV-A 4.6μmol/m²/s</td>
<td>B B</td>
<td>1)-86087</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>4.58</td>
<td>Daphnia magna</td>
<td>オオミジンコ</td>
<td>EC50 IMM</td>
<td>2</td>
<td>模擬太陽光 SSR：可視光 51、UV-A 4.4、UV-B 0.45μmol/m²/s</td>
<td>B B</td>
<td>1)-86087</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>4.9</td>
<td>Libinia dubia</td>
<td>クモガニ科</td>
<td>LC50 MOR</td>
<td>2</td>
<td>1時間 (29時間+)+28時間無ばく露 (4時間UV+24時間暗)</td>
<td>C C</td>
<td>1)-85952</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>5.7</td>
<td>Daphnia magna</td>
<td>オオミジン科</td>
<td>LT50 MOR</td>
<td>27.48 時間</td>
<td>24時間+UV 4.8時間、UVB:25、UV-A:120、可視光 680μW/m²</td>
<td>A C</td>
<td>1)-12675</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>5.7</td>
<td>Daphnia magna</td>
<td>オオミジンコ</td>
<td>EC50 IMM</td>
<td>26</td>
<td>24時間+UV-A 2時間、13W/m²</td>
<td>C C</td>
<td>1)-17714</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>8</td>
<td>Artemia salina</td>
<td>アルテミア属</td>
<td>LC50 MOR</td>
<td>3</td>
<td>1時間 (29時間+)+28時間無ばく露 (4時間UV+24時間暗)</td>
<td>C C</td>
<td>1)-11437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>10</td>
<td>Daphnia magna</td>
<td>オオミジン科</td>
<td>EC50 IMM</td>
<td>2</td>
<td>UV-B 照射（極大 313nm）2.3kJ/m²/2時間</td>
<td>A B</td>
<td>1)-52702</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>11.3</td>
<td>Panopeus herbsti</td>
<td>ソウオウガニ科</td>
<td>LC50 MOR</td>
<td>1</td>
<td>1時間 (29時間+)+28時間無ばく露 (4時間UV+24時間暗)</td>
<td>C C</td>
<td>1)-85952</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td></td>
<td>12.1</td>
<td>Daphnia magna</td>
<td>オオミジン科</td>
<td>EC50 IMM</td>
<td>1</td>
<td>23時間+15分 UV-B 24時間暗</td>
<td>UVB:565nW/m²</td>
<td>C C</td>
<td>1)-62151</td>
</tr>
<tr>
<td>生物群</td>
<td>急性</td>
<td>慢性</td>
<td>生物名</td>
<td>生物分類</td>
<td>生物名</td>
<td>生物分類</td>
<td>生物名</td>
<td>生物分類</td>
<td>生物名</td>
<td>生物分類</td>
<td>生物名</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>□</td>
<td>16.8</td>
<td>Callinectes sapidus</td>
<td>ブルークラブ (1日齢幼生)</td>
<td>LC50</td>
<td>1時</td>
<td>1時間</td>
<td>(29時間)</td>
<td>1時間</td>
<td>(29時間)</td>
<td>1時間</td>
<td>(29時間)</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>Daphnia magna</td>
<td>オオミジンコ</td>
<td>NOEC</td>
<td>20</td>
<td>室内光</td>
<td>B(^{3})</td>
<td>B(^{3})</td>
<td>2(\rightarrow)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>約 24</td>
<td>Ambilobas likelike</td>
<td>端脚類</td>
<td>LC50</td>
<td>10時間</td>
<td>2時間</td>
<td>暗条件</td>
<td>C</td>
<td>C</td>
<td>1(\rightarrow)</td>
<td>14374</td>
</tr>
<tr>
<td>□</td>
<td>24.8</td>
<td>Americamysis bahia</td>
<td>アミ科</td>
<td>LC50</td>
<td>2時間</td>
<td>UV-A: 9.70</td>
<td>C</td>
<td>C</td>
<td>1(\rightarrow)</td>
<td>18274</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>27.1</td>
<td>Gammarus pulex</td>
<td>よこエビ属 (成体、オス)</td>
<td>LC50</td>
<td>14時間</td>
<td>UV-B: 3.37µW/cm(^2)</td>
<td>C</td>
<td>C</td>
<td>1(\rightarrow)</td>
<td>94624</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>30</td>
<td>Daphnia magna</td>
<td>オオミジンコ</td>
<td>EC50</td>
<td>2時間</td>
<td>暗条件</td>
<td>A</td>
<td>A</td>
<td>2(\rightarrow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>32〜48</td>
<td>Artemia salina</td>
<td>アルテミア属</td>
<td>LC50</td>
<td>10時間</td>
<td>2時間</td>
<td>UV-A, 975-1000µW/cm(^2)</td>
<td>B</td>
<td>B</td>
<td>1(\rightarrow)</td>
<td>14374</td>
</tr>
<tr>
<td>□</td>
<td>48.9</td>
<td>Daphnia magna</td>
<td>オオミジンコ</td>
<td>EC50</td>
<td>2時間</td>
<td>室内光</td>
<td>A</td>
<td>A</td>
<td>2(\rightarrow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>91</td>
<td>Daphnia magna</td>
<td>オオミジンコ</td>
<td>LC50</td>
<td>2時間</td>
<td>暗条件</td>
<td>C</td>
<td>C</td>
<td>1(\rightarrow)</td>
<td>11926</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>97</td>
<td>Hyalella azteca</td>
<td>ヨコエビ科</td>
<td>LC50</td>
<td>5時間</td>
<td>蛍光灯</td>
<td>B</td>
<td>B</td>
<td>1(\rightarrow)</td>
<td>65752</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>>99.1</td>
<td>Artemia salina</td>
<td>アルテミア属</td>
<td>LC50</td>
<td>1時間</td>
<td>UV-A: 9.70</td>
<td>C</td>
<td>C</td>
<td>1(\rightarrow)</td>
<td>11926</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>107</td>
<td>Oithona davisae</td>
<td>オイトナ属 (成体)</td>
<td>EC50</td>
<td>2時間</td>
<td>室内光</td>
<td>C</td>
<td>C</td>
<td>1(\rightarrow)</td>
<td>95286</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>>1.024</td>
<td>Daphnia magna</td>
<td>オオミジンコ</td>
<td>EC50</td>
<td>26時間</td>
<td>UV照射なし</td>
<td>C</td>
<td>C</td>
<td>1(\rightarrow)</td>
<td>17714</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>1.570</td>
<td>Daphnia magna</td>
<td>オオミジンコ</td>
<td>EC50</td>
<td>2時間</td>
<td>室内光</td>
<td>B(^{3})</td>
<td>C(^{3})</td>
<td>2(\rightarrow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>5</td>
<td>Oryzias latipes</td>
<td>メダカ (胚)</td>
<td>NOEC</td>
<td>39時間</td>
<td>室内灯</td>
<td>A</td>
<td>A</td>
<td>2(\rightarrow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>30</td>
<td>Pagrus major</td>
<td>マダイ (稚魚)</td>
<td>LC50</td>
<td>4時間</td>
<td>(流水式)</td>
<td>B</td>
<td>B</td>
<td>4(\rightarrow)</td>
<td>2007018</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>39</td>
<td>Fundulus heteroclitus</td>
<td>マミチョグ (胚)</td>
<td>LC50</td>
<td>14時間</td>
<td>(流水式)</td>
<td>B</td>
<td>C</td>
<td>4(\rightarrow)</td>
<td>2007018</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>150</td>
<td>Oryzias latipes</td>
<td>メダカ</td>
<td>LC50</td>
<td>4時間</td>
<td>室内灯</td>
<td>B(^{6})</td>
<td>C(^{6})</td>
<td>2(\rightarrow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>200</td>
<td>Pimephales promelas</td>
<td>ファットヘッドミノー</td>
<td>LC50</td>
<td>1時間</td>
<td>30分, 1時間, 1.5時間</td>
<td>B</td>
<td>C</td>
<td>1(\rightarrow)</td>
<td>63236</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>220</td>
<td>Pimephales promelas</td>
<td>ファットヘッドミノー</td>
<td>LC50</td>
<td>25時間</td>
<td>30分, UV-A, 7.5W/m(^2)</td>
<td>C</td>
<td>C</td>
<td>1(\rightarrow)</td>
<td>11437</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>240</td>
<td>Fundulus heteroclitus</td>
<td>マミチョグ (胚)</td>
<td>LC50</td>
<td>2時間</td>
<td>室内灯</td>
<td>B</td>
<td>C</td>
<td>4(\rightarrow)</td>
<td>2007018</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>1,040</td>
<td>Oryzias latipes</td>
<td>メダカ</td>
<td>LC50</td>
<td>4時間</td>
<td>室内光</td>
<td>B(^{6})</td>
<td>C(^{6})</td>
<td>2(\rightarrow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>5</td>
<td>Oryzias latipes</td>
<td>メダカ</td>
<td>LC50</td>
<td>4時間</td>
<td>室内光</td>
<td>B(^{6})</td>
<td>C(^{6})</td>
<td>2(\rightarrow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>1.68</td>
<td>Mulinia lateralis</td>
<td>バカガイ科 (稚貝)</td>
<td>LC50</td>
<td>4時間</td>
<td>UV-A, 397µW/cm(^2), UV-B, 134µW/cm(^2)</td>
<td>C</td>
<td>C</td>
<td>1(\rightarrow)</td>
<td>18274</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>2.5</td>
<td>Aedes aegypti</td>
<td>ネッタイシマカ (1日齢幼虫)</td>
<td>LC50</td>
<td>12.5時間</td>
<td>36.5時間</td>
<td>1時間</td>
<td>30分</td>
<td>UV, 13.5W/m(^2)</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>□</td>
<td>2.63</td>
<td>Utterbackia imbecillis</td>
<td>イシガイ科</td>
<td>LC50</td>
<td>28時間</td>
<td>1時間</td>
<td>4時間, 2.01µW/cm(^2), 24時間</td>
<td>B</td>
<td>C</td>
<td>1(\rightarrow)</td>
<td>62461</td>
</tr>
<tr>
<td>□</td>
<td>9</td>
<td>Aedes aegypti</td>
<td>ネッタイシマカ (1日齢幼虫)</td>
<td>LC50</td>
<td>12.5時間</td>
<td>36.5時間</td>
<td>1時間</td>
<td>30分</td>
<td>UV, 13.5W/m(^2)</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>---------------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>----------</td>
<td>----------------</td>
<td>---------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>◯ 16～32</td>
<td>16～32</td>
<td>16～32</td>
<td>15</td>
<td>Platynereis dumerilii</td>
<td>ゴカイ科</td>
<td>LC₅₀ MOR</td>
<td>10 時間</td>
<td>2 時間暗+8 時間 UV, 975-1000µW/cm²</td>
<td>C C</td>
<td>1)-14373</td>
<td></td>
</tr>
<tr>
<td>◯ 20</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>Aedes aegypti</td>
<td>ネッタイシマカ</td>
<td>LC₅₀ MOR</td>
<td>13 時間</td>
<td>1 時間 UV-A, 13W/m²</td>
<td>C C</td>
<td>1)-11437</td>
<td></td>
</tr>
<tr>
<td>◯ 32～48</td>
<td>32～48</td>
<td>32～48</td>
<td>15</td>
<td>Fungia scutaria</td>
<td>クサビライシ</td>
<td>LC₅₀ MOR</td>
<td>10 時間</td>
<td>2 時間暗+8 時間 UV, 975-1000µW/cm²</td>
<td>C C</td>
<td>1)-14373</td>
<td></td>
</tr>
<tr>
<td>◯ 35</td>
<td>35</td>
<td>35</td>
<td>1</td>
<td>Aedes aegypti</td>
<td>ネッタイシマカ</td>
<td>LC₅₀ MOR</td>
<td>1</td>
<td>6 時間太陽光+18 時間暗</td>
<td>B C</td>
<td>1)-12520</td>
<td></td>
</tr>
<tr>
<td>◯ 37</td>
<td>37</td>
<td>37</td>
<td>1</td>
<td>Culex quinquefasciatus</td>
<td>ナミカ属</td>
<td>LC₅₀ MOR</td>
<td>1</td>
<td>6 時間太陽光+18 時間暗</td>
<td>B C</td>
<td>1)-12520</td>
<td></td>
</tr>
<tr>
<td>◯ 60</td>
<td>60</td>
<td>60</td>
<td>1</td>
<td>Aedes taeniorhynchus</td>
<td>ヤブカ属</td>
<td>LC₅₀ MOR</td>
<td>1</td>
<td>6 時間太陽光+18 時間暗</td>
<td>B C</td>
<td>1)-12520</td>
<td></td>
</tr>
<tr>
<td>◯ 140</td>
<td>140</td>
<td>140</td>
<td>1</td>
<td>Rana pipiens</td>
<td>アカガエル科</td>
<td>LC₅₀ MOR</td>
<td>1</td>
<td>1 時間暗+30 分太陽光+22.5 時間暗</td>
<td>C C</td>
<td>1)-63236</td>
<td></td>
</tr>
</tbody>
</table>

毒性値（太字）: PNEC 導出の際に参照した知見として本文で言及したもの
毒性値（太字下線）: PNEC 導出の根拠として採用されたもの
試験の信頼性: 本初期評価における信頼性ランク
A: 試験は信頼できる、B: 試験は条件付きで信頼できる、C: 試験の信頼性は低い、D: 信頼性の判定不可、E: 信頼性は低くないと考えられるが原著にあたって確認したものではない
採用の可能性: PNEC 導出への採用の可能性ランク
A: 毒性値は採用できる、B: 毒性値は条件付きで採用できる、C: 毒性値は採用できない

エンドポイント
EC₅₀ (Median Effective Concentration): 半数影響濃度、LC₅₀ (Median Lethal Concentration): 半数致死濃度、LT₅₀ (Median Lethal Times): 半数致死時間、NOEC (No Observed Effect Concentration): 無影響濃度
影響内容
GRO (Growth): 生長(植物)、成長(動物)、IMM (Immobilization): 遊泳阻害、MOR (Mortality): 死亡、REP (Reproduction): 繁殖、再生産
()内: 毒性値の算出方法
AUG (Area Under Growth Curve): 生長曲線下の面積により求める方法（面積法）
RATE: 生長速度より求める方法（速度法）

*1 面積活性作用のある制剤を用いており水溶解度を超えた毒性値であるため、試験の信頼性を「B」、採用の可能性を「C」とした。
*2 文献 2)-1をもとに、試験時の実測濃度（平均）を用いて速度法により 0-72 時間の毒性値を再計算したものを掲載。
*3 1 時間供試前に被験物質を含まない試験用水へ移し 4 時間 UV 照射後、24 時間暗条件下で飼育し、影響内容（死亡）の判定を行った。
*4 1 時間供試前に被験物質を含まない試験用水へ移し 4 時間太陽光照射後、24 時間暗条件下で飼育し、影響内容（死亡）の判定を行った。
*5 面積活性作用のある制剤を用いており、対照区での死産の割合が多く対照区と助剤対照区の産仔数に乖離があるため、試験の信頼性、採用の可能性とも「B」とした。
*6 水溶解度を超えた毒性値であるため、試験の信頼性を「B」、採用の可能性を「C」とした。
*7 12.5 時間のばく露後に 24 時間飼育し、影響内容（死亡）の判定を行った。
*8 12.5 時間のばく露後に羽化（11 日前後）まで飼育し、影響内容（羽化後の死亡）の判定を行った。

評価の結果、採用可能とされた知見のうち、生物群ごとに急性毒性値及び慢性毒性値のそれぞれについて最も小さい毒性値を予測無影響濃度（PNEC）導出のために採用した。その知見の概要は以下のとおりである。

1) 甲殻類

Lampiら１)-86087 はカナダ環境省の試験方法（EPS1/RM/11, 1990）に準拠し、オオミジンコ Daphnia magna の急性遊泳阻害試験を実施した。設定試験濃度区は助剤対照区+5% 濃度区であった。試験溶液の調製には試験用水として精製水と地下水の混合が、助剤としてジメチルスルホキシド（DMSO）が 0.1%以下の濃度で用いられた。UV-B を除去した模擬太陽光（可視光：UV-A = 56:...
4.6 µmol/m²/s）照射下の48時間半数影響濃度（EC₅₀）は4.33 µg/Lであった。

また、環境庁 2)に従ってOECDテストガイドライン No. 202 (1984)に準拠し、オオミジンコDaphnia magnaの繁殖試験をGLP試験として実施した。試験は半止水式（5日目までは週3回換水、5日以降は2日毎換水）で行われ、設定試験濃度は0、0.02、0.065、0.2、0.65、2.0 mg/L（公比3.2）であった。被検物質の調製には、試験用水として脱塩素水道水（硬度65 mg/L、CaCO₃換算）が、助剤としてテトラヒドロフラン（THF）6 mg/Lと界面活性作用のある硬化ひまし油（HCO-30）44 mg/Lが用いられた。被検物質の実測濃度は試験期間を通して85～111%を維持しており、毒性値の算出には設定濃度が用いられた。繁殖阻害に関する21日間無影響濃度（NOEC）は20 µg/Lであった。なお、界面活性作用のある助剤を用いており、対照区での死産の割合が多く対照区と助剤対照区の産仔数にも乖離があるため、試験の信頼性、採用の可能性とも「B」とした。

2）魚類
有馬ら4)-2007018は、水産庁の海産生物毒性試験指針（2000）及びOECDテストガイドラインNo.203 (1992)に準拠し、マダイ Pagrus majorの急性毒性試験を実施した。試験は流水式（1日約18回換水）で行われ、試験溶液の調製には試験用水として海水と脱塩素水道水の混合が、助剤としてアセトンが用いられた。96時間半数致死濃度（LC₅₀）は、実測濃度の平均に基づき30 µg/Lであった。

また、環境省2)はOECDテストガイドライン No. 210 (1992)に準拠し、メダクOryzias latipesの胚を用いて魚類初期生活段階毒性試験をGLP試験として実施した。試験は流水式（胚期～孵化後26日は1日12回換水、孵化後27日～30日は1日20回換水）で行われ、設定試験濃度は0、0.000625、0.00125、0.00250、0.00500、0.0100 mg/L（公比2.0）であった。試験溶液の調製には試験用水として脱塩素水道水（硬度44.4 mg/L、CaCO₃換算）が、助剤としてN,Nジメチルホルムアミド（DMF）が0.100 mg/L以下の濃度で用いられた。被検物質の実測濃度は、試験期間を通して設定濃度の82.4～119%を維持しており、毒性値の算出には設定濃度が用いられた。成長（仔魚の体重及び孵化後の生存率）に関する39日間無影響濃度（NOEC）は5 µg/Lであった。

（1）予測無影響濃度（PNEC）の設定
急性毒性及び慢性毒性のそれぞれについて、上記本文で示した毒性値に情報量に応じたアセスメント係数を適用し予測無影響濃度（PNEC）を求めた。

急性毒性値
甲殻類Daphnia magna遊泳阻害；48時間EC₅₀4.33 µg/L
魚類Pagrus major96時間 LC₅₀30 µg/L

藻類では採用できる値は得られなかったが、文献No.2)及び3)の結果より Pseudokirchneriella subcapitataに対する急性毒性値は溶解度超であると考えられる。したがって、アセスメント係数は3生物群の値が得られた場合の100を用いることとした。

2つの毒性値の小さい方の値（甲殻類の4.33 µg/L）をアセスメント係数100で除すことにより、急性毒性値に基づくPNEC値0.04 µg/Lが得られた。
慢性毒性値

甲殻類 *Daphnia magna* 繁殖阻害；21日間 NOEC 20µg/L

魚類 *Oryzias latipes* 成長阻害；39日間 NOEC 5µg/L

藻類では採用できる値は得られなかったが、文献 No.2および3)の結果より *Pseudokirchneriella subcapitata* に対する慢性毒性値は溶解度程度であると考えられる。したがって、アセスメント係数は3生物群の値が得られた場合の10を用いることとした。

2つの毒性値の小さい方の値（魚類の5µg/L）をアセスメント係数10で除することにより、慢性毒性値に基づくPNEC値0.5µg/Lが得られた。

本物質のPNECとしては甲殻類の急性毒性値から得られた0.04µg/Lを採用する。

(2) 生態リスクの初期評価結果

表 3.2 生態リスクの初期評価結果

<table>
<thead>
<tr>
<th>水質</th>
<th>平均濃度</th>
<th>最大濃度(PEC)</th>
<th>PNEC</th>
<th>PEC/PNEC比</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共用水域・淡水</td>
<td>0.006µg/L未満程度 (2003)</td>
<td>0.006µg/L未満程度 (2003)</td>
<td>0.04µg/L</td>
<td><0.2</td>
</tr>
<tr>
<td>公共用水域・海水</td>
<td>0.006µg/L未満程度 (2003)</td>
<td>0.010µg/L程度 (2003)</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

注：1) 水質中濃度の(中)内の数値は測定年度を示す
2) 公共用水域・淡水は、河川河口域を含む

判定基準

現時点では作業は必要ないと考えられる。情報収集に努める必要があると考えられる。詳細な評価を行う候補と考えられる。

本物質の公共用水域における濃度は、平均濃度でみると淡水域、海水域ともに0.006µg/L未満程度であった。安全側の評価値として設定された予測環境中濃度（PEC）は、淡水域で0.006µg/L未満程度、海水域では0.010µg/L程度であった。

予測環境中濃度（PEC）と予測無影響濃度（PNEC）の比は淡水域で0.2未満、海水域では0.3となるため、情報収集に努める必要があると考えられる。なお、公共用水域淡水において1999年度には0.0099µg/Lが検出されており、この濃度とPNECとの比は0.2となる。
5. 引用文献等

(1) 物質に関する基本的事項

1) 大木道則ら(1989)：化学大辞典 東京化学同人：1935.
20) 化学工業日報社(2008)：15308の化学商品.

(ばく露評価)
1) U.S. Environmental Protection Agency, EPI Suite™ v.3.20.
2) 環境省水・大気環境局大気環境課(2002)：平成13年度地方公共団体等における有害大気汚染物質モニタリング調査結果について
3) 環境省環境保健部環境安全課(2001)：平成11年度化学物質環境汚染実態調査．
4) 環境庁水・大気環境局大気環境課(1998)：平成9年度地方公共団体等における有害大気汚染物質モニタリング調査結果について
5) 環境庁環境保健部保健調査室(1990)：平成元年度化学物質環境汚染実態調査
6) 米田真知子ら (2006)：多環芳香族炭化水素類(PAHs)の経路別摂取量調査(第3報)．仙台市衛生研究所報.36:94-105.
7) 環境省水環境部企画課(2005)：平成15年度要調査項目測定結果．

(健康リスクの初期評価)
11) US National Institute for Occupational Safety and Health, Registry of Toxic Effects of Chemical Substances (RTECS) Database.

(生態リスクの初期評価)

1) U.S.EPA「 AQUIRE」

2) 環境省(庁)データ
1. 環境庁(1997): 平成 8年度 生態影響試験
2. 環境省(2002): 平成 13年度 生態影響試験
3. 環境省(2006): 平成 17年度 生態影響試験
3) (独)国立環境研究所(2007): 平成 18年度化学物質環境リスク評価検討調査（第7次とりまとめ等に係る調査）報告書
4) その他