ジフェニルアルシン酸（DPAA）の毒性試験報告書

平成18年11月

環境省総合環境政策局環境保健部 環境安全課
環境リスク評価室
【監修】

本報告書は環境省からの請負事業の毒性試験結果に基づき、DPAA 毒性ワーキングチームによる監修を経て作成された。DPAA 毒性ワーキングチームのメンバーを以下に示す。

青山 博昭 残留農薬研究所 毒性部副部長，生殖毒性研究室長
井上 達 国立医薬品食品衛生研究所 安全性生物試験研究センター長
○ 櫻井 治彦 中央労働災害防止協会 労働衛生調査分析センター所長
清水 英佑 東京慈恵会医科大学 環境保健医学講座教授
平野 靖史郎 国立環境研究所 環境リスク研究センター 環境ナノ生体影響研究室室長
宮川 宗之 労働安全衛生総合研究所 産業医学総合研究所 健康障害予防研究グループ
鰐淵 英機 大阪市立大学大学院 医学研究科 都市環境病理学教授

（座長：○）
1. 目次

1. 目次 ... 3
2. 緒言 ... 5
3. 試験リスト ... 5
4. ジフェニルアルシン酸（DPAA）データ ... 7
5. 試験概要 ... 8
 5.1 一般毒性試験 ... 8
 5.1.1 DPAA ラット 28 日反復経口毒性試験 ... 8
 5.1.2 DPAA ラット 91 日反復経口毒性試験 ... 14
 5.1.3 DPAA 新生児ラット 28 日反復経口毒性試験 ... 21
 5.1.4 DPAA ラット 7 日反復経皮毒性試験 ... 24
 5.1.5 PMAA ラット 28 日反復経口毒性試験 ... 25
 5.1.6 MPAA ラット 28 日反復経口毒性試験 ... 30
 5.2 生殖毒性試験 ... 37
 5.2.1 DPAA ラット催奇形性試験 .. 37
 5.2.2 DPAA ラット初期胚発生（受胎能—着床）に関する試験 ... 39
 5.2.3 DPAA ラット出生前後の発生・母動物に関する試験 ... 42
 5.3 遺伝毒性試験 ... 47
 5.3.1 DPAA 細菌を用いた復帰突然変異試験 ... 47
 5.3.2 DPAA 乳液細胞を用いた染色体異常試験 .. 47
 5.3.3 DPAA ラット小核試験 .. 49
 5.4 薬物動態試験 ... 50
 5.4.1 14C 標識 DPAA を用いたラット単回投与時の血液・血漿中濃度試験 50
 5.4.2 14C 標識 DPAA を用いたラット単回投与時の体内分布試験 50
 5.4.3 14C 標識 DPAA を用いたラット単回投与時の排泄・体内残留性試験 51
 5.4.4 14C 標識 DPAA を用いた in vitro 代謝試験 .. 52
 5.4.5 14C 標識 DPAA を用いたラット単回投与時の胎盤・胎児移行性試験 52
 5.4.6 14C 標識 DPAA を用いたラット単回投与時の乳汁移行性試験 53
 5.4.7 14C 標識 DPAA を用いた幼若ラット単回投与時の体内分布試験 54
 5.4.8 14C 標識 DPAA を用いたラット 7 日反復投与時の体内分布試験 54
 5.4.9 14C 標識 DPAA を用いたラット脳内分布試験 ... 55
 5.4.10 14C 標識 DPAA を用いた in vitro 血球移行性試験 ... 55
5.4.11 14C 標識 DPAA を用いた in vitro 血漿蛋白結合性試験 ..56
5.4.12 DPAA ラット 91 日反復経口毒性試験での肝薬物代謝酵素試験56
5.5 物質特性試験 ...58
 5.5.1 DPAA 解離定数測定試験 ...58
 5.5.2 DPAA 分配係数測定試験 ...58
6. 総括 ..59
2. 緒言

平成15年に茨城県神栖市で、通常自然界には存在しない有機ヒ素化合物であるジフェニルアセルシン酸 (DPAA) による環境汚染に起因と考えられる健康被害が確認された。環境省では DPAA の安全性に関する基礎データを集積することを目的として、動物実験を含む基礎研究を実施してきたが、この度、現時点で判明している毒性試験の結果について取りまとめたので報告する。なお、DPAA の関連物質であるフェニルメチルアルシン酸 (PMAA) およびモノフェニルアルソン酸 (MPAA) についてもラットを用いた毒性試験を実施してきたので、併せて報告する。

3. 試験リスト

<table>
<thead>
<tr>
<th>コード</th>
<th>一般毒性試験（A）</th>
<th>一般毒性試験（A）</th>
<th>一般毒性試験（A）</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>DPAA ラット 28日反復経口毒性試験</td>
<td>B031825</td>
<td></td>
</tr>
<tr>
<td>A-2</td>
<td>DPAA ラット 91日反復経口毒性試験</td>
<td>B041213</td>
<td></td>
</tr>
<tr>
<td>A-3</td>
<td>DPAA 新生児ラット 28日反復経口毒性試験</td>
<td>B041296</td>
<td></td>
</tr>
<tr>
<td>A-4</td>
<td>DPAA ラット 7日反復経皮毒性試験</td>
<td>B040272</td>
<td></td>
</tr>
<tr>
<td>A-5</td>
<td>PMAA ラット 28日反復経口毒性試験</td>
<td>B050132</td>
<td></td>
</tr>
<tr>
<td>A-6</td>
<td>MPAA ラット 28日反復経口毒性試験</td>
<td>B050572</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>コード</th>
<th>生殖毒性試験（B）</th>
<th>生殖毒性試験（B）</th>
<th>生殖毒性試験（B）</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>DPAA ラット催奇形性試験</td>
<td>B041215</td>
<td></td>
</tr>
<tr>
<td>B-2</td>
<td>DPAA ラット初期胚発生（受胎能〜著床）に関する試験</td>
<td>B041587</td>
<td></td>
</tr>
<tr>
<td>B-3</td>
<td>DPAA ラット出生前後の発生・母動物に関する試験</td>
<td>B041589</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>コード</th>
<th>遺伝毒性試験（C）</th>
<th>遺伝毒性試験（C）</th>
<th>遺伝毒性試験（C）</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>DPAA 細菌を用いた復帰突然変異試験（Ames試験）</td>
<td>B041297</td>
<td></td>
</tr>
<tr>
<td>C-2</td>
<td>DPAA 乳頭細胞を用いた染色体異常試験</td>
<td>B041298</td>
<td></td>
</tr>
<tr>
<td>C-3</td>
<td>DPAA ラット小核試験</td>
<td>B041300</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>コード</th>
<th>薬物動態試験（D）</th>
<th>薬物動態試験（D）</th>
<th>薬物動態試験（D）</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-1</td>
<td>^14C 標識 DPAA を用いたラット単回投与時の血液・血漿中濃度試験</td>
<td>B041305</td>
<td></td>
</tr>
<tr>
<td>D-2</td>
<td>^14C 標識 DPAA を用いたラット単回投与時の体内分布試験</td>
<td>B041306</td>
<td></td>
</tr>
<tr>
<td>D-3</td>
<td>^14C 標識 DPAA を用いたラット単回投与時の排泄・体内残留性試験</td>
<td>B041307</td>
<td></td>
</tr>
<tr>
<td>D-4</td>
<td>^14C 標識 DPAA を用いた in vitro 代謝試験</td>
<td>B041308</td>
<td></td>
</tr>
<tr>
<td>D-5</td>
<td>^14C 標識 DPAA を用いたラット単回投与時の胎盤・貯糞移行試験</td>
<td>B050299</td>
<td></td>
</tr>
<tr>
<td>D-6</td>
<td>^14C 標識 DPAA を用いたラット単回投与時の乳汁移行性試験</td>
<td>B050300</td>
<td></td>
</tr>
</tbody>
</table>
コード | 試験略名 | 試験番号
--- | --- | ---
D-7 | 14C 標識 DPAA を用いた幼若ラット単回投与時の体内分布試験 | B050301
D-8 | 14C 標識 DPAA を用いたラット 7 日反復投与時の体内分布試験 | B050302
D-9 | 14C 標識 DPAA を用いたラット脳内分布試験 | B050303
D-10 | 14C 標識 DPAA を用いた in vitro 血球移行性試験 | B041594
D-11 | 14C 標識 DPAA を用いた in vitro 血漿蛋白結合性試験 | B041593
D-12 | DPAA ラット 91 日反復経口毒性試験での肝薬物代謝酵素試験 | B041592

物質特性試験（E）

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E-1</td>
<td>DPAA 解離定数測定試験</td>
<td>D050031</td>
</tr>
<tr>
<td>E-2</td>
<td>DPAA 分配係数測定試験</td>
<td>D050032</td>
</tr>
</tbody>
</table>
4. ジフェニルアルシン酸（DPAA）データ

Diphenylarsinic acid (DPAA)
分子式：C_{12}H_{11}O_{2}As
構造式：

分子量：262
性状：常温において白色の固体
融点：170°C

また、DPAAの関連物質であるフェニルメチルアルシン酸（PMAA）およびモノフェニルアルソン酸（MPAA）の情報を以下に示した。

Phenylmethylarsinic acid (PMAA)
構造式：

Phenylarsonic acid (MPAA)
構造式：
5. 試験概要

5.1 一般毒性試験

5.1.1 DPAA ラット 28 日反復経口毒性試験
コード番号： A-1
試験番号： B031825

DPAA を 0, 0.3, 1.2 および 5.0 mg/kg の用量（用量設定試験の結果から設定）で雌雄のSprague-Dawley (SD) 系ラット* [Crj:CD(SD) IGS, SPF] に 28 日間反復経口投与し、現れる生体の機能および形態の変化を観察し、その毒性と回復性を評価した。

観察・測定項目
一般状態
投与期間は 1 日 2 回（投与前、投与後約 30 分）観察した。その他の期間は 1 日 1 回午前中に観察した。

行動検査
以下に示す詳細な症状観察は、投与開始前日に 1 回、投与期間中に毎週 1 回、いずれも午後に行った。機能検査および自発運動量の測定については、第 4 週の午後に 1 回実施した。投与期間中の検査で被験物質の影響が疑われる変化が認められたため、回復期間中にも同様に詳細な状態観察を第 1 回午後に、機能検査および自発運動量の測定を第 6 週の午後に 1 回実施した。なお、いずれの検査においても雌については 5.0 mg/kg 群に生存例が存在しなかったので、対照群を含めて検査は実施しなかった。

自発運動量の測定時には、オートクレーブ滅菌したポリカーボネート製ケージ（TR-PC-200, 265W x 426D x 200H mm, トキワ科学器械株式会社）内に個別飼育とし、自発運動量の測定を除いて、各動物に動物番号とは無関係な検査番号をランダムに付加したブラインド検査をすとともに、可能な限り当該試験の投与および観察に従事していない者が実施した。

(1) 詳細な症状観察

(a) ホームケージ内での観察
ホームケージ内での動物の様子を静かに 1 分間観察した。
検査項目： 振戦、間代性痙攣、強直性痙攣、呼吸

(b) ハンドリング時の観察
動物の体躯をやさしく背側から摺み、ケージから取り出して観察した。
検査項目： ケージからの取り出し易さ、ハンドリングに対する反応、攻撃性、皮膚

* 動物試験で一般的に用いられるラットの系統の一つである。
（外傷，皮膚の色調），被毛（被毛の汚れ），眼（眼球突出，眼瞼閉鎖状態），粘膜（結膜の色調），分泌物，流涙，流涎，立毛，瞳孔径

(c) オープンフィールドでの観察
オープンフィールドの中心に動物をおいてから静かに 2 分間観察した．オープンフィールドに動物を入れる前に，その床を硬く撚った布で水拭きした．

検査項目： 立ち上がり，覚醒度，排尿，排便，体位・姿勢，呼吸，運動協調性，歩行の異常，振戦，間代性痙攣，強直性痙攣，常同行動，異常行動

(2) 機能検査

(a) 刺激に対する反応性
オープンフィールド内で検査した．

検査項目： 接近反応，接触反応，聴覚反応，テールピンチ反応，空中正向反射

(b) 握力測定
デジタルフォースゲージ（DPS-5，株式会社イマダ）を用いて測定した．

検査項目： 前肢握力，後肢握力
なお，第 4 週の検査において，一部の動物（動物番号：10405，10409 および 50406）が握力測定装置を握らなかったため，データが欠失した．また，雄の第 6 週の検査では 5.0 mg/kg 群の動物数が 2 例であったことから，統計学的解析を実施しなかった．

(3) 自発運動量の測定
自発運動量測定装置（SUPERMEX，室町機械株式会社）を用いた．投与後の観察終了後，ポリカーポネート製ケージに動物を移し，ケージ騒化を行った．測定直前に新たなるポリカーポネート製ケージに交換し，1 時間測定した．なお，測定値は測定開始から 10 分毎に計した．なお，雄の第 6 週の検査では 5.0 mg/kg 群の動物数が 2 例であったことから，統計学的解析を実施しなかった．

体重
全例の体重を投与期間中は第 1，8，15，22 および 28 日に，回復期間中は第 29，36 および 42 日に電子天秤（PB3002-S，メトラー・トレド株式会社）を用いて測定した．また，計画解剖日ならびに死亡動物については死亡発見時にも測定した．

摂餌量
ケージごとに風袋込み重量を電子天秤（PB3002-S，メトラー・トレド株式会社）を用いて測定し，第 1〜8，8〜15，15〜22，22〜27，29〜36 および 36〜41 の測定日間における１匹あたりの１日平均摂餌量を算出した．摂餌量は測定期間の終了日で表示した．

血液学的検査
投与および回復期間終了後の計画解剖日（第 29 および 43 日）に全対象動物を前日の夕方より絶食し，チオペンタールナトリウム（ラボナール，田辺製薬株式会社）を腹腔内投与して麻酔し，後大静脈より採血した．採取した血液を用いて次に示す項目を測定した．プロトロ
ンピン時間および活性化部分トロンボプラスチン時間の項目の測定には、凝固阻止剤として3.2w/v%クエン酸三ナトリウム水溶液を使用し、遠心分離（12000 rpm，約12000 g，3 分間，約4℃）して得られた血漿を用いた。その他の項目の測定には、凝固阻止剤 EDTA-2K で処理した血液を用いた。

<table>
<thead>
<tr>
<th>項目</th>
<th>方法</th>
<th>測定機器</th>
</tr>
</thead>
<tbody>
<tr>
<td>赤血球数 (RBC)</td>
<td>球状化処理二次元レーザーFCM 法</td>
<td>(a)</td>
</tr>
<tr>
<td>ヘモグロビン濃度 (Hb)</td>
<td>シアンメトヘモグロビン法</td>
<td>(a)</td>
</tr>
<tr>
<td>ヘマトクリット値 (Ht)</td>
<td>球状化処理二次元レーザーFCM 法</td>
<td>(a)</td>
</tr>
<tr>
<td>平均赤血球容積 (MCV)</td>
<td>RBC と Ht より算出</td>
<td>-</td>
</tr>
<tr>
<td>平均赤血球血色素量 (MCH)</td>
<td>RBC と Hb より算出</td>
<td>-</td>
</tr>
<tr>
<td>平均赤血球血色素濃度 (MCHC)</td>
<td>Hb と Ht より算出</td>
<td>-</td>
</tr>
<tr>
<td>綱赤血球数 (Ret)</td>
<td>RNA 染色によるレーザーFCM 法</td>
<td>(a)</td>
</tr>
<tr>
<td>血小板数 (PLT)</td>
<td>球状化処理二次元レーザーFCM 法</td>
<td>(a)</td>
</tr>
<tr>
<td>プロトロンピン時間 (PT)</td>
<td>光散乱検出方式</td>
<td>(b)</td>
</tr>
<tr>
<td>活性化部分トロンボプラスチン時間（APTT）</td>
<td>光散乱検出方式</td>
<td>(b)</td>
</tr>
<tr>
<td>白血球数 (WBC)</td>
<td>酸性界面活性剤によるレーザーFCM 法</td>
<td>(a)</td>
</tr>
<tr>
<td>WBC 分類（WBC Diff.）</td>
<td>ベルオキシダーゼ染色による FCM 法および酸性界面活性剤によるレーザーFCM 法</td>
<td>(a)</td>
</tr>
</tbody>
</table>

測定機器：
(a) , ADVIA120 (バイエル メディカル株式会社)
(b) , CA-510 (シスメックス株式会社)

血液生化学的検査
各計画解剖時に採取した血液の一部を室温で約30分間以上静置後，遠心分離（3000 rpm, 2050 g, 10 分間，約4℃）し，得られた血清を用いて次の項目を測定した。

<table>
<thead>
<tr>
<th>項目</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASAT (GOT)</td>
<td>UV-rate 法（JSCC 改良法）</td>
</tr>
<tr>
<td>ALAT (GPT)</td>
<td>UV-rate 法（JSCC 改良法）</td>
</tr>
<tr>
<td>□ GT</td>
<td>□-グルタミル-p-ニトロアニリド基質法（SSCC 改良法）</td>
</tr>
<tr>
<td>ALP</td>
<td>p-ニトロフェニルリン酸基質法（JSCC 改良法）</td>
</tr>
<tr>
<td>アセチルコリンエステラーゼ</td>
<td>アセチルチオコリン-DTNB 法</td>
</tr>
</tbody>
</table>
総ビリルビン | 酵素法（BOD 法）
尿素窒素 | 酵素-UV 法（Urease-LEDH 法）
クレアチニン | 酵素法（Creatininase-POD 法）
グルコース | 酵素法（HK-G6PDH 法）
総コレステロール | 酵素法（CO-HDAOS 法）
トリグリセライド | 酵素法（GPO-HDAOS 法，グリセリン消去法）
総蛋白 | Biuret 法
アルブミン | BCG 法
A/G 比 | 総蛋白およびアルブミンより算出
カルシウム | OCPC 法
無機リン | 酵素法（PNP-XOD-POD 法）
ナトリウム | イオン選択電極法
カリウム | イオン選択電極法
クロール | イオン選択電極法
測定機器：TBA-200FR（株式会社東芝）

尿検査
投与期間最終週（第 27 日）に各群雌雄 5 例（各群動物番号の小さい順に 5 例）を個別採尿ケースに移し、新鮮尿を採取して以下に示す試験紙法による項目を測定し、また尿沈渣検査を実施した。さらに、第 27 〜28 日に約 21 時間蓄積尿を採取してその他の項目を測定した。なお、5.0 mg/kg 群の雌 1 例（動物番号：50401）が蓄積尿の採取時に死亡したため、蓄積尿に関するデータは得られなかった。新鮮尿採取時間は飼料および飲用水を与えてなかった。新鮮尿は投与前に採取し、必要量が得られ次第密閉した。
回復期間最終週（第 41 〜42 日）に、生存していた対照群の雄 5 例および 5.0 mg/kg 群の雄 2 例（動物番号：10407, 10408）にも同様の検査を実施した。なお、雌については 5.0 mg/kg 群に生存例が存在しなかったので、対照群を含めて検査を実施しなかった。

<table>
<thead>
<tr>
<th>項目</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>試験紙法（マルチスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>蛋白</td>
<td>試験紙法（マルチスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>グルコース</td>
<td>試験紙法（マルチスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>ケトン体</td>
<td>試験紙法（マルチスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>ビリルビン</td>
<td>試験紙法（マルチスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>测定機器：TBA-200FR（株式会社東芝）</td>
<td></td>
</tr>
</tbody>
</table>
潜血 試験紙法（マルチスティックス、バイエルメディカル株式会社） (a)

ウロビリノーゲン 試験紙法（マルチスティックス、バイエルメディカル株式会社） (a)

尿量 メスシリンドーで測定 -

比重 屈折法 (b)

ナトリウム イオン選択電極法 (c)

カリウム イオン選択電極法 (c)

クロール 電量滴定法 (c)

尿沈渣 Sternheimer-Malbin 染色した標本を鏡検 -

測定機器：
(a) クリニテック 100（バイエルメディカル株式会社）
(b) ユリコン-JE（株式会社アタゴ）
(c) PVA-αⅢ（株式会社エイアンドティー）

器官重量
全生存動物の下記の器管重量を電子天秤（AW-120、株式会社島津製作所）を用いて測定した。両側性の器管はまとめて測定した。また、解剖日の体重に基づいて相対重量（対体重比）を算出した。

肝臓，腎臓，副腎，精巣，精巣上体，卵巣，胸腺，脾臓，脳，心臓

病理解剖検査
死亡動物については死亡発見後，速やかに剖検した。計画解剖動物については採血後，腹大動脈を切断・放血し，安楽死させた後，剖検した。

病理組織学的検査
全動物の下記の器官・組織を採取し，10 vol％中性リン酸緩衝ホルマリン液で固定し，保存した。ただし，精巣および精巣上体はブアン液（Bouin 液）で，死亡動物以外の眼球とハーダー腺はダビドソン液（Davidson 液）で固定後，10 vol％中性リン酸緩衝ホルマリン液で保存した。なお，脳の固定は常温で10 vol％中性リン酸緩衝ホルマリン液中にて約24時間とした。

脳（大脳，小脳および橋を含む部位），脊髄，腸，十二指腸，空腸，回腸（バイエル板を含む），盲腸，結腸，直腸，肝臓，腎臓，副腎，脾臓，心臓，胸部大動脈，胸腺，眼球およびハーダー腺，下垂体，甲状腺（上皮小体含む），気管および肺，精巣，卵巣，精巣上体，前立腺，子宮，腺，膀胱，下頸リンパ節，腸間膜リンパ節，坐骨神経（大腿筋に付けて採材），骨髄（大腿骨），腸腰筋（腰腸肋筋），その他，肉眼的異常部位

投与期間終了後解剖動物の対照群および5.0 mg/kg群，ならびに投与または回復期間中に死亡
した雄 2 例（動物番号：10404, 10409）、雌 6 例（動物番号：50401, 50402, 50403, 50404, 50407, 50408）の上記の器官・組織および全試験動物の肉眼的異常部位について，常法に従ってヘマトキシリン・エオジン染色標本を作製し，鏡検した。その結果，被験物質に起因すると思われる変化または被検物質との関連が疑われる変化が雌雄の肝臓，脾臓，胸腺，下顎リンパ節，腸間膜リンパ節，大腿骨骨髄，腎臓，肺，腺胃，十二指腸，副腎，脊髄（脊髄神経節）,大脳と雄の精巣，精巣上体に認められたため，投与期間終了後解剖動物の 0.3 および 1.2 mg/kg 群と回復期間終了後解剖動物の雌雄全例の当該器官・組織について検査を実施した。

投与期間終了後解剖動物の対照群および 5.0 mg/kg 群の脳について，アポトーシス検出のための TUNEL 法，髄鞘を確認するための Kluver-Barrera 染色，神経膠線維を確認するための Holzer 染色，軸索・神経線維を確認するための Bodian’s 染色を実施した。肝臓のグリソン鞘にみられた肉芽腫の立体構築を把握するため，肉芽腫の形成が最も顕著な 1 例（動物番号：10402）の肝臓を再度切り出し，間断連続標本を作製した。また，脊髄神経節神経細胞内に沈着物が認められた 3 例のうち 1 例（動物番号：10405）について，頸部，胸前部，腰部の各脊髄神経節を切り出し，ヘマトキシリン・エオジン染色を施すとともに，頸部と腰部の脊髄神経節に Bodian’s 染色を施した。

結果および結論

一般状態では，5.0 mg/kg 群の雌 2/10 例（この他に 1 例が事故死）、雌 6/10 例が死亡した。また，5.0 mg/kg 群の雌雄に着色尿（黄色），振戦，易刺激性，流涎，活動性の低下，鼻周囲の汚れ，下腹部の汚れ，歩行異常，眼瞼下垂が認められた。

行動検査では，5.0 mg/kg 群の雌雄に振戦，反応性低下または亢進，覚醒度亢進，歩行異常などの神経異常を示唆する所見がみられ，また握力および自発運動量の減少が認められた。体重および摂餌量では，5.0 mg/kg 群の雌雄に低値が認められた。血液学的検査では，1.2 mg/kg 群の雌および 5.0 mg/kg 群の雌雄にヘモグロビン濃度およびヘマトクリット値の低値が認められた。さらに，5.0 mg/kg 群の雌雄に総ビリルビンおよび PT の延長傾向が認められた。血液生化学的検査では，5.0 mg/kg 群の雌雄に AST（GOT），ALAT（GPT），γ GT，ALP，総ビリルビン，尿素窒素およびクレアチニンの高値または高値傾向がみられ，A/G 比およびフィブリノゲンの低値または低値傾向が認められた。尿検査では，5.0 mg/kg 群の雌雄にウロビリノーゲンの高値または高値傾向が認められた。器官重量では，5.0 mg/kg 群の雌雄に肝臓重量の高値，胸腺重量の低値が認められた。剖検では，5.0 mg/kg 群の雌雄に脾臓および胸腺の小型化，胃壁の赤色・褐色斑が認められた。病理解剖学的検査では，5.0 mg/kg 群の雌雄に肝臓の胆管増生，グリソン鞘における炎症性細胞浸潤，肝細胞の壊死性変性，グリソン鞘内の肉芽腫，脾臓の白脾髄の萎縮，胸腺の急性萎縮，大腿骨骨髄の造血細胞減少および消化管のびらんなどが認められた。なお，一般状態観察
で振戦，易刺激性，流涎など神経系への作用がみられたが，脳のヘマトキシリン・エオジン染色標本では器質的変化は認められなかった．また，脳について TUNEL 法，Kluver-Barrera染色，Holzer 染色および Bodian’s 染色の特殊染色を施し，より詳細に器質的変化を観察したが，何ら異常変化は認められなかった．

上述した変化のうち，雄に発現した変化については回復期間終了時には回復または回復傾向を示し，回復性は良好であった．しかし，雌については死亡例が多発したため，発現した変化の回復性を確認することはできなかった．

以上の結果より，被験物質投与に起因すると考えられる変化が雌雄とも 1.2 mg/kg 以上の群に認められたことから，本試験条件下における DPAA の無影響量（NOEL）は雌雄とも 0.3 mg/kg/day と判断した．

5.1.2 DPAA ラット 91 日反復経口毒性試験
コード番号： A-2
試験番号： B041213

DPAA を 0，0.1，0.3，0.8および 2.0 mg/kg の用量（28 日反復経口毒性試験の結果から設定）で雌雄の SD 系ラット [Crj:CD(SD) IGS，SPF] に 91 日間反復経口投与し，現れる生体の機能および形態の変化を観察し，その毒性と回復性を評価した．

観察・測定項目
一般状態
投与期間は 1 日 2 回（投与前，投与後約 30 分）観察した．その他の期間は 1 日 1 回午前中に観察した．

詳細な症状観察
投与開始前に 1 回，投与期間中に每週 1 回（午後），下記の項目について検査を行った．飼育ケージ内で 1 分間，ハンドリング時およびオープンフィールド内で 2 分間の観察を行った．検査時には，動物番号とは別の識別番号を記載したラベルを付けて，用量および動物番号を観察者に判らないようにした．なお，投与期間中の検査で被験物質投与による影響が疑われたため，回復期間中も毎週 1 回（午後）検査した．

(1) 飼育ケージ内での観察
振戦，間代性痙攣，強直性痙攣，呼吸
(2) ハンドリング時の観察
ケージからの取り出し易さ，ハンドリングに対する反応，攻撃性，皮膚（外傷，皮膚の色調），被毛（被毛の汚れ），眼（眼球突出，眼瞼閉鎖状態），粘膜（結膜の色調），分泌物，流涙，流涎，立毛，瞳孔径
オープンフィールド内での観察
立ち上がり,覚醒度,排尿,排便,体位・姿勢,呼吸,運動協調性,歩行の異常,振戦,間代性痙攣,強直性痙攣,常通行動,異常行動

機能検査
第 12 週に 1 回(午後)下記の項目について検査を行った.刺激に対する反応性を観察した後,握力測定を行った.握力測定には,デジタルフォースゲージ (DPS-5, 株式会社イマダ) を使用した.自発運動量の測定は,自発運動量測定装置 (SUPERMEX, 室町機械株式会社) を用い 1 時間行った.なお, 運動量測定時にはポリカーポネート製ケージ (床敷含む) を使用した.投与後の観察終了後, 動物をポリカーポネート製ケージに移し, ケージ馴化を行った.その後, 測定直前に新たなポリカーポネート製ケージに動物を移して測定した.また, 測定期間中は餌および飲用水を与えなかった.自発運動量の測定以外の検査時には, 動物番号とは別の識別番号を記載したラベルを付けて, 用量および動物番号を観察者に判らないようにした.なお, 第 12 週での検査で被験物質投与の影響が疑われる変化は認められなかったことから, 回復期間には検査を行わなかった.

(1) 刺激に対する反応性
接近反応, 接触反応, 聴覚反応, テールピンチ反応, 空中正向反射
(2) 握力測定
前肢握力, 後肢握力
(3) 自発運動量測定
測定開始から 10 分毎に集計するとともに 1 時間の総量を求めた.

体重
全例について, 投与期間の第 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85 および 91 日, 回復期間の第 92, 99, 106, 113 および 119 日に電子天秤 (BX3200H, EB-3200S: 株式会社島津製作所) を用いて測定した.また, 各測定日間の体重増加量を算出した.

摂餌量

血液学的検査
投与および回復期間終了後の計画解剖日 (第 92 および 120 日) に全対象動物を前日の夕方より絶食し, ベントバルビタールナトリウム (ネンプタール, 大日本製薬株式会社) を腹腔内
投与して麻酔し、後大静脈より採血した。採取した血液を用いて次に示す項目を測定した。プロトロンピン時間および活性化部分トロンボプラスチン時間の測定には、凝固阻止剤として 3.2 w/v% クエン酸三ナトリウム水溶液を使用し、遠心分離（12000 rpm, 約 12000 g, 3 分間, 約 4℃）して得られる血漿を用いた。その他の項目の測定には、凝固阻止剤 EDTA-2K で処理した血液を用いた。

<table>
<thead>
<tr>
<th>項目</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 赤血球数（RBC）</td>
<td>球状化処理二次元レーザー-FCM 法</td>
</tr>
<tr>
<td>(2) ヘモグロビン濃度（Hb）</td>
<td>シアンメトヘモグロビン法</td>
</tr>
<tr>
<td>(3) ヘマトクリット値（Ht）</td>
<td>球状化処理二次元レーザー-FCM 法</td>
</tr>
<tr>
<td>(4) 平均赤血球容積（MCV）</td>
<td>(1), (3)より算出</td>
</tr>
<tr>
<td>(5) 平均赤血球血色素量（MCH）</td>
<td>(1), (2)より算出</td>
</tr>
<tr>
<td>(6) 平均赤血球血色素濃度（MCHC）</td>
<td>(2), (3)より算出</td>
</tr>
<tr>
<td>(7) 網赤血球数（Ret）</td>
<td>RNA 染色によるレーザー-FCM 法</td>
</tr>
<tr>
<td>(8) 血小板数（PLT）</td>
<td>球状化処理二次元レーザー-FCM 法</td>
</tr>
<tr>
<td>(9) プロトロンピン時間（PT）</td>
<td>光散乱検出方式</td>
</tr>
<tr>
<td>(10) 活性化部分トロンボプラスチン時間（APTT）</td>
<td>光散乱検出方式</td>
</tr>
<tr>
<td>(11) 白血球数（WBC）</td>
<td>酸性界面活性剤によるレーザー-FCM 法</td>
</tr>
<tr>
<td>(12) 白血球百分率（WBC Diff.）</td>
<td>ベルオキシダーゼ染色による FCM 法および酸性界面活性剤によるレーザー-FCM 法</td>
</tr>
</tbody>
</table>

測定機器：
(1)-3, (7), (8), (11), (12) : ADVIA120（バイエル メディカル株式会社）
(9), (10) : CA-510（シスメックス株式会社）

血液生化学的検査
計画解剖時に採取した血液の一部を室温で 30 分間以上静置後、遠心分離（3000 rpm, 約 2050 g, 以上, 10 分間, 約 4℃）し、得られた血清を用いて下記の項目を測定した。懸死期解剖動物も可能な限り測定した。

<table>
<thead>
<tr>
<th>項目</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ASAT（GOT）</td>
<td>UV-rate法（JSCC改良法）</td>
</tr>
<tr>
<td>(2) ALAT（GPT）</td>
<td>UV-rate法（JSCC改良法）</td>
</tr>
<tr>
<td>(3) □ GT</td>
<td>□-グルタミル-p-ニトロアニリド基質法（SSCC改良法）</td>
</tr>
<tr>
<td>(4) ALP</td>
<td>p-ニトロフェニルリン酸基質法（JSCC改良法）</td>
</tr>
</tbody>
</table>
総ビリルビン：酵素法（BOD法）
尿素窒素：酵素-UV法（Urease-LEDH法）
クレアチニン：酵素法（Creatinase-POD法）
グルコース：酵素法（HK-G6PDH法）
総コレステロール：酵素法（CO-HDAOS法）
トリグリセライド：酵素法（GPO-HDAOS法，グリセリン消去法）
総蛋白：Biuret法
アルブミン：BCG法
A/G比：(11) および (12) より算出
カルシウム：OCPC法
無機リン：酵素法（PNP-XOD-POD法）
ナトリウム（Na）：イオン選択電極法
カリウム（K）：イオン選択電極法
クロール（Cl）：イオン選択電極法

測定機器：TBA-200FR（株式会社東芝）

尿検査
投与および回復期間最終週（第 13 および 17 週）に、各群雌雄 5 匹（各群動物番号の小さい順に 5 例）の新鮮尿を採取して、下記の試験紙法の項目および尿沈渣を検査した。また、約 21 時間蓄積尿を採取して、尿量、比重、ナトリウム、カリウム、カルシウムおよびクロールを検査した。ただし、0.1 および 2.0 mg/kg 群の雌各 1 例（動物番号：50202, 50504）の蓄積尿には、飲用水が混入したため、これらの動物の尿量および比重については、参考値とした。

<table>
<thead>
<tr>
<th>項目</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) PH</td>
<td>試験紙法（マルティスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>(2) 蛋白</td>
<td>試験紙法（マルティスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>(3) グルコース</td>
<td>試験紙法（マルティスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>(4) ケトン体</td>
<td>試験紙法（マルティスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>(5) ビリルビン</td>
<td>試験紙法（マルティスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>(6) 潜血</td>
<td>試験紙法（マルティスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>(7) ユリビリノーゲン</td>
<td>試験紙法（マルティスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>(8) 尿量</td>
<td>メスシリンダーで測定</td>
</tr>
<tr>
<td>(9) 比重</td>
<td>屈折法</td>
</tr>
</tbody>
</table>
眼科学的検査
投与開始前（飼育期間中、群分け前）には全例、投与期間最終週（第 13 週）には対照群および 2.0 mg/kg 群の全例について、照明を暗くした状態で、直像鏡を用いて対光反射を検査し、スリットランプ（SL-14、興和株式会社）を用いて前眼部および中間透光体を、双眼倒像鏡（オメガ 200、ハイネ社）を用いて眼底を検査した。前眼部、中間透光体および眼底検査は散瞳剤（ミドリン P、参天製薬株式会社）点眼後に行った。検査の結果、被験物質投与の影響が認められたことから、全例の検査を行うとともに回復期間最終週（第 17 週）にも、全例について同様の検査を行った。

器官重量
全例について、下記の器官重量を電子天秤（AW120：株式会社島津製作所、AG204：メトラー・トレド株式会社）を用いて測定した（両側性の器官はまとめて測定した）。解剖時に体重を測定し、その体重に基づいて相対重量（対体重比）を算出した。

肝臓、腎臓、副腎、精巣、精巣上体、子宮、卵巣、胸腺、脾臓、脳、心臓

病理組織学的検査
全例について、採血後、腹大動脈を切断・放血し、安楽死させた後、剖検した。

ただし、精巣および精巣上体はブアン液で、眼球、ハーダー腺および視神経はラピドソング液でそれぞれ固定後、10 vol %中性リン酸緩衝ホルマリン液で保存した。なお、投与および回復期間終了後の器官重量測定および病理学的検査後に、各群雌雄 5 例（動物番号の小さい順に 5 例）の肝臓については、雄の尾状葉と外側右葉以外の全ての部位、雌の外側左葉および中間葉の一部を採取し、それ以外の部位を当研究所で実施する「ジフェニルアルシン酸をラットに 91 日間反復経口投与した後の肝薬物代謝酵素に対する影響（試験番号：B041592）」に転用した。
肉眼的異常部位,脳(4断面),脊髄(頸部,胸部中央,腰部),下垂体,甲状腺および上皮小体,胸腺,食道,唾液腺(下顎・舌下),胃,十二指腸,空腸,回腸(バイエル板含む),盲腸,結腸,直腸,肝臓,腎臓,腎臓,副腎,脾臓,心臓,気管,肺,胸部大動脈,精巣,精巣上体,前立腺腹葉,精囊,卵巢,子宮,膣,乳腺(雌のみ),膀胱,下顎リンパ節,腸間膜リンパ節,坐骨神経,大腿筋,胸骨および骨髄,大腿骨および骨髄,皮膚,眼球およびハーダー腺および視神経

投与期間終了後解剖動物の対照群と2.0 mg/kg群の雌雄全例の上記器官・組織,ならびに対照群を含む全動物の肉眼的異常部位について,常法に従ってヘマトキシリン・エオジン染色標本を作製し,鏡検した.その結果,被験物質投与の影響が疑われる変化が肝臓,総胆管,脾臓,腎臓,眼球,胸腺に認められたため,全例の当該器官・組織を検査した.

リンパ球サブセット測定
投与期間終了後の計画解剖日（第92日）に各群雌雄5匹（各群動物番号の小さい順に5例）について測定した.測定には,計画解剖時に採取した血液の0.5 mLをヘパリン（ナトリウム塩）で抗凝固し使用した.解析用プロトコルの確認には,無処置動物（同性の余剰動物を各計画解剖日に1例）より計画解剖動物と同様に採取した血液を用いた.

混在する赤血球をACK Lysing Solution（0.16 mol/L NH₃Cl, 10 mmol/L KHCO₃, 0.1 mmol/L EDTA-2Na, pH 7.2）で溶血した後,自動血球計数装置（Sysmex F-800, シスメックス株式会社）を用いて白血球数の測定を行った.

リンパ球サブセットの測定は,白血球数の測定後,蛍光標識抗体による染色を行い,T細胞(CD3),B細胞(CD45RA),NK細胞(NKR-P1A),ヘルパーT細胞(CD4)およびキラーT細胞(CD8a)の表面マーカーの比率について,フローサイトメーター（EPICS XL-MCL, ベックマン・コールター株式会社）を用いて測定した.結果は,各細胞分画のリンパ球中の比率ならびに血液1mLあたりの絶対数で表した.

染色抗体は以下のものを用いた.
FITC標識抗ラットCD3抗体(G4.18; BD Pharmingen)
PE標識抗ラットCD45RA抗体(OX-33; BD Pharmingen)
PE標識抗ラットNKR-P1A抗体(10/78; BD Pharmingen)
FITC標識抗ラットCD4抗体(OX-38; BD Pharmingen)
PE標識抗ラットCD8a抗体(OX-8; BD Pharmingen)

コントロール抗体は以下のものを用いた.
FITC標識マウスIgG2a, κ抗体(BD Pharmingen)
FITC標識マウスIgG3, κ抗体(BD Pharmingen)
PE標識マウスIgG1, κ抗体(BD Pharmingen)
結果および結論
投与および回復期間を通じて,死亡動物は認められなかった．
一般状態において,2.0 mg/kg 群の雄に振戦,強直性痙攣,着色尿（黄色）,易刺激性,眼球の混濁および膨大が認められた．また,強直性痙攣後には,一過性の自発運動の低下が認められた．
行動検査において,詳細な症状観察では,2.0 mg/kg 群の雄にケージからの取り出しおよびハンドリング時の反応性の亢進,覚醒度の亢進,振戦が認められた．機能検査（刺激に対する反応性,握力および自発運動量測定）では,被験物質投与に起因した変化は認められなかった．2.0 mg/kg 群の雄に体重,体重増加量および摂餌量の低値が認められた．
血液学的検査において,2.0 mg/kg 群の雌雄に赤血球数,ヘモグロビン濃度およびヘマトクリット値の低値がみられ,2.0 mg/kg 群の雄に血小板数および網赤血球数の高値が認められた．
血液生化学的検査において,2.0 mg/kg 群の雌雄に総コレステロールおよび ALP の高値,2.0 mg/kg 群の雄に GT,総ビリルビン,総蛋白およびカルシウムの高値と A/G 比の低値,2.0 mg/kg 群の雌に ASAT の高値が認められた．
尿検査において,2.0 mg/kg 群の雄にビリルビンおよびウロビリノーゲンの高値が認められた．
眼科学的検査において,2.0 mg/kg 群の雄に角膜血管新生,角膜水腫あるいは角膜変性を伴う角膜混濁が認められた．
器官重量において,2.0 mg/kg 群の雌雄に肝臓の絶対・相対重量の高値がみられ,2.0 mg/kg 群の雄に心臓および脾臓の絶対・相対重量の高値および脳の絶対重量の低値が認められた．
病理組織学的検査において,肝臓では2.0 mg/kg 群の雌雄に胆管増生およびグリソン鞘の炎症,2.0 mg/kg 群の雄にグリソン鞘内の肉芽腫,小葉辺縁性の肝細胞脂肪化および肝細胞の局局性壊死,2.0 mg/kg 群の雌にグリソン鞘の線維化が認められた．総胆管では,2.0 mg/kg 群の雌雄に增殖性炎がみられ,2.0 mg/kg 群の雄に粘膜上皮の空胞化が認められた．また,2.0 mg/kg 群の雄に脾臓の赤血球性髄外造血の発現の増加,腎臓の近位尿細管上皮における好酸性小滴,眼球の角膜の炎症性細胞浸潤および角膜水腫,胸腺の萎縮が認められた．なお,一般状態観察で振戦,強直性痙攣,易刺激性など神経系の作用がみられたが,脳のヘマトキシリン・エオジン染色標本では器質的变化は認められなかった．
リンパ球サブセット測定では,被験物質投与に起因した変化は認められなかった．
本試験で認められたほとんどの変化は,投与の休止により,消失,変化の程度あるいは発現の減少がみられ,回復性が認められた．また,胸腺重量の低値および剖検における総胆管の拡張は,回復期間終了後にも投与期間終了後と同様に認められたが,これらの器官にみられた病理組織学的変化は,回復期間終了後には,消失あるいは軽減していることから,胸腺および総胆管としての変化自体には,回復性が認められた．
以上の結果から、本試験条件下における DPAA の無影響量（NOEL）は雌雄ともに 0.8 mg/kg/dayと判断した。

5.1.3 DPAA 新生児ラット 28 日反復経口毒性試験
コード番号： A-3
試験番号： B041296

DPAA を 0, 0.1, 0.3 および 1.0 mg/kg の用量（用量設定試験の結果から設定）で雌雄の SD 系新生児ラット [Crj:CD(SD) IGS, SPF] に生後 4 日から 28 日間反復経口投与し、現れる生体の機能および形態の変化を観察し、その毒性を評価した。

観察・測定項目
一般状態
児動物は投与期間中、1 日 2 回（投与前、投与後約 30 分）観察した。また、母動物は投与期間中、1 日 1 回観察した。その他の期間は 1 日 1 回観察した。

体重
児動物の体重を第 1, 4, 8, 11, 15, 18, 22, 25 および 28 日に電子天秤（UX4200H、株式会社島津製作所）を用いて測定した。また、母動物の体重を第 1, 8, 15 日および 18 日（離乳日）に同様に測定した。

摂餌量
児動物の摂餌量を第 18 〜 22 および 22 〜 28 日に測定し、また母動物の摂餌量を第 1 〜 8, 8 〜 15 および 15 〜 18 日に測定した。ケージごとに風袋込み重量を電子天秤（UX4200H、株式会社島津製作所）を用いて測定し、各測定期間の児動物および母動物 1 匹あたりの 1 日平均摂餌量を算出した。なお、摂餌量は測定期間の終了日で表示した。

血液学的検査
児動物は、投与期間終了後の計画解剖日（第 29 日）に全対象動物を前日の夕方より絶食し、ペントバルビタールナトリウム（ネプタール、大日本製薬株式会社）を腹腔内投与して麻酔し、後大静脈より採血した。採取した血液を用いて以下に示す項目を測定した。プロトロンピン時間および活性化部分トロンボプラスチン時間の測定には、凝固阻止剤として 3.2 w/v%クエン酸三ナトリウム水溶液を使用し、遠心分離（12000 rpm, 12100 g, 3 分間，約 4℃）して得られた血漿を用いた。その他の項目の測定には、凝固阻止剤 EDTA-2K で処理した血液を用いた。
項目	方法
(1) 赤血球数（RBC） | 球状化処理二次元レーザーFCM法
(2) ヘモグロビン濃度（Hb） | シアンメトヘモグロビン法
(3) ヘマトクリット値（Ht） | 球状化処理二次元レーザーFCM法
(4) 平均赤血球容積（MCV） | (1)および(3)より算出
(5) 平均赤血球血色素量（MCH） | (1)および(2)より算出
(6) 平均赤血球血色素濃度（MCHC） | (2)および(3)より算出
(7) 網赤血球数（Ret） | RNA染色によるレーザーFCM法
(8) 血小板数（PLT） | 球状化処理二次元レーザーFCM法
(9) プロトロンピン時間（PT） | 光散乱検出方式
(10) 活性化部分トロンボプラスチン時間（APTT） | 光散乱検出方式
(11) 白血球数（WBC） | 酸性界面活性剤によるレーザーFCM法
(12) 白血球百分率（WBC Diff.） | ベルオキシダーゼ染色によるFCM法および酸性界面活性剤によるレーザーFCM法

測定機器：
(1)～(3)、(7)、(8)、(11)、(12)：ADVIA120（バイエルメディカル株式会社）
(9)、(10)：CA-510（シスメックス株式会社）

血液生化学的検査
児動物について、計画解剖時に採取した血液の一部を室温で30分間以上静置後、遠心分離（3000 rpm, 2050 g, 10分間, 約4℃）し,得られた血清を用いて以下に示す項目を測定した。

項目	方法
(1) ASAT（GOT） | UV-rate法（JSCC改良法）
(2) ALAT（GPT） | UV-rate法（JSCC改良法）
(3) γGT | □-グルタミル-p-ニトロアニリド基質法（SSCC改良法）
(4) ALP | p-ニトロフェニルリン酸基質法（JSCC改良法）
(5) 総ビリルビン | 酵素法（BOD法）
(6) 尿素窒素 | 酵素-UV法 (Urease-LEDH法)
(7) クレアチニン | 酵素法（Creatinimase-POD法）
(8) グルコース | 酵素法（HK-G6PDH法）
(9) 総コレステロール | 酵素法（CO-HDAOS法）
器官重量
児動物の下記の器官重量を電子天秤（AW-120, 株式会社島津製作所）を用いて測定した。両側性の器官はまとめて測定した。また、解剖日に体重を測定し、その体重に基づいて相対重量（対体重比）を算出した。

肝臓, 臓臓, 副腎, 精巣, 精巣上体, 子宮, 卵巣, 胸腺, 脳, 心臓

病理解剖検査
児動物の計画解剖動物は採血後, 腹大動脈を切断・放血し, 安楽死させた後, 剖検した。なお, 母動物については離乳時に同様に剖検し, 全例に異常がないことを確認した。

病理組織学的検査
児動物の下記器官・組織を採取し, 10 vol %中性リン酸緩衝ホルマリン液で固定し, 保存した。ただし, 精巣および精巣上体はプアフ液で, 眼球, ハーダー腺および視神経はダビドソン液でそれぞれ固定後, 10 vol %中性リン酸緩衝ホルマリン液で保存した。

肉眼的異常部位, 腦（4断面）, 脊髄（頚部, 胸部中央, 腰部）, 下垂体, 甲状腺および上皮小体, 胸腺, 食道, 唾液腺（下顎・舌下）, 胃, 十二指腸, 空腸, 回腸（バイエル板含む）, 盲腸, 結腸, 直腸, 乳房, 乳頭, 乳房, 腎臓, 肝臓, 腎臓, 副腎, 脾臓, 心臓, 気管, 肺, 腹部大動脈, 精巣, 精巣上体, 前立腺腹葉, 精巣, 子宮, 腸, 乳腺（雌のみ）, 腹部, 下頸リンパ節, 腦間膜リンパ節, 坐骨神経, 大腿筋, 背骨および骨髄, 下顎およびハーダー腺, 腦, 腸

対照群と1.0 mg/kg群の雌雄全例の上記器官・組織, ならびに対照群を含む全動物の肉眼的異常部位について, 常法に従ってヘマトキシリン・エオジン染色標本を作製し, 鏡検した。検
査の結果，1.0 mg/kg 群で被験物質に起因すると考えられる変化が雌雄の肝臓に認められたため，0.1 および 0.3 mg/kg 群の雌雄の肝臓について検査を実施した。

結果および結論
母動物の哺育状況を確認するため，哺育期間中の児動物の体重および摂餌量データについて各群の母動物ごとに一元配置分散分析を実施した。その結果，ほとんどのデータで同一群内での母動物間に有意差があることが確認された。しかし，有意差は群に偏ることなく，いずれの群でも認められていることから，児動物の体重および摂餌量データを用いた毒性評価は十分に可能であるものと判断した。
死亡例は認められず，また一般状態および病理解剖所見には何ら異常は認められなかった。体重では，1.0 mg/kg 群の雌で第 22 日から投与期間終了時まで有意な低値が認められた。血液学的検査では，0.3 および 1.0 mg/kg 群の雄に赤血球数の低値がみられ，また 1.0 mg/kg 群の雌に単球比の低値が認められた。さらに，1.0 mg/kg 群の雌に血小板数の高値および PT の延長が認められた。
血液生化学的検査では，1.0 mg/kg 群の雌にトリグリセライドの高値および A/G 比の低値が認められた。
器官重量では，1.0 mg/kg 群の雌に肝臓の相対重量の高値が認められた。
病理組織学的検査では，1.0 mg/kg 群の雌雄全例に胆管増生がみられ，1.0 mg/kg 群の雄 9/12 例，雌 7/12 例にグリソン鞘における炎症性細胞浸潤が認められた。なお，造血系器官である骨髄，脾臓には異常変化はみられず，また脳のヘマトキシリン・エオジン染色標本では器質的変化は認められなかった。
以上の結果より，被験物質投与に起因すると考えられる変化が雄で 0.3 mg/kg 以上の群に，雌では 1.0 mg/kg 群に認められたことから，本試験条件下における DPAA の無影響量（NOEL）は雄が 0.1 mg/kg/day，雌が 0.3 mg/kg/day と判断した。

5.1.4 DPAA ラット 7 日反復経皮毒性試験
コード番号：A-4
試験番号：B040272

DPAA を 0 および 1000 mg/kg の用量で雄の SD 系ラット [Crj:CD(SD) IGS, SPF] に 7 日間反復皮投与し，現れる生体の機能および形態の変化を観察し，その毒性を評価した。

結果および結論
投与期間を通じて，死亡動物は認められなかった。
一般状態において，着色尿（黄色）が 1000 mg/kg 群に認められた。
体重では，1000 mg/kg 群に低値傾向が認められた。
器官重量において，1000 mg/kg 群に肝臓，脾臓，腎臓および副腎の絶対・相対重量の高値が
認められた。病理解剖検査において、1000 mg/kg 群に肝臓の腫大（3/5 例）、精巣黄色化（2/5 例）、副腎の腫大（2/5 例）、脾臓の暗赤色化・腫大（1/5 例）、肝臓の褪色・赤色斑（各 1/5 例）、腎臓の腫大（1/5 例）が認められた。以上の結果より、DPAA 投与に起因すると考えられる種々の変化が認められた。したがって、本試験条件下では DPAA は経皮吸収される可能性があるものと判断した。

5.1.5 PMAA ラット 28 日反復経口毒性試験
コード番号：A-5
試験番号：B050132

PMAA を 0, 0.12, 0.3, 1.2 および 5.0 mg/kg の用量で雌雄の SD 系ラット [Crj:CD(SD) IGS, SPF] に 28 日間反復経口投与し、現れる生体の機能および形態の変化を観察し、その毒性と回復性を評価した。

観察・測定項目
一般状態
投与期間は 1 日 2 回（投与前、投与後約 30 分）観察した。その他の期間は 1 日 1 回午前中に観察した。

詳細な症状観察
投与開始前に 1 回、投与期間中に毎週 1 回（午後）、下記の項目について検査を行った。飼育ケージ内で 1 分間、ハンドリング時およびオープンフィールド内で 2 分間の観察を行った。検査時には、動物番号とは別の検査番号を記載したラベルを付けて、用量および動物番号を観察者に判らないようにした。なお、投与期間中の検査で被験物質投与による影響はみられなかったことから、回復期間には検査を行わなかった。

(1) 飼育ケージ内での観察
振戦、間代性痙攣、強直性痙攣、呼吸

(2) ハンドリング時観察
ケージからの取り出し易さ、ハンドリングに対する反応、攻撃性、皮膚（外傷、皮膚の色調）、被毛（被毛の汚れ）、眼（眼球突出、眼瞼閉鎖状態）、粘膜（結膜の色調）、分泌物、流涙、流涎、立毛、瞳孔径

(3) オープンフィールド内での観察
立ち上がり、覚醒度、排尿、排便、体位・姿勢、呼吸、運動協調性、歩行の異常、振戦、間代性痙攣、強直性痙攣、常行行動、異常行動
機能検査
第４週に１回（午後）下記の項目について検査を行った。刺激に対する反応性を観察した後、握力測定を行った。握力測定には、デジタルフォースゲージ（株式会社イマダ）を使用した。自発運動量の測定は、自発運動量測定装置（SUPERMEX、室町機械株式会社）を用い１時間行った。なお、運動量測定時にはボリカーボネート製ケージ（床敷含む）を使用した。投与後の観察終了後、動物をボリカーボネート製ケージに移し、ケージ飼育を行った。その後、測定直前に新たにボリカーボネート製ケージに動物を移して測定した。また、測定期間中は餌および飲用を与えないかった。自発運動量の測定以外の検査時には、動物番号とは別の検査番号を記載したラベルを付けて、用量および動物番号を観察者に判らないようにした。なお、第4週での検査で被験物質投与の影響による変化は認められなかったことから、回復期間には検査を行わなかった。

（1）刺激に対する反応性
接近反応、接触反応、聴覚反応、テールピンチ反応、空中正向反射

（2）握力測定
前肢握力、後肢握力

（3）自発運動量測定
測定開始から10分毎に集計するとともに1時間の総量を求めた。

体重
全生存例について、投与期間の第1、8、15、22および28日、回復期間の第29、36および42日に電子天秤（BX3200H：株式会社島津製作所）を用いて測定した。

摂餌量
個別に飼料の風袋込み重量を電子天秤（BX3200H：株式会社島津製作所）を用いて測定し、投与期間中の第1～8、8～15、15～22、24～28日、回復期間中の第29～36および38～42日における1日平均摂餌量を算出した。また、摂餌量は測定期間の終了日で表示した。

血液学的検査
投与および回復期間終了後の計画断増日（第29および43日）に全対象動物を前日の夕方より絶食し、ペントバルビタールナトリウム（ネンブタール、大日本製薬株式会社）を腹腔内投与して麻酔し、後大静脈より採血した。採取した血液を用いて次に示す項目を測定した。プロトロンピン時間および活性化部分トロンボプラスチン時間の測定には、凝固阻止剤として3.2 w/v%クエン酸三ナトリウム水溶液を使用し、遠心分離（12000 rpm、約12000 g、3分間、4℃）して得られた血漿を用いた。その他の項目の測定には、凝固阻止剤EDTA-2Kで処理した血液を用いた。
血液学的検査

<table>
<thead>
<tr>
<th>項目</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 赤血球数（RBC）</td>
<td>球状化処理二次元レーザーFCM法</td>
</tr>
<tr>
<td>(2) ヘマトクリット值（Ht）</td>
<td>球状化処理二次元レーザーFCM法</td>
</tr>
<tr>
<td>(3) 平均赤血球容積（MCV）</td>
<td>(1), (3)より算出</td>
</tr>
<tr>
<td>(4) 平均赤血球血色素量（MCH）</td>
<td>(1), (2)より算出</td>
</tr>
<tr>
<td>(5) 平均赤血球血色素濃度（MCHC）</td>
<td>(2), (3)より算出</td>
</tr>
<tr>
<td>(6) 網赤血球数（Ret）</td>
<td>RNA染色によるレーザーFCM法</td>
</tr>
<tr>
<td>(7) 球状化処理二次元レーザーFCM法</td>
<td></td>
</tr>
<tr>
<td>(8) 血小板数（PLT）</td>
<td>球状化処理二次元レーザーFCM法</td>
</tr>
<tr>
<td>(9) プロトロンビン時間（PT）</td>
<td>光散乱検出方式</td>
</tr>
<tr>
<td>(10) 活性化部分トロンボプラスチン時間（APTT）</td>
<td>光散乱検出方式</td>
</tr>
<tr>
<td>(11) 白血球数（WBC）</td>
<td>酸性界面活性剤によるレーザーFCM法</td>
</tr>
<tr>
<td>(12) 白血球百分率（WBC Diff.）</td>
<td>ペルオキシダーゼ染色によるFCM法および酸性界面活性剤によるレーザーFCM法</td>
</tr>
</tbody>
</table>

測定機器：
(1)(3), (7), (8), (11), (12) ADVIA120（バイエルメディカル株式会社）
(9), (10) CA-510（シスメックス株式会社）

血液生化学的検査

計画解剖時に採取した血液の一部を室温で30分間以上静置後、遠心分離（3000 rpm, 約2050 g, 10分間, 約4°C）し、得られた血清を用いて下記の項目を測定した。なお、対照群の雌1例（動物番号70109）のカリウムについては、測定上限を越えたため、精製水にて希釈後再測定し、データとした。

血液生化学的検査

<table>
<thead>
<tr>
<th>項目</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ASAT（GOT）</td>
<td>UV-rate法（JSCC改良法）</td>
</tr>
<tr>
<td>(2) ALAT（GPT）</td>
<td>UV-rate法（JSCC改良法）</td>
</tr>
<tr>
<td>(3) γGT</td>
<td>γ-グルタミル-p-ニトロアニリド基質法 (SSCC改良法)</td>
</tr>
<tr>
<td>(4) ALP</td>
<td>p-ニトロフェニルリン酸基質法（JSCC改良法）</td>
</tr>
<tr>
<td>(5) アセチルコリンエステラーゼ</td>
<td>アセチルチオコリン-DTNB法</td>
</tr>
<tr>
<td>(6) 総ビリルビン</td>
<td>酵素法（BOD法）</td>
</tr>
<tr>
<td>(7) 尿素窒素</td>
<td>酵素-UV法（Urease-LEDH法）</td>
</tr>
</tbody>
</table>
クレアチニン（酵素法（Creatininase-POD法））

グルコース（酵素法（HK-G6PDH法））

総コレステロール（酵素法（CO-HDAOS法））

トリグリセライド（酵素法（GPO-HDAOS法，グリセリン消去法））

総蛋白（Biuret法）

アルブミン（BCG法）

A/G比（(12)および（13）より算出）

カルシウム（OCPC法）

無機リン（酵素法（PNP-XOD-POD法））

ナトリウム（Na）（イオン選択電極法）

カリウム（K）（イオン選択電極法）

クロール（Cl）（イオン選択電極法）

測定機器：TBA-200FR（株式会社東芝）

尿検査

投与期間最終週（第4週）に，各群雌雄5匹（各群動物番号の小さい順に5例），回復期間最終週（第6週）にて，対照群および5.0 mg/kg群の全生存動物の新鮮尿を採取して，下記の試験紙法の項目および尿沈渣を検査した。また，約21時間蓄積尿を採取して，尿量，比重，ナトリウム，カリウムおよびクロールを検査した。

<table>
<thead>
<tr>
<th>項目</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>pH</td>
</tr>
<tr>
<td>(2)</td>
<td>蛋白</td>
</tr>
<tr>
<td>(3)</td>
<td>グルコース</td>
</tr>
<tr>
<td>(4)</td>
<td>ケトン体</td>
</tr>
<tr>
<td>(5)</td>
<td>ビリルピニン</td>
</tr>
<tr>
<td>(6)</td>
<td>潜血</td>
</tr>
<tr>
<td>(7)</td>
<td>ユロビリノーゲン</td>
</tr>
<tr>
<td>(8)</td>
<td>尿量</td>
</tr>
<tr>
<td>(9)</td>
<td>比重</td>
</tr>
<tr>
<td>(10)</td>
<td>ナトリウム</td>
</tr>
<tr>
<td>(11)</td>
<td>カリウム</td>
</tr>
</tbody>
</table>
器官重量
全生存例について、下記の器官重量を電子天秤（AW120、ED-H60：株式会社島津製作所）を用いて測定した（両側性の器官はまとめて測定した）。解剖時に体重を測定し、その体重に基づいて相対重量（対体重比）を算出した。死亡動物については、体重は測定したが、器官重量は測定しなかった。

肝臓、腎臓、副腎、精巣、精巣上体、卵巢、胸腺、脾臓、脳、心臓

病理解剖検査
全計画解剖動物については、採血後、腹大動脈を切断・放血し、安楽死させた後、剖検した。死亡動物については、発見後速やかに剖検した。

病理組織学的検査
全例の下記器官・組織を採取し、10 vol %中性リン酸緩衝ホルマリン液で固定し、保存した。ただし、精巣および精巢上体はプアン液で、眼球およびハーダー腺はダビドソン液でそれぞれ固定後、10 vol %中性リン酸緩衝ホルマリン液で保存した（死亡動物については10 vol %中性リン酸緩衝ホルマリン液で固定）。脳の固定については、特殊染色を行うため、10 vol %中性リン酸緩衝ホルマリン液中で常温で約24時間とした。

脳（大脳、小脳および橋を含む部位、4断面）、脊髄、胃、十二指腸、空腸、回腸（バイエル板を含む）、盲腸、結腸、直腸、肝臓、腎臓、副腎、脾臓、心臓、胸部大動脈、胸腺、眼球およびハーダー腺、下垂体、甲状腺（上皮小体含む）、気管および肺、精巣、卵巢、精巢上体、前立腺、子宮、膿、膀胱、下頸リンパ節、腸間膜リンパ節、坐骨神経（大腿筋に付けて採取）、骨髄（大腿骨）、腸腰筋（腰腸肋筋）

投与期間終了後解剖動物の対照群と5.0 mg/kg群の雌雄全例および死亡動物の上記器官・組織について、常法に従ってヘマトキシリン・エオジン染色標本を作製し、鏡検した。検査の結果、被験物質投与に起因すると思われる変化が肝臓に認められたため、全例の肝臓を検査した。なお、投与期間終了後解剖動物の対照群および5.0 mg/kg群の髄について、アポトーシス検出のためのTUNEL法、髄鞘を確認するためのKluver-Barrera染色、神経膠線維を確認するためのHolzer染色、軸索・神経線維を確認するためのBodian's染色を実施した。
結果および結論
被験物質投与群に死亡動物は認められなかった。
5.0 mg/kg 群の雌雄に摂餌量の低値が認められた。
血液生化学的検査において、5.0 mg/kg 群でクロールの低値が雌雄に、トリグリセライドの低値が雌に、総ビリルビンの低値が雌に認められた。
病理組織学的検査において、5.0 mg/kg 群の雌雄に肝臓の胆管増生およびグリソン鞘における炎症性細胞浸潤が認められた。なお、造血系器官である骨髄、脾臓には異常変化はみられず、また脳のヘマトキシリン・エオジン染色標本では器質的変化は認められなかった。
一般状態観察、体重測定、血液学的検査、尿検査および剖検において、被験物質投与に起因した変化は認められなかった。
本試験で認められた変化のうち、肝臓の胆管増生が 5.0 mg/kg 群の雄で投与期間終了後にみられ、回復性が認められなかった。その他の変化については、回復傾向あるいは回復性が認められた。
以上の結果から、本試験条件下における PMAA の無影響量（NOEL）は雌雄ともに 1.2 mg/kg/day と判断した。

5.1.6 MPAA ラット 28 日反復経口毒性試験
コード番号： A-6
試験番号： B050572

MPAA を 0, 2, 5 および 15 mg/kg の用量で雌雄ラット [Crl:CD(SD), SPF] に 28 日間反復経口投与し、現れる生体の機能および形態の変化を観察し、その毒性と回復性を評価した。

観察・測定項目
一般状態
投与期間は 1 日 2 回（投与前、投与後約 30 分）観察した。その他の期間は 1 日 1 回午前中に観察した。

詳細な症状観察
投与開始前に 1 回、投与期間中に毎週 1 回（午後）、下記の項目について検査を行った。飼育ケージ内で 1 分間、ハンドリング時およびオープンフィールド内で 2 分間の観察を行った。
検査時には、動物番号とは別の識別番号を記載したラベルを付けて、用量および動物番号を観察者に判らないようにした。なお、生存動物には被験物質投与による影響はみられなかったことから、回復期間には検査を行わなかった。

(1) 飼育ケージ内での観察
振戦、間代性痙攣、強直性痙攣、呼吸
(2) ハンドリング時の観察
ケージからの取り出し易さ、ハンドリングに対する反応、攻撃性、皮膚（外傷、皮膚の色調）、被毛（被毛の汚れ）、眼（眼球突出、眼瞼閉鎖状態）、粘膜（結膜の色調）、分泌物、流涙、流涎、立毛、瞳孔径

(3) オープンフィールド内での観察
立ち上がり、覚醒度、排尿、排便、体位・姿勢、呼吸、運動協調性、歩行の異常、振戦、間代性痙攣、強直性痙攣、常同行動、異常行動

機能検査
第4週に1回（午後）、下記の項目について検査を行った。刺激に対する反応性を観察した後、握力測定を行った。握力測定には、デジタルフォースゲージ（株式会社イマダ）を使用した。自発運動量測定装置（SUPERMEX、室町機械株式会社）を用い1時間行った。なお、運動量測定時には滅菌済みポリカーボネート製ケージ（床敷含む）を使用した。投与後の観察終了後、動物をポリカーボネート製ケージに移し、ケージ飼育を行った。その後、測定直前に新たにポリカーボネート製ケージに動物を移して測定した。また、測定期間中は飼および飲用を与えなかった。自発運動量の測定以外の検査時には、動物番号とは別の識別番号を記載したラベルを付けて、用量および動物番号を観察者に判らないようにした。なお、第4週での検査で被験物質投与の影響が疑われる変化は認められなかったことがから、回復期間には検査を行わなかった。

(1) 刺激に対する反応性
接近反応、接触反応、聴覚反応、テールピンチ反応、空中正向反射

(2) 握力測定
前肢握力、後肢握力

(3) 自発運動量測定
測定開始から10分毎に集計とともに1時間の総量を求めた。

体重
全生存例について、投与期間の第1、8、15、22および28日、回復期間の第29、36および42日に電子天秤（EB-3200S：株式会社島津製作所）を用いて測定した。また、各測定日間の体重増加量を算出した。

摂餌量
個別に飼料の風袋込み重量を電子天秤（EB-3200S：株式会社島津製作所）を用いて測定し、投与期間中の第1～8、8～15、15～22、23～28日、回復期間中の第29～36および36～39日における1日平均摂餌量を算出した。また、摂餌量は測定期間の中止日で表示した。
血液学的検査
投与および回復期間終了後の計画解剖日（第29および43日）に全対象動物を前日の夕方より絶食し、ペントバルビタールナトリウム（ネンブタール、大日本製薬株式会社）を腹腔内投与して麻酔し、後大静脈より採血した。採取した血液を用いて次に示す項目を測定した。ブドウ糖時間および活性化部分トロンボプラスチン時間の測定には、凝固阻止剤として3.2 w/v％クエン酸三ナトリウム水溶液を使用し、遠心分離（12000 rpm、約12000 g、3分間、4℃）して得られた血漿を用いた。その他の項目の測定には、凝固阻止剤EDTA-2Kで処理した血液を用いた。

<table>
<thead>
<tr>
<th>項目</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 赤血球数（RBC）</td>
<td>球状化処理二次元レーザーFCM法</td>
</tr>
<tr>
<td>(2) ヘモグロビン濃度（Hb）</td>
<td>シアンメトヘモグロビン法</td>
</tr>
<tr>
<td>(3) ヘマトクリット値（Ht）</td>
<td>球状化処理二次元レーザーFCM法</td>
</tr>
<tr>
<td>(4) 平均赤血球容積（MCV）</td>
<td>(1), (3)より算出</td>
</tr>
<tr>
<td>(5) 平均赤血球血色素量（MCH）</td>
<td>(1), (2)より算出</td>
</tr>
<tr>
<td>(6) 平均赤血球血色素濃度（MCHC）</td>
<td>(2), (3)より算出</td>
</tr>
<tr>
<td>(7) 網赤血球数（Ret）</td>
<td>RNA染色によるレーザーFCM法</td>
</tr>
<tr>
<td>(8) 血小板数（PLT）</td>
<td>球状化処理二次元レーザーFCM法</td>
</tr>
<tr>
<td>(9) プロトロンビン時間（PT）</td>
<td>光散乱検出方式</td>
</tr>
<tr>
<td>(10) 活性化部分トロンボプラスチン時間（APTT）</td>
<td>光散乱検出方式</td>
</tr>
<tr>
<td>(11) 白血球数（WBC）</td>
<td>酸性界面活性剤によるレーザーFCM法</td>
</tr>
<tr>
<td>(12) 白血球百分率（WBC Diff.）</td>
<td>ベルオキシダーゼ染色によるFCM法および酸性界面活性剤によるレーザーFCM法</td>
</tr>
</tbody>
</table>

測定機器:
(1)～(3), (7), (8), (11), (12): ADVIA120（バイエルメディカル株式会社）
(9), (10): CA-510（シスメックス株式会社）

血液生化学的検査
計画解剖時に採取した血液の一部を室温で30分間以上静置後、遠心分離（3000 rpm, 2050 g, 10分間, 約4℃）し、得られた血漿を用いて下記の項目を測定した。なお、対照群の雄1例（動物番号: 40102）のカリウムについては、測定上限を越えたため、精製水にて2倍に希釈した後再測定し、データとした。

<table>
<thead>
<tr>
<th>項目</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ASAT（GOT）</td>
<td>UV-rate法（JSCC改良法）</td>
</tr>
</tbody>
</table>
(2) ALAT（GPT）
UV-rate法（JSCC改良法）

(3) □ GT
□-グルタミル-p-ニトロアニリド基質法
（SSCC改良法）

(4) ALP
p-ニトロフェニルリン酸基質法（JSCC改良法）

(5) アセチルコリンエステラーゼ
アセチルチオコリン-DTNB法

(6) 総ビリルピン
酵素法（BOD法）

(7) 尿素窒素
酵素-UV法（Urease-LEDH法）

(8) クレアチニン
酵素法（Creatininase-POD法）

(9) グルコース
酵素法（HK-G6PDH法）

(10) 総コレステロール
酵素法（CO-HDAOS法）

(11) トリグリセライド
酵素法（GPO-HDAOS法，グリセリン消去法）

(12) 総蛋白
Biuret法

(13) アルブミン
BCG法

(14) A/G比
（12）および（13）より算出

(15) カルシウム
OCPC法

(16) 無機リン
酵素法（PNP-XOD-POD法）

(17) ナトリウム（Na）
イオン選択電極法

(18) カリウム（K）
イオン選択電極法

(19) クロール（Cl）
イオン選択電極法

測定機器：TBA-200FR（株式会社東芝）

尿検査
投与期間最終週（第4週）に，各群雌雄5匹（各群動物番号の小さい順に5匹）回復期間最終週（第6週）に，対照群および15mg/kg群の全例（15mg/kg群の雌は3例，それ以外は各群5例）の新鮮尿を採取して，下記の試験紙法の項目および尿沈渣を検査した。また，約21時間蓄積尿を採取して，尿量，比重，ナトリウム，カリウムおよびクロールを検査した。

<table>
<thead>
<tr>
<th>項目</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) pH</td>
<td>試験紙法（マルティスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>(2) 蛋白</td>
<td>試験紙法（マルティスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>(3) グルコース</td>
<td>試験紙法（マルティスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>(4) ケトン体</td>
<td>試験紙法（マルティスティックス，バイエルメディカル株式会社）</td>
</tr>
<tr>
<td>(5) ビリルピン</td>
<td>試験紙法（マルティスティックス，バイエルメディカル株式会社）</td>
</tr>
</tbody>
</table>
潜血：試験紙法（マルティスティックス、バイエルメディカル株式会社）

尿ビリノーゲン：試験紙法（マルティスティックス、バイエルメディカル株式会社）

尿量：メスシリンダーで測定

比重：屈折法

ナトリウム：イオン選択電極法

カリウム：イオン選択電極法

クロール：電量滴定法

尿沈渣：Sternheimer-Malbin染色した標本を鏡検

測定機器
(1)～(7)：クリニテック100（バイエルメディカル株式会社）
(9)：ユリコン-JE（株式会社アタゴ）
(10)～(12)：PVA-αⅢ（株式会社エイアンドティー）

器官重量
全生存例について、下記の器官重量を電子天秤（AW120：株式会社島津製作所）を用いて測定した（両側性の器官はまとめて測定した）。解剖日に体重を測定し、その体重に基づいて相対重量（対体重比）を算出した。死亡動物については、体重は測定したが、器官重量は測定しなかった。

肝臓、腎臓、副腎、精巣、精巣上体、卵巣、胸腺、脾臓、脳、心臓

病理解剖検査
全計画解剖動物については、採血後腹大動脈を切断・放血し、安楽死させた後、剖検した。死亡動物については、発見後速やかに剖検した。

病理組織学的検査
全例の下記器官・組織を採取し、10 vol %中性リン酸緩衝ホルマリン液で固定し、保存した。ただし、精巣および精巣上体はブアン液で、眼球およびハーダー腺はダピドソン液でそれぞれ固定後、10 vol %中性リン酸緩衝ホルマリン液で保存した（死亡動物については10 vol %中性リン酸緩衝ホルマリン液で固定）。なお、脳について行った特殊染色では、固定時間の制限があったため、脳の固定条件は常温で約24時間とした。

肉眼的異常部位、脳（大脳、小脳および橋を含む部位、4断面）、脊髄、頸、十二指腸、空腸、回腸（バイエル板を含む）、盲腸、結腸、直腸、肝臓、腎臓、副腎、胸臓、心臓、胸部大動脈、胸膜、眼球およびハーダー腺、下垂体、甲状腺（上皮小体含む）、気管および肺、精巣、卵巣、精巣上体、前立腺、子宮、腔、膀胱、下顎リンパ節、腸間膜リンパ節、坐骨神経（大腿筋に付けて採取）、骨髄（大腿骨）、腸腰筋（腰腸肋筋）
投与期間終了後解剖動物の対照群と15 mg/kg群の雌雄全例および死亡動物の上記器官・組織ならびに対照群を含む全動物の肉眼的異常部位について、常法に従ってヘマトキシン・エオジン染色標本を作製し、鏡検した。また、剖検で総胆管の拡張が15 mg/kg群に認められたことから、全例の総胆管についても検査した。その結果、15 mg/kg群で被験物質投与の影響が疑われる変化が、総胆管以外に雄の肝臓、腎臓および骨髄（大腿骨）に認められた。このため雄全例の肝臓、腎臓および骨髄（大腿骨）についても検査を行った。なお、投与期間終了後解剖動物の対照群および15 mg/kg群の脳について、アポトーシス検出のためのTUNEL法、髄鞘を確認するためのKluver-Barrera染色、神経線維を確認するためのHolzer染色、軸索・神経線維を確認するためのBodian's染色を実施した。なお、脳については約24時間固定であるため、投与期間終了後解剖動物の2および5 mg/kg群の全例および回復期間終了後解剖動物の全例の脳についてパラフィン包埋まで行った（10.2項参照）。また、死亡動物のうち動物番号：40401の十二指腸、空腸、回腸、盲腸および総胆管、動物番号：40405の盲腸、動物番号：40409の回腸は、死後の自己融解により、病理組織学的に評価できなかった。

結果および結論
投与期間中に15 mg/kg群の雄3/10例が死亡した。死亡動物では一般状態観察および詳細な症状の観察において、振戦が認められた。剖検では、腎臓の皮質境界部の暗赤色化および白色化が認められた。病理組織学的検査では、肝臓の胆管増生、総胆管の増殖性炎、腎臓の皮質境界部の壊死と再生性尿細管が認められた。この他、剖検および病理組織学的検査では、一般状態の悪化に伴うと思われる変化が胸腺、脾臓、骨髄、十二指腸および副腎に認められた。生存動物では、一般状態観察、詳細な症状の観察および機能検査において、被験物質投与に起因した変化は認められなかった。

血液学的検査において、15 mg/kg群の雄に赤血球数、ヘモグロビン濃度およびヘマトクリット値の有意な低値が認められた。15 mg/kg群の雌での体重の低値については、回復期間のみにみられたが、投与期間中に生じた対照群との体重差に起因すると考えられた。

器官重量において、15 mg/kg群の雌雄に精巣上体の絶対重量の有意な低値および腎臓の相対重量の有意な高値が認められた。15 mg/kg群の雌での総胆管の拡張は回復期間
終了後のみに認められた。病理組織学的検査において、15 mg/kg 群の雌雄に総胆管の増殖性炎がみられ、15 mg/kg 群の雄に骨髄（大腿骨）の赤血球系造血細胞の増加、肝臓の胆管増生、グリソン鞘における炎症性細胞浸潤および肉芽腫性炎、腎臓の硝子円柱、皮膚境界部の線維化および尿細管の壊死、皮質における再生性尿細管が認められた。ただし、15 mg/kg 群の雌での総胆管の増殖性炎は回復期間終了後のみに認められた。なお、一般状態観察で振戦など神経系への作用がみられたが、脳のヘマトキシリン・エオジン染色標本では器質的変化は認められなかった。本試験で認められたほとんどの変化は、投与の休止により、回復性あるいは回復傾向が認められたが、15 mg/kg の雌雄で認められた剖検における総胆管の拡張および病理組織学的検査における総胆管の増殖性炎については、回復性を確認することができなかった。この他、回復期間終了後には、15 mg/kg 群の雌に病理組織学的検査における腎臓の再生性尿細管、尿検査における類円柱が認められた。しかし、再生性尿細管は障害された細管の修復像であること、他の尿細管壊死等の病理組織学的変化は回復したことから、腎臓の変化には回復性があると考えられた。また、類円柱は腎臓の尿細管の基質性変化に伴う変化と考えられることから、回復性があると考えられた。以上の結果から、本試験条件下における MPAA の無影響量 (NOEL) は雌雄ともに 5 mg/kg/day と判断した。
5.2 生殖毒性試験
5.2.1 DPAA ラット催奇形性試験
コード番号：B-1
試験番号：B041215

DPAA を 0, 0.3, 1.0 および 3.0 mg/kg の用量で SD 系ラット [Crl:CD(SD) IGS, SPF] の妊娠 7 日から 17 日（胎児器官形成期）まで反復経口投与し、母動物および胚・胎児に及ぼす影響を検討した。各群の妊娠動物数はいずれも 22 匹であった。

母動物の観察・測定項目
一般状態
投与期間は 1 日 2 回（投与前、投与後約 30 分）観察し、他の期間は 1 日 1 回午前中に観察した。
体重
妊娠 0, 7, 10, 14, 17 および 20 日に測定した。測定には動物用天秤（UX4200H：株式会社島津製作所）を用いた。また、妊娠 7 日の体重を基準に体重増加量を算出した。
摂餌量
妊娠 0, 7, 10, 14, 17 および 20 日に風袋込み重量を測定し、各測定日間の 1 匹あたりの 1 日平均摂餌量を算出した。測定には動物用天秤（UX4200H：株式会社島津製作所）を用いた。摂餌量は各測定期間の終了日で表示した。
剖検
妊娠 20 日（帝王切開日）に、ベントバルビタールナトリウム（ネンプタール注射液、大日本製薬株式会社）の尾静脈内投与による麻酔でで開腹し、腹大動脈を切断・放血し、安楽死させた後、胸腔および腹腔内の器官・組織を肉眼的に検査した。死亡動物は速やかに剖検した。
死亡した 3.0 mg/kg 群の雌 1 例（動物番号 50412）の肝臓、腎臓、心臓、胸腺、胃、小腸および子宮、他の動物では胎盤および羊膜に肉眼的異常が認められたため当該器官・組織を摘出し、10 vol%中性リン酸緩衝ホルマリン液に保存した。比較対照として対照群の 3 例の当該器官・組織を同様にして保存した。
胚・胎児の検査項目
帝王切開時の検査
妊娠 20 日の剖検時に卵巢および子宮を摘出し、黄体数、着床数、生存胎児数、死亡胚数（早期死亡胚数：着床痕数 + 胎盤遺残数、後期死亡胚数：浸軟胎児数 + 死亡胎児数）および胎盤を肉眼的に検査した。また、検査結果に基づき次の項目を算出した。
着床前胚死亡率（％）：（黄体数 - 着床数）/ 黄体数 × 100
着床後胚死亡率（％）：（早期死亡胚数 + 後期死亡胚数）/ 着床数 × 100
総胚死亡率（％）：{(黄体数 - 着床数) + 早期死亡胚数 + 後期死亡胚数} / 黄体数 × 100

生存胎児は，臍動静脈切開による放血で安楽死させ，性別および口腔を含む外表を検査した後，個体ごとに体重を電子天秤（EB-620S：株式会社島津製作所）を用いて測定した．各腹ごとに約半数の生存胎児を内臓検査，残りの生存胎児を骨格検査に供した．死亡動物の胎児は，可能な限り生存および外表を検査した．

内臓検査
ホルマリン・酢酸混合液で胎児を固定した後，対照群と 3.0 mg/kg 群について頭部を Wilson 氏法，頚部，胸腹部および腹部を顕微解剖法により，内臓異常（奇形および変異）の有無を検査した．検査の結果，被験物質の影響がないと判断したため 0.3 および 1.0 mg/kg 群の検査は行わなかった．

骨格検査
骨格標本に供した全胎児について，アリザリンレッド S 骨格染色標本を作製した．対照群と 3.0 mg/kg 群について骨格異常（奇形および変異）の有無および骨化進行度（頚椎椎体，胸骨，中手骨，中足骨，仙・尾椎椎体の骨化数を指標とする）を検査した．検査の結果，被験物質の影響がないと判断したため 0.3 および 1.0 mg/kg 群の検査は行わなかった．

結果および結論
母動物に対する影響として，3.0 mg/kg 群で神経症状と考えられる易刺激性および振戦が妊娠 16 日以降 6/22 例および 2/22 例に観察された．振戦を呈した動物のうち 1 例は，その後全身状態が急激に悪化し，神経症状のほか自発運動の低下，腹臥位，脳出血，貧血様症状および下腹部の汚れが認められ，妊娠 19 日に死亡した．また他の 1 例は脳出血および下腹部の汚れが認められた．3.0 mg/kg 群では体重増加の抑制および摂餌量の低値が認められた．剖検では，死亡動物で肝臓，腎臓，心臓，胸腺，胃および小腸に変化がみられたが，帝王切開動物では死亡動物と同様な変化は認められなかった．帝王切開時の剖検で羊膜の暗黄色化が 3.0 mg/kg 群の 7/14 例に認められたが，胎児の死亡あるいは奇形は認められず，羊膜の暗黄色化と胎児との間に関連はなかった．
胚・胎児発生に対する影響としては，高用量の 3.0 mg/kg 群においても，黄体数，着床数，着床後の死亡胚数，胚死亡率，生存胎児数，性比および胎盤所見では被験物質に起因する変化は認められなかった．また，胎児の外表，内臓および骨格検査のいずれにも，被験物質に起因する変化は認められなかった．なお，同群の生存胎児体重（雌雄）の高値および頚椎椎体数，胸骨数，仙・尾椎椎体数の高値が認められた．しかし，これらは背景データ内の変動であったり，偶発変化と判断した．
0.3 および 1.0 mg/kg 群では，母動物および胚・胎児に対して，いずれの検査においても被験
物質に起因する変化は認められなかった。
以上のように，母動物への影響として3.0 mg/kg 群で死亡がみられ，さらに神経症状の発現，体重増加の抑制および摂餌量の減少が認められた。しかし，胚・胎児に死亡はなく，奇形および変異の増加も認められなかったことから，被験物質による胚致死作用，胎児発育抑制および催奇形作用はないと考えられる。したがって，本試験条件下における母動物に対する一般毒性学的無影響量（NOEL）は1.0 mg/kg/day，母動物の生殖機能および胚・胎児に対する無影響量（NOEL）はともに3.0 mg/kg/day と判断した。

5.2.2 DPAA ラット初期胚発生（受胎能-着床）に関する試験
コード番号：B-2
試験番号：B041587

DPAA を0，0.3，1 および 3 mg/kg の用量で SD 系ラット [Crl:CD(SD), SPF] の交配前から交尾，着床までの期間に反復経口投与し，生殖能および初期胚発生に及ぼす影響を検討した。なお，第1次交配において3 mg/kg 群の交尾率が低下したため，同群の交尾しなかった雌雄を対象に雄は無処置雌と，雌は妊孕能（にんようのう）の確認された対照群の雄を用いて第2次交配を実施した。

親動物の観察・測定項目
一般状態
投与期間は1日2回（投与前，投与後約30分）観察し，他の期間は1日1回午前中に観察した。

体重
雌雄とも，投与開始日から剖検日まで週2回（3および4日間隔）測定した。交尾後の雌は妊娠0，3，7，10および13日に測定した。測定には動物用天秤（BX3200H：株式会社島津製作所）を用いた。また，体重増加量を交配前期間は雌雄とも投与開始日，雄の交配以降は第17日，雌の妊娠期間は妊娠0日の体重を基準に算出した。ただし，無処置雌は交尾確認後の妊娠0，7および13日に体重を測定した（体重増加量は算出しなかった）。

摂餌量
雌雄とも，ケージごとに投与開始日から交配開始まで週2回（3および4日間隔），交尾後の雌は個体ごとに妊娠0，3，7，10および13日に風袋込み重量を測定し，1匹あたりの1日平均摂餌量を算出した。測定には動物用天秤（BX3200H：株式会社島津製作所）を用いた。摂餌量は測定期間の終了日で表示した。無処置雌の摂餌量は測定しなかった。
剖検
剖検は雌雄とも、ベントルバールナトリウム（ネプチュール注射液、大日本製薬株式会社）の腹腔内投与による麻酔下で開腹し、腹大動脈の切断・放血により安楽死させた後、胸腔および腹腔内器官・組織を肉眼的に検査した。死亡および瀕死動物は速やかに剖検した。すべての動物の精巣、精巣上体、前立腺腹葉、精巣（凝固腺含む）、卵巣および子宮を10 v/v％中性リン酸緩衝ホルマリン液に保存した。ただし、死亡動物以外の精巣はプアン液で固定した後、保存した。

死亡あるいは瀕死動物において、胸腺、眼球、腸腰筋、皮下（皮膚）、脊髄、肺、胃、大腸、口腔、心臓、脳、下垂体、肝臓、脾臓、腎臓、膵臓および肺に肉眼的異常がみられたため器官・組織を10 v/v％中性リン酸緩衝ホルマリン液に保存した。また、比較対照として対照群の3例の当該器官・組織も同様に保存した。

生殖機能検査
性周期
各群の雌について投与開始日から1次交配開始日（同居日）まで毎日午前中に膣垢を採取して性周期を検査し、平均性周期日数および異常性周期動物の発現率を算出した。第1次交配において交尾が確認されなかった3 mg/kg群の雌は、第1次交配の期間終了後から第2次交配開始日（同居日）までの間、同様に性周期を検査し、性周期が回帰するか否かを確認した。ただし、平均性周期日数および異常性周期動物の発現率は算出しなかった。

交配
交配開始日の16時以降、各群内で雄1雌1の交配対を設け、14日間を限度に昼夜同居させた（第1次交配）。交配開始日の翌日から雌の膣垢を毎日午前中に採取し、鏡検した。膣栓あるいは膣垢標本中に精子が認められた場合を交尾成立と判断し、その日を妊娠0日とした。第1次交配の結果、3 mg/kg群で交尾の低下が疑われたため、第1次交配で交尾しなかった3 mg/kg群の雌雄について第2次交配を実施した。雄は無処置雌と雄1雌1の交配対を設け、無処置雌の発情期が2回回帰するまで昼夜同居させた。雌は妊娠能が確認された対照群の雄と雄1雌1の交配対を設け、発情期が2回回帰するまで、あるいは最大14日間を限度に昼夜同居させた。交尾成立の判断は第1次交配と同様とした。なお、死亡などで交配対が成立しない動物は交配を行わなかった。これらの結果から次の項目を算出した。

交尾所要日数（第1次交配）：交配開始後、交尾成立までに要した日数
交尾を逸した発情期の回数（第1次交配）
交尾率（％）：（交尾動物数 / 同居動物数）×100
受胎率（％）：（受胎動物数 / 交尾動物数）×100
胚の検査
妊娠中期帝王切開
妊娠13日に卵巣および子宮を摘出し、黄体数、着床数、生存胚数、死亡胚数（早期死亡胚数：着床痕数 + 胎盤遺残数、後期死亡胚数：浸軟胚数 + 心停止胚数）および胎盤を肉眼的に検査した。肉眼的に着床が認められない動物の子宮は10v/v%硫化アンモニウム水溶液に浸漬し、着床の有無を確認した。検査結果に基づき次の項目を算出した。

着床前胚死亡率（%）：{(黄体数 - 着床数) / 黄体数} × 100
着床後胚死亡率（%）：{(早期死亡胚数 + 後期死亡胚数) / 着床数} × 100
総胚死亡率（%）：[(黄体数 - 着床数 + 早期死亡胚数 + 後期死亡胚数) / 黄体数] × 100

結果および結論
親動物に対する一般毒性学的影響として、3 mg/kg群で死亡が雄6/20例、雌2/20例、溺死期解剖動物が雄2/20例、雌1/20例に認められた。一般状態観察では3 mg/kg群の死亡、溺死および生存動物ともに、易刺激性、振戦、間代性あるいは単発性痙攣がみられ、群間で投与回数の増加と共に全般状態が悪化し、痩せ、側臥位、自発運動の低下、歩行異常、緩徐呼吸、体温低下、被毛状態の異常、貧血様、鼻周囲あるいは下腹部の汚れ、眼窩の異常所見（膨大、破裂、変色）が認められた。3 mg/kg群の雌雄に体重および摂餌量の低下が認められた。剖検では3 mg/kg群の雌雄に胸腺の小型、総胆管の硬化および眼窩の混濁、雄で肝臓の腫大が認められた。なお、各被験物質投与群ともに被験物質に起因する生殖器系への異常所見は認められなかった。

生殖機能に対する影響として、初次交配において3 mg/kg群に交尾率の低下が認められ、第2次交配でも3 mg/kg群の雄に交尾例数の低下が認められた。交尾率の低下は状態悪化に伴う二次的な影響として現れた変化と考えられる。受胎率については被験物質に起因する影響は認められなかった。

妊娠中期の帝王切開において、第1次交配で交尾した3 mg/kg群の雌では黄体数、着床数および生存胚数の低下、早期死亡胚数、着床前後ならびに総胚死亡率の高値が認められた。さらに第2次交配で対照群の雄と交尾した3 mg/kg群の雌では、黄体数、着床数および生存胚数の低値傾向など前述と同様な変化を示した。3 mg/kg群の雄と交尾した無処置雌では胚死亡は観察されず、着床した胚のすべてが妊娠中期まで生存していた。これらのことから初期胚発生への影響を雌側より考察すると、母体毒性により吸収胚が増加することや、制限給餌（栄養状態不良）により黄体数の低下を招くことが知られており、一般状態の悪化に伴う二次的な影響であった可能性も考えられる。しかし、黄体数については第2次交配においても明らかに低値傾向を示していることから、状態悪化に伴うものだけでなく、これらを含む何らかの機序で排卵数（黄体数）の低下を招いたものと推察された。

一方、雄側から考察すると、28日間反復投与毒性試験では高用量（5 mg/kg群）の雄に組織学的变化として精巣の変性がみられたこと、および細胞を用いた染色体異常試験では陽性と判定されたことから、状態悪化に伴う影響と雄性生殖器への直接的な影響により生じた変化
の可能性が考えられる。
以上のように，本試験条件下における，親動物に対する一般毒性学的および生殖機能に対する無影響量（NOEL），ならびに初期胚発生に対する無影響量（NOEL）は，いずれも 1 mg/kg/day と考えられる。

5.2.3 DPAA ラット出生前後の発生・母動物に関する試験
コード番号： B-3
試験番号： B041589

DPAA を 0，0.1，0.3 および 1 mg/kg の用量で SD 系ラット [Crl:CD(SD), SPF] の妊娠 7 日から分娩を経て哺育 20 日まで経口投与し，母体の機能，胚の発生および出生児の発生，成長，行動，学習および生殖機能に及ぼす影響を検討した．各群の妊娠動物数はいずれも 24 匹であった。

F0 母動物の観察・測定項目
一般状態
投与期間は 1 日 2 回（投与前，投与後約 30 分）観察し，他の期間は 1 日 1 回午前中に観察した。

体重
妊娠 0，7，10，14，17 および 20 日，哺育 0，4，7，10，14，17 および 21 日に測定した．測定には動物用天秤（UX4200H，BX3200H：株式会社島津製作所）を用いた．また，妊娠期間は妊娠 7 日，哺育期間は哺育 0 日の体重を基準に体重増加量を算出した。

摂餌量
妊娠 0，7，10，14，17 および 20 日，哺育 0，4，7，10，14，17 および 21 日に風袋込み重量を測定し，各測定日間の 1 匹あたりの 1 日平均摂餌量を算出した．測定には動物用天秤（UX4200H，BX3200H：株式会社島津製作所）を用いた．摂餌量は各測定期間の終了日で表示した。

分娩および哺育の観察
分娩の観察は妊娠 21 日から 23 日まで 1 日 2 回（午前 9 時，午後 4 時）行った．午後 4 時までに分娩が完了した動物を当該日分娩とした．哺育の観察は 1 日 1 回とし，授乳，営巣，食殺の有無等を中心に哺育 21 日まで行った．分娩動物は哺育 21 日に子宮を摘出して着床数を検査した．これらの検査結果から次の項目を算出した。

妊娠期間： 妊娠 0 日から分娩日までの日数
出産率（%）：（生存児出産雌数 / 受胎雌数）× 100
出生率（%）：（出産生存児数 / 着床数）× 100

剖検
分娩動物は哺育 21 日に、ペントバルビタールナトリウム（ネンプタール注射液、大日本製薬株式会社）の腹腔内投与による麻酔下で開腹し、腹大動脈の切断・放血により安楽死させた後、胸腔および腹腔内器官・組織を肉眼的に検査した。対照群で 2 例、0.1 mg/kg 群で 1 例に異常所見が認められたため、異常部位を 10 v/v% 中性リン酸緩衝ホルマリン液に保存した。また、比較対照として対照群 3 例の当該器官・組織も同様にして保存した。

F1 動物の観察・検査項目
児数調整
生後 4 日に同腹児数を無作為に 8 匹（原則として雌雄同数）に調整した。同腹児数が 8 匹に満たない場合はそのまま飼育した。いずれも同腹内個体番号は雄から無作為に付けた。児数調整時に除外した動物は炭酸ガス吸入により安楽死させ、10 v/v% 中性リン酸緩衝ホルマリン液に保存した。

離乳時の振り分け
各腹から生殖機能検査用および行動試験用動物としてそれぞれ雌雄各 1 匹を同腹内個体番号の小さい順に選抜し、離乳後の検査に供した。1 mg/kg 群の 2 腹（動物番号 50404, 50414）では、同腹児の雌雄どちらかが 1 匹以下であったため生殖機能検査用あるいは行動試験用動物を確保することができなかった。その他の動物は生後 21 日に剖検した。

観察
出生日に出産児数（生存児数、死亡児数）、性別および口腔内を含む外表異常の有無を検査した。その後は一般状態、死亡の有無等を毎日観察した。出生日、生後 4 および 21 日の生存児数から、次の項目を算出した。

出産時生存率（%）：（出産生存児数 / 出産児数）× 100
4 日生存率（%）：（生後 4 日の生存児数 / 出産生存児数）× 100
離乳率（%）：（離乳時の生存児数 / 児数調整後の生存児数）× 100

体重
離乳前は、全例について出生日、生後 4、7、14 および 21 日に個体ごとに測定した。離乳後は生殖機能検査用動物について生後 28、35、42、49、56、63 および 70 日に測定した。生殖機能検査で交尾が確認された雌は妊娠 0、7 および 13 日に測定した。測定には動物用天秤（UX4200H, BX3200H：株式会社島津製作所）を用いた。体重増加量を児数調整前は生後 0 日および 4 日の体重より同腹児単位で腹平均ごとに、児数
調整後は個体ごとに離乳までは生後 4 日の体重, 離乳後は生後 21 日の体重を基準に算出した。また, 生殖機能検査の妊娠期間は妊娠 0 日の体重を基準に体重増加量を算出した。

生後形態分化
児数調整前は全例について, 耳介展開の発現を生後 2 〜 4 日に観察し, 発現率を算出した。離乳前は全例について, 上切歯萌出を生後 6 日から, 眼瞼開裂を生後 10 日からそれぞれの発現日まで観察した。離乳後は生殖機能検査用動物について, 腔開口（雌）を生後 27 日から, 陰茎亀頭包皮分離（雄）を生後 35 日からそれぞれの発現日まで観察し, その発現日の体重も測定した。

反射反応性
生後 19 日に次の項目を検査し, 陽性率を算出した。
平面正向反射, 角膜反射, 聴覚性驚愕反応, 疼痛反応, 空中正向反射, 瞳孔反射

行動試験
行動試験用動物は 4 週齢以降に次の検査を行い, 検査終了後に剖検した。ただし, オープンフィールド試験については, 4 〜 5 週齢の検査において被験物質投与群の雄で立ち上がり数および身繕い数が減少したため, 生殖機能検査用動物の雌雄についても 8 〜 9 週齢に検査を行った。なお, 0.1 mg/kg 群の 1 例（行動試験用動物: 10205-2）が生後 34 日に人為的な操作ミス（動物を床へ落下）により歩行の異常を示したため, ロータロッド試験は実施しなかった。
オープンフィールド試験および Beil 型水迷路学習試験は実施したが, データ集計から除外した。

オープンフィールド試験
週齢: 4 〜 5 週齢（雌雄）, 8 〜 9 週齢（生殖機能検査用動物の雌雄）
装置: 円形フィールド（80 φ × 60H cm, 25 区画, トキワ科学器械株式会社）
条件: 3 分間, 1 回
項目: 潜時, 区画移動数, 立ち上がり数, 身繕い数, 脱糞数, 排尿回数

ロータロッド試験
週齢: 4 〜 5 週齢
装置: ロータロッドテスト装置（ロッド径: 90 mm, KN-75: 株式会社夏目製作所）
条件: 累積歩行時間 3 分間（10 rpm, 前方歩行）
項目: 落下回数, 歩行状態

Beil 型水迷路学習試験
週齢: 雄 5 〜 6 週齢, 雌 6 〜 7 週齢
装置: Biel 型水迷路装置（145W × 145D × 30H cm, 岡崎産業株式会社）
条件：直水路試行 3 試行 / 日，1 日間
水路路試行 3 試行 / 日，3 日間
項目：遊泳時間，エラー回数

生殖機能
10 週齢以降に生殖機能検査用動物について，各群内で兄妹交配を避け各 1 雌 1 の交配対を
設け，14 日間を限度に帯夜同居させた（第 1 次交配）．雌の腟垢を毎日午前中に採取し，鏡
検した．腟栓あるいは腟垢標本中に精子が認められた場合を交尾成立と判断し，その日を妊娠
0 日とした．第 1 次交配の結果，交尾能に被験物質の影響が認められなかったため，第 2
次交配は実施しなかった．これらの結果から次の項目を算出した．

交尾所要日数（第 1 次交配）：交配開始後，交尾成立までに要した日数
交尾成立までに逸した発情期の日数
交尾率（%）：（交尾動物数/同居動物数）×100
受胎率（%）：（受胎動物数/交尾動物数）×100

妊娠中期帝王切開
妊娠 13 日に卵巣および子宮を摘出し，黄体数，着床数，生存胚数，死亡胚数（早期死亡胚数：
着床痕数 + 胚発育数，後期死亡胚数：浸软胚数 + 心停止胚数）および胎盤を肉眼的に検査
した．また，肉眼的に着床が認められない動物の子宮は 10 v/v%硫化アンモニウム水溶液に浸
漬し，着床の有無を確認した．検査結果に基づき次の項目を算出した．

着床前胚死亡率（%）：（黄体数 - 着床数）/黄体数 ×100
着床後胚死亡率（%）：（早期死亡胚数 + 後期死亡胚数）/ 着床数 ×100
総胚死亡率（%）：[(黄体数 - 着床数) + 早期死亡胚数 + 後期死亡胚数) / 黄体数] ×100

剖検
離乳時に除外された児動物は生後 21 日，行動検査用動物は検査終了後にベントパルビタール
ナトリウム（ネブパラール注射液，大日本製薬株式会社）の腹腔内投与による麻醉下で開
腹し，腹大動脈の切断・放血により安楽死させた後，頭部，胸腔および腹腔内器官・組織を
肉眼的に検査した．生殖機能検査用動物については，交尾した雌動物を妊娠 13 日，未交尾
動物を交配期間終了後 7 日，雄は交配対の雌の剖検終了後に，上記動物と同様に検査した．
死亡した出生児は速やかに剖検した．ただし，児数調整前は食殺などで検査に耐えない場合
を除き外表異常の有無を検査した後，全身を 10 v/v%中性リン酸緩衝ホルマリン液に保存し
た．異常が認められた器官・組織は 10 v/v%中性リン酸緩衝ホルマリン液に保存した．なお，
離乳時に除外された児動物の剖検では対照群の代表例雄雄各 3 例の全身，生後 34 日に人工的
操作ミスにより歩行の異常を示した 0.1 mg/kg 群の 1 例の左側前肢を 10v/v%中性リン酸緩衝
ホルマリン液で保存した．
生殖機能検査で交尾あるいは受胎が認められなかった動物の精巣，精巣上体，卵巣および子宮を 10 v/v% 中性リン酸緩衝ホルマリン液に保存した。精巣はブアン液で固定した後，10 v/v% 中性リン酸緩衝ホルマリン液に保存した。生殖機能検査用動物のオープンフィールド試験において，立ち上がり回数の有意な減少が認められたため，以後の検査が可能のように剖検時に全例の脳を摘出し，10 v/v% 中性リン酸緩衝ホルマリン液に保存した。

結果および結論
母動物に対する影響として，一般状態，体重，摂餌量，分娩・哺育状態および剖検所見のいずれにも被験物質に起因する変化は認められなかった。

出生児に対する影響として，オープンフィールド試験において 4～5 週齢の検査では，被験物質投与群の雄で立ち上がり数および身繕い数の有意な減少，潜時の延長傾向ならびに区画移動数の減少傾向が認められた。この変化が被験物質に起因する変化か否かを確認するため，オープンフィールド試験を実施していない新規の動物を用いて，8～9 週齢で追加検査を実施した。その結果，0.3 および 1 mg/kg の雄，0.1 および 0.3 mg/kg 群の雌で立ち上がり数の有意な減少，潜時の延長傾向が被験物質投与群の雌雄で観察された。ただし，実験動物におけるオープンフィールド試験の結果の解釈については，現在，確定的なものではなく，各測定指標の意味づけや評価方法については今後の議論が待たれる。それ以外，胚の発生および出生児の成長，生後の形態的発育および分化，各種の反射および反応，ローターロッド試験，Beil 型水迷路学習試験，交尾および受胎能ならびに剖検の各検査においては，被験物質に起因する変化は認められなかった。

以上のように，本試験条件下における母動物の一般毒性学的無影響量（NOEL）および母動物の機能に対する無影響量（NOEL）は 1 mg/kg/day，出生児に対しては無影響量（NOEL）を観察することができなかった。
5.3 遺伝毒性試験

5.3.1 DPAA 細菌を用いた復帰突然変異試験
コード番号： C-1
試験番号： B041297

ネズミのチフス菌株 TA100, TA1535, TA98 および TA1537 ならびに大腸菌株 WP2uvrA/pKM101 の5菌株を用いる復帰突然変異試験で DPAA の変異原性を調べた。試験は S9 mix 非存在下および存在下でプレインキュベーション法により実施した。

予備試験を 1.22, 4.88, 19.5, 78.1, 313, 1250 および 5000 μg/プレートの7用量で実施した結果，S9 mix 非存在下の TA100 および TA1537 において，5000 μg/プレートの用量で菌の生育阻害が認められた。なお，S9 mix の有無にかかわらず，いずれの用量においてもプレート上に沈殿物は認められなかった。

これらの結果をもとに，本試験では以下の用量を設定した。
- S9 mix 非存在下： 78.1, 156, 313, 625, 1250, 2500, 5000 μg/プレート
- S9 mix 存在下： 156, 313, 625, 1250, 2500, 5000 μg/プレート

2 回の本試験の結果，S9 mix の有無にかかわらず，いずれの試験菌株においても被験物質処理群における復帰変異コロニー数は陰性（溶媒）対照値の2倍未満であった。また，S9 mix 非存在下の TA100 および TA1537 において 2500 μg/プレート以上の用量で菌の生育阻害が認められた。なお，S9 mix の有無にかかわらず，いずれの用量においてもプレート上に沈殿物は認められなかった。

本試験の陰性（溶媒）対照値および陽性対照値は，当研究所の適正範囲内であった。また，陽性対照により誘発された復帰変異コロニー数は，S9 mix 非存在下および存在下のいずれの試験菌株においても陰性対照値の2倍を超えて増加し，明らかな陽性結果を示した。従って，本試験の妥当性が確認された。

以上の結果から，DPAA は本試験条件下において変異原性を有さない（陰性）と結論づけた。

5.3.2 DPAA 末乳細胞を用いた染色体異常試験
コード番号： C-2
試験番号： B041298

雌チャイニーズハムスター肺由来の細胞株 CHL/1U を用い，DPAA の in vitro における染色体異常試験を実施した。

短時間処理法 S9 mix 非共存下（以下 - S9 mix）および共存下（以下 + S9 mix）および連続処理法 24 時間処理（以下 24 時間処理）で 9.8, 19.5, 39.1, 78.1, 156, 313, 625, 1250, 2500 μg/プレート
μg/mLを設定して、細胞増殖抑制試験を実施した。
その結果、50%細胞増殖抑制用量は、- S9 mix で 764 μg/mL、+ S9 mix で 739 μg/mL、24時間処理で 193 μg/mLであった。
この結果に基づいて、- S9 mix および + S9 mix では 200, 400, 600, 800, 1000, 1200 μg/mL、24時間処理では 25, 50, 100, 200, 300, 400 μg/mLを設定して、染色体異常試験（本試験）を実施した。

- S9 mix の 200, 400, 600, 800, 1000, 1200 μg/mLにおける構造異常細胞の出現頻度は、それぞれ 1.5%, 1.5%, 4.5%, 10.5%, 15.0%, 18.0%であった（D20 値: 0.93 mg/mL）。これらの用量における細胞増殖率は、それぞれ 106%, 83%, 59%, 51%, 34%, 25%であった。数的異常細胞の出現頻度は、いずれの用量においても 5%未満であった。
+ S9 mix の本試験の 200, 400, 600, 800, 1000, 1200 μg/mLにおける構造異常細胞の出現頻度は、それぞれ 2.0%, 1.0%, 4.5%, 10.5%, 21.0%, 31.5%であった（D20 値: 0.99 mg/mL）。また、これらの用量における数的異常細胞の出現頻度は、それぞれ 1.0%, 0.0%, 1.5%, 9.5%, 6.5%, 1.5%であった（用量相関性が認められなかったため、D20 値は算出しなかった）。これらの用量における細胞増殖率は、それぞれ 106%, 85%, 75%, 67%, 38%, 28%であった。この結果に基づいて、+ S9 mix について 600, 800, 1000, 1200 μg/mLで確認試験を実施した。その結果、各用量における構造異常細胞の出現頻度は、それぞれ 2.5%, 4.0%, 20.0%, 39.0%であった（D20 値: 0.92 mg/mL）。また、これらの用量における数的異常細胞の出現頻度は、それぞれ 5.5%, 3.5%, 4.0%, 2.0%であった（用量相関性が認められなかったため、D20 値は算出しなかった）。これらの用量における細胞増殖率は、それぞれ 70%, 55%, 35%, 18%であった。以上の確認試験結果より、本試験の再現性が示されたものと判断した。
24時間処理の 25, 50, 100, 200, 300 μg/mLにおける構造異常細胞の出現頻度は、それぞれ 1.0%, 2.0%, 2.5%, 13.5%, 33.1%であった（D20 値: 0.11 mg/mL）。これらの用量における細胞増殖率は、それぞれ 94%, 87%, 81%, 50%, 37%であった。なお 300 μg/mLの標本については、細胞毒性のために、観察可能な分裂中期像が、一方のプレートでは 72 個、もう一方のプレートでは 70 個しか得られなかった。また 400 μg/mL（細胞増殖率 22%）の標本については、細胞毒性のために標本観察が不可能であった。数的異常細胞の出現頻度は、いずれの用量においても 5%未満であった。
以上の結果より、DPAA は、当試験条件下において CHL/IU 細胞に対する染色体異常誘発性を中程度有すると結論づけた。

48 / 63
5.3.3 DPAA ラット小核試験
コード番号： C-3
試験番号： B041300

雌雄の SD 系ラット [Crj:CD(SD) IGS, SPF, 7 週齢] を用いて DPAA のラット骨髄細胞における小核誘発性の有無を検討した。

予備試験の結果、DPAA 投与により雄で 40 mg/kg 以上の群、雌で 80 mg/kg 以上の群に死亡が認められた。毒性発現に性差が認められたため、本試験についても雌雄で実施した。すなわち、雄では高用量を予備試験で死亡のみられなかった最高用量の 20 mg/kg 中用量を 10 mg/kg および低用量を 5 mg/kg の 3 用量を、雌では高用量を予備試験で死亡のみられなかった最高用量の 40 mg/kg、中用量を 20 mg/kg および低用量を 10 mg/kg の 3 用量を、ならびに媒体（局方注射用水、pH を 0.1 mol/L NaOH 溶液を用いて pH 7.23 に調整したもの）を 1 群 5 匹の動物に 24 時間隔で 2 回強制経口投与した。また、陽性対照物質（Cyclophosphamide monohydrate、CP）については単回腹腔内投与した。最終投与後 24 時間骨髄細胞を採取し、乱した 2000 個の多染性赤血球（PCE）を数えて、小核をもつ PCE（MNPCE）の出現数を求めた。また、赤血球 1000 個あたりの PCE の割合を調べて、骨髄造血機能の指標とした。

その結果、雄では、10000 個の PCE 中（2000 個 / 匹 / 群）の MNPCE 出現数は、陰性对照群で 13 個、被験物質群では 5, 10 および 20 mg/kg でそれぞれ 13, 10 および 14 個であり、陰性对照群と比較していずれも有意差はみられなかった。また、全赤血球中の PCE の割合は、被験物質投与群の 5, 10 および 20 mg/kg でそれぞれ 52.0 ± 2.3、48.6 ± 4.9 および 51.0 ± 3.0% で、陰性对照群の 51.8 ± 2.4% と比較して有意差はみられなかった。一方、陽性对照群では、MNPCE 出現数は 274 個であり、陰性对照群と比較して有意な高値（p<0.01）を示した。PCE の割合（49.2 ± 3.4%）は、陰性对照群と比較して有意差はみられなかった。雌では、10000 個の PCE 中（2000 個 / 匹 / 群）の MNPCE 出現数は、陰性对照群で 18 個、被験物質群では 10, 20 および 40 mg/kg でそれぞれ 8, 13 および 13 個であり、陰性对照群と比較していずれも有意差はみられなかった。また、全赤血球中の PCE の割合は、被験物質投与群の 10, 20 および 40 mg/kg でそれぞれ 43.8 ± 6.0、44.5 ± 1.9 および 36.5 ± 7.4% で、陰性对照群の 51.5 ± 1.2% と比較して有意な低値（10 mg/kg は p<0.05, 20 および 40 mg/kg は p<0.01）を示し、骨髄造血機能の抑制がみられた。一方、陽性对照群では、MNPCE 出現数は 219 個であり、陰性对照群と比較して有意な高値（p<0.01）を示した。PCE の割合（43.5 ± 3.1%）は、陰性对照群と比較して有意な低値（p<0.01）を示し、骨髄造血機能の抑制がみられた。陰性对照群の各個体における MNPCE 出現頻度および PCE の割合は、いずれも試験施設の背景値の範囲の値であり、陽性对照群では有意で明らかな小核誘発がみられ、背景値の範囲内の値を示したことから、本試験は適切に実施されたと判断した。

以上の結果から、DPAA は本試験条件下で陰性と判定され、ラット骨髄細胞における小核誘発性を有さないものと結論づけた。
5.4 薬物動態試験
5.4.1 14C 標識 DPAA を用いたラット単回投与時の血液・血漿中濃度試験
コード番号： D-1
試験番号： B041305

14C 標識 DPAA（14C-DPAA）を雄の SD 系ラット [Crj:CD(SD) IGS, SPF] に非絶食条件下、単回経口（0.1, 0.3 および 1 mg/kg）および静脈内（0.1 mg/kg）投与し、血液、血漿中放射能濃度推移および吸収性を検討した。また、同様に雌ラットに 0.3 mg/kg の用量で単回経口投与し、血液および血漿中放射能濃度推移における性差を検討した。

雄ラットに 0.1, 0.3 および 1 mg/kg の用量で経口投与したとき、血液および血漿中放射能濃度は投与量に比例して増加し、最高濃度（Cmax）および濃度・時間曲線下面積（AUC0-t）は、いずれにおいても投与量に比例して増加した。また、投与量による消失速度の大きな変化がないことから、0.1 〜 1 mg/kg の投与量範囲においては 14C-DPAA の体内動態は大きく変動しないことが示唆された。なお、血漿中放射能濃度の検出限界まで低下する時間の違いは投与放射能量の違いに由来するものであり、体内動態の変動ではないと考える。

経口投与したときの血液中放射能濃度は投与後約 4〜8 時間に最高濃度に到達し、血漿中放射能濃度は投与後 30 分に最高濃度に到達した。その後、放射能濃度は経時的に低下し、血漿中放射能濃度は 0.1 mg/kg では投与後 48 時間、0.3 mg/kg では投与後 96 時間でそれぞれ検出限界未満となったが、血液中放射能濃度の低下は血漿中放射能濃度に比べ緩徐であり、いずれの投与量においても最終測定時点（投与後 168 時間）まで血液中放射能濃度は測定された。

さらに、静脈内投与時においては、血液中放射能濃度は最初の測定時点で投与後 5 分以降低下し、投与後 72 時間で検出限界未満となったが、血液中放射能濃度は投与後 6 時間までほぼ一定に推移し、血漿中放射能濃度との乖離は経時的に大きくなった。

雄ラットにおける吸収率（F）を経口投与時と静脈内投与時の AUC0-t の比率から算出した結果、血液中放射能濃度の場合は約 84〜96%、血漿中放射能濃度の場合は約 72〜77%であり、14C-DPAA の経口吸収性は比較的高いことが示唆された。

また、雌ラットに 0.3 mg/kg 経口投与したときの血液および血漿中放射能濃度推移は雄ラットの場合とほぼ同様であり、ラットにおいては 14C-DPAA の体内動態に性差はないものと考えられた。

5.4.2 14C 標識 DPAA を用いたラット単回投与時の体内分布試験
コード番号： D-2
試験番号： B041306

14C 標識 DPAA（14C-DPAA）を 8 週齢の雌の SD 系ラット [Crj:CD(SD) IGS, SPF] に非絶食条件下 0.3 mg/kg の用量で単回経口投与したときの放射能の体内分布について組織中放射能濃度の測定（組織摘出法）および全身オートラジオグラフィー（ARG）により検討した。
C-DPAAを雄ラットに経口投与したとき,放射能はほぼ全身に分布し,大脳,小脳,延髄および坐骨神経を除く大部分の組織中放射能濃度は,投与後0.5または4時間に最高値を示し,その後は経時に低下した.投与部位である胃を除き,特に高い放射能濃度を示した組織は腎臓（1034.2 ng eq/g, 投与後0.5時間）であった.放射能分布率では,消化管内容物を除くと血液,骨格筋,小腸,肝臓および皮膚で比較的高く,これらの組織においては投与量の3%以上の放射能が認められた.

大脳,小脳,延髄および坐骨神経への放射能の移行は緩徐であり,投与後24時間に最高値（それぞれ60.2, 60.1, 68.4および37.6 ng eq/g）を示した.投与後24時間における放射能分布率としては,大脳,小脳および延髄において投与量のそれぞれ0.102, 0.020および0.016%であった.その後,放射能濃度は経時に低下し,投与後168時間において,大脳（12.9 ng eq/g）,小脳（11.6 ng eq/g）および延髄（14.9 ng eq/g）では各最高値の約20%, 坐骨神経（14.5 ng eq/g）では最高値の約40%の放射能濃度が認められた.また,皮膚からの放射能の消失も緩やかであり,投与後168時間において最高値（56.0 ng eq/g）の約20%の放射能濃度（10.5 ng eq/g）が認められた.一方,他の組織においては,投与後168時間までに放射能濃度は最高濃度の10%以下,または検出限界未満まで低下していた.

全身ARGにおいても組織摘出法による放射能分布の結果とほぼ同様の傾向が示された.投与後0.5および4時間においては全身に放射能が認められ,特に消化管内容物,次いで腎臓に顕著であった.その後,全身の放射能は経時に低下し,投与後168時間においては脳および脊髄に微量の放射能が認められたが,他の組織には放射能は検出されなかった.以上の結果から,全身の組織に分布した放射能は経時的に低下し,大部分については体外に排泄されるが,一部の組織においては低下が緩徐であり,特に中枢・末梢神経系において顕著であることが示唆された.また,14C-DPAAの血球成分への移行または結合性は高いことが推察された.

5.4.3 14C標識DPAAを用いたラット単回投与時の排泄・体内残留性試験
コード番号: D-3
試験番号: B041307

14C標識DPAA（14C-DPAA）を雄のSD系ラット（Crj:CD(SD) IGS, SPF）に非絶食条件下,単回経口（0.3 mg/kg）および静脈内（0.1 mg/kg）投与したときの放射能の尿,糞,呼気中排泄および体内残留性について検討した.

経口および静脈内投与したときの投与後168時間までの総排泄率は,それぞれ投与量の99.5%および102.7%であった.いずれの投与経路においても投与量の約100%が排泄されており,投与された14C-DPAAは大部分が体外に排泄されることが示された.投与後168時間におけるカーカス中の残存放射能は,経口投与の場合は投与量の0.7%, 静脈内投与の場合は0.8%であった.

静脈内投与したとき, 14C-DPAAは尿中に投与量の63.0%の放射能が排泄され,吸収された

14C-DPAA の主排泄経路は尿中排泄であることが示された。また、糞中に投与量の 38.0% の放射能が排泄されたことから、14C-DPAA の排泄には胆汁排泄が関与することが示唆された。
14C-DPAA の吸収率は 76.5%（経口投与時の尿中総排泄率（48.2%）/ 静脈内投与時の尿中総排泄率（63.0%）× 100%）と推定された。
さらに、投与後 24 時間までに経口投与の場合は投与量の 77.7%, 静脈内投与の場合は 83.0% の放射能がそれぞれ排泄されており、14C-DPAA の排泄は比較的速やかであると考えられた。

5.4.4 14C 標識 DPAA を用いた in vitro 代謝試験
コード番号： D-4
試験番号： B041308

ヒトおよびラットの肝ミクロソームおよび肝細胞を用いて 14C 標識 DPAA（14C-DPAA）を最終濃度として 10 μmol/mL および 100 μmol/mL で 1 時間 in vitro 反応し、代謝物を HPLC により検索した。
in vitro 反応後の反応液を HPLC で分析した結果、いずれの反応液においても 14C-DPAA の保持時間と一致する放射能ピークが 99.6% 以上で検出され、モノフェニルアルソン酸（MPAA）の保持時間と一致する放射能ピークが最大で 0.5% 検出された。in vitro 反応に用いた基質溶液を分析した結果、MPAA の保持時間と一致する放射能ピークが 0.5% 確認され、反応液の分析で検出された MPAA は基質中に含まれていたと考えられた。以上の結果から、肝ミクロソームおよび肝細胞の in vitro 反応では 14C-DPAA は代謝を受けず、さらに、種差および反応液中の 14C-DPAA 濃度による代謝の差はないことが示唆された。

5.4.5 14C 標識 DPAA を用いたラット単回投与時の胎盤・胎児移行性試験
コード番号： D-5
試験番号： B050299

14C 標識 DPAA（14C-DPAA）を SD 系妊娠ラット [Crj:CD(SD) IGS, SPF] に単回経口投与したときの放射能の胎盤・胎児移行性を検討した。
14C-DPAA を妊娠ラットに経口投与したとき、放射能はほぼ全身に分布し、母動物の大脳、小脳、延髄、脊髄および胎児の血液、胎盤において、投与後 24 時間で最高濃度を示し、その他の組織においては投与後 0.5 時間で最高濃度を示した。特に高い放射能濃度を示した組織は母動物の腎臓であり、投与後 0.5 および 24 時間における血漿、血液、腎臓、肝臓、大脳等の主要な組織中放射能濃度および放射能の血球移行率は、雄性ラットの場合（D-2 参照）とほぼ同様であり、DPAA の分布には、性差または妊娠による大きな変動はないことが示唆された。
胎盤中放射能濃度は投与後 24 および 48 時間においては血漿中放射能濃度より高い値を示し
たが、いずれの測定時点においても血液中放射能濃度よりは低く、胎盤への DPAA の分布は特に高くないことが示唆された。また、胎児全身および組織中濃度は胎盤中放射能濃度と同レベルまたはそれ以下であり、妊娠後期において DPAA の母動物から胎児への移行は胎盤により制限されていることが推察された（母動物に投与した DPAA の 0.02%未満）。
胎児脳中濃度は母動物の中枢神経系の場合と同様に投与後 24 時間で最高値となり、胎児においても DPAA の中枢神経系への移行は緩徐であることが示唆された。一方、母動物における血液中濃度に対する脳中濃度は約 52%（大脳）であるが、胎児における血液中濃度に対する脳中濃度は約 23%と母動物に比べ低く、胎児において DPAA の中枢神経系への移行性は低いことが推察された。
また、乳腺、卵巣および子宮中放射能濃度は血液中放射能濃度より低く、妊娠後期の母動物において DPAA の乳腺、卵巣および子宮への分布の程度は低いことが示唆された。

5.4.6 14C 標識 DPAA を用いたラット単回投与時の乳汁移行性試験
コード番号： D-6
試験番号： B050300

14C 標識 DPAA（14C-DPAA）を哺乳中の SD 系ラット [Crj;CD(SD) IGS, SPF] に単回経口投与し、放射能の乳汁移行性を検討した。
血漿中放射能濃度の最高値（Cmax）は 70.1 ng eq/mL（最高濃度到達時間、tmax：2.0 hr）であった。その後、投与後 8 時間以降、投与後 24 時間には 5.5 ng eq/mL まで低下し、投与後 48 時間には 1.2 ng eq/mL まで低下した。投与後 8 時間以降の消失半減期（t1/2）は 9.6 hr であり、濃度・時間曲線下面積（AUC0-t および AUC0-¥）はそれぞれ 575.7 および 592.0 ng eq·hr/mL であった。
乳汁中放射能濃度は投与後 4～8 時間までほぼ同程度のレベルで推移し、Cmax は 15.6 ng eq/mL（tmax：6.7 hr）であった。その後、投与後 24 時間には 4.9 ng eq/mL まで低下し、投与後 48 時間には 0.9 ng eq/mL まで低下した。投与後 8 時間以降の t1/2 は 9.8 hr であり、AUC0-t および AUC0-¥ はそれぞれ 321.1 および 333.9 ng eq·hr/mL であった。
血漿中放射能濃度に対する乳汁中放射能濃度の比率は、投与後 8 時間までは経時的に上昇したが、それ以降はほぼ一定（0.8～0.9）であり、乳汁中放射能濃度は血漿中放射能濃度とほぼ同程度の t1/2 で減衰した。また、乳汁中放射能濃度の AUC0-¥ は血漿中放射能濃度の AUC0-¥ の約 56%であった。以上の結果から、14C-DPAA を単回経口投与したとき、乳汁中に放射能は特に残留しないことが推察された。
5.4.7
\[^{14}\text{C 標識 DPAA}\] を用いた幼若ラット単回投与時の体内分布試験

コード番号： D-7
試験番号： B050301

\[^{14}\text{C 標識 DPAA}(^{14}\text{C-DPAA})\] を生後 4 日の雄の SD 系ラット [Crj:CD(SD) IGS SPF] に 0.3 mg/kg の用量で単回経口投与したときの放射能の体内分布を検討した。

\[^{14}\text{C-DPAA}\] を生後 4 日の雄の新生児ラットに経口投与したとき, 放射能の大部分は消化管 (内容物を含む) に存在したが, 吸収された放射能はほぼ全身に分布した。組織中放射能濃度は、消化管においては投与後 0.5 時間、血液、心臓、肺、肝臓および腎臓においては投与後 4 時間、脳においては投与後 24 時間にそれぞれ最高値を示した。

新生児ラットにおいて、投与部位である消化管を除き、特に高い放射能濃度を示した組織は血液および肝臓であった。一方、8 週齢の雄性成熟ラットに \[^{14}\text{C-DPAA}\] を単回投与したときの分布試験（D-2 参照）においては最も高い放射能濃度は腎臓で認められたが、新生児ラットにおいては腎臓中の放射能濃度は血液中濃度よりも低かった。また、血液、心臓、肺、肝臓および腎臓中の放射能濃度は、成熟ラットにおいては投与後 72 時間には最高濃度の約 4～9% まで低下したが、新生児ラットにおいては約 30～50% の放射能濃度が認められた。さらに、脳中放射能濃度は、新生児および成熟ラットのいずれにおいても投与後 24 時間に最高値を示し、成熟ラットにおいては投与後 72 時間には最高濃度の約 50% まで低下したが、新生児ラットにおいては最高濃度とほぼ同程度の放射能が認められた。以上のことから、新生児ラットに \[^{14}\text{C-DPAA}\] を単回経口投与したときの放射能の体内分布は、成熟ラットの場合と異なることが示唆された。

5.4.8
\[^{14}\text{C 標識 DPAA}\] を用いたラット 7 日反復投与時の体内分布試験

コード番号： D-8
試験番号： B050302

\[^{14}\text{C 標識 DPAA}(^{14}\text{C-DPAA})\] を雄の SD 系ラット [Crj:CD(SD) IGS SPF] に 0.3 mg/kg/day の用量で 1 日 1 回、7 日間反復経口投与したときの放射能の体内分布について組織中放射能濃度の測定（組織摘出法）および全身オートラジオグラフィ（ARG）により検討した。

\[^{14}\text{C-DPAA}\] を雄ラットに 1 日 1 回、7 日間反復経口投与したとき、放射能はほぼ全身に分布し、最終投与後 0.5 時間に最高濃度を示した後、経時的に低下した。

最も高い放射能濃度を示した組織は腎臓であり、次いで消化管を除くと脳、小脳、延髄、脊髄、坐骨神経系等の中枢・末梢神経系であった。腎臓においては最終投与後 336 時間までに最高値の 1% 未満まで低下したが、大脳、小脳、延髄、脊髄、皮膚、脂肪および坐骨神経から放射能の消失は緩徐であり、最終投与後 336 時間においてそれぞれ最高値の 10% 以上の放射能濃度が認められた。特に皮膚中の放射能濃度は最高値の約 28% であった。放射能の血球移行率は最終投与後 24 時間以降、96% 以上で推移した。
最終投与後 24 時間における大部分の組織中の放射能濃度は単回経口投与後 24 時間の放射能濃度（D-2 参照）の約 2～4 倍に相当し、組織中放射能濃度は反復投与により上昇することが示された。しかし、この上昇率（約 2～4 倍）は、血漿の場合と同程度であり、放射能の血漿から組織への移行性は反復投与により大きく変動しないことが示唆された。全身 ARG においても組織摘出法による放射能分布の結果とほぼ同様の傾向が示された。投与後 0.5 時間においては全身に放射能が認められ、特に消化管内容物、次いで膀胱内尿、腎臓に顕著であった。その後、全身の放射能はほぼ経時的に低下し、投与後 336 時間においては脳および脊髄に痕跡程度の放射能が認められたが、他の組織には放射能は検出されなかった。以上の結果から、14C-DPAA の反復経口投与により全身の組織に分布し、その放射能は経時的に減衰し、大部分については体外に排泄されることが示唆された。一方、一部の組織においては放射能の減衰は緩徐であり、特に中枢・末梢神経系、脂肪および皮膚において顕著であることが示唆された。

5.4.9 14C 標識 DPAA を用いたラット脳内分布試験
コード番号：D-9
試験番号：B050303

14C 標識 DPAA（14C-DPAA）を雄の SD 系ラット [Crl:CD(SD) IGS, SPF] に非絶食条件下、1 mg/kg の用量で単回経口投与したときの放射能の脳内分布をオートラジオグラフィーにより検討した。投与後 24 時間においては、脳、視神経、血液および耳下腺に高い放射能が認められた。大脳、小脳、延髄および視神経における放射能レベルはほぼ均一であった。脳下垂体および脳室内の放射能レベルは低かった。投与後 72 時間においては、全体の放射能レベル投与後 24 時間の場合に比べて低下したが、脳、視神経および耳下腺に比較的高い放射能が認められた。脳内の放射能分布は投与後 24 時間の場合と同様にほぼ均一であった。以上の結果から、14C-DPAA を経口投与したときの脳内における放射能分布に部位特異性はないと考えられた。

5.4.10 14C 標識 DPAA を用いた in vitro 血球移行性試験
コード番号：D-10
試験番号：B041594

ラット血液およびヒト血液を用いて、血球移行の平衡化時間を検討を実施した。ラット血球では、検討を実施した 60 分まで、わずかに血球移行率の上昇が認められたが、ヒトについて
は30分のインキュベーション時間で100 ng/mLにおいても14C-DPAAの血球移行は、ほぼ平衡に達していると考えられた。したがって、血球移行率の測定は、インキュベーション時間を30分間として実施することとした。ラット血漿における14C-DPAA濃度100および1000 ng/mLでの血球移行率は、それぞれ21.8 ± 0.5%（Mean ± S.D.）および22.8 ± 0.2%であった。また、ヒト血漿における14C-DPAA濃度100および1000 ng/mLでの血球移行率は、それぞれ26.1 ± 0.5%および24.9 ± 0.4%であった。ラットとヒトの血球移行率を比較したところ、ヒトにおいて若干ラットよりも血球移行率が高い傾向が認められたが、その差はわずかであった。また、ラットおよびヒトともに濃度に依存した変化は認められなかった。

5.4.11 14C標識DPAAを用いたin vitro血漿蛋白結合性試験
コード番号：D-11
試験番号：B041593

14C標識DPAA（14C-DPAA）のラットおよびヒトにおける血漿蛋白結合率をin vitroで限外濾過法により測定した。ラット血漿における蛋白結合率は、14C-DPAA濃度100および1000 ng/mLにおいて、それぞれ63.9 ± 0.5%（Mean ± S.D.）および64.1 ± 0.5%であった。ヒト血漿における蛋白結合率は、14C-DPAA濃度100および1000 ng/mLにおいて、それぞれ58.6 ± 1.2%および59.1 ± 0.6%であった。また、ヒト血清アルブミン（HSA, 40 mg/mL）における蛋白結合率は、14C-DPAA濃度100および1000 ng/mLにおいて、それぞれ34.0 ± 0.7%および34.9 ± 0.2%であった。ヒトα1-酸性糖蛋白（α1-AGP, 1 mg/mL）における蛋白結合率は、14C-DPAA濃度100および1000 ng/mLにおいて、それぞれ5.6 ± 0.9%および6.0 ± 0.4%であった。ラットとヒトの大きな種差は認められず、100および1000 ng/mLでの濃度に依存した変化は認められなかった。さらに、ヒトにおける主要な結合蛋白はHSAであることが推測された。

5.4.12 DPAAラット91日反復経口毒性試験での肝薬物代謝酵素試験
コード番号：D-12
試験番号：B041592

DPAAを雌雄のSD系ラット [Crj:CD(SD) IGS, SPF] に1日1回、0.1, 0.3, 0.8および2.0 mg/kgの用量で91日間反復経口投与した後の肝臓中の肝ミクロソーム蛋白量、チトクロームP450含量、7-エトキシレゾルフィンO-脱エチル化酵素活性、7-ベンジルオキシレゾルフィンO-脱エチル化酵素活性、ラウリン酸11-水酸化酵素活性およびラウリン酸12-水酸化酵素活性を測定し、肝薬物代謝酵素系に及ぼす影響について検討した。また、回復性について検討するため28日間の回復群についても測定を行った。
雌雄全ての群において、肝ミクロソーム蛋白量および肝ミクロソーム蛋白あたりの酵素含量および活性のいずれも対照群と比較して有意な変化は認められなかった。したがって、本試験条件下では DPAA は肝薬物代謝酵素系に影響を及ぼすことはないものと判断した。
5.5 物質特性試験
5.5.1 DPAA 解離定数測定試験
コード番号：E-1
試験番号：D050031

DPAA の分配係数測定が可能であるかを判断するため，DPAA の解離定数を測定した．
OECD Guideline for Testing of Chemicals「水中における解離定数 (No.112，1981)」に記載の滴定
法に準拠して，DPAA の 25℃における解離定数（pKa）を測定した結果，pKa は 4.90 であった．

5.5.2 DPAA 分配係数測定試験
コード番号：E-2
試験番号：D050032

4.5.1 DPAA 解離定数測定試験の結果，DPAA の分配係数（1-オクタノール / 水）の測定（HPLC
法）は，pKa 以下の pH 条件下で測定可能であると判断した．
OECD Guideline for Testing of Chemicals「分配係数（n-オクタノール / 水）（HPLC 法）（No.117，
1989）」に準拠して，DPAA の分配係数を測定した結果，log Pow は 1.2（pH 3）であった．
6. 総括

平成15年に茨城県神栖市で、有機ヒ素化合物であるジフェニルアルシン酸（DPAA）による環境汚染に起因すると考えられる健康被害が確認された。このため、DPAA等の安全性に関する基礎デーテを集積することを目的として、動物実験を含む基礎研究を実施してきたところである。この度、毒性試験の結果等について取りまとめたので報告する。

【DPAAの体内動態】
DPAAの体内動態は¹⁴C標識DPAAを被験物質として放射能を指標に検討した。

吸収
DPAAをラットに経口投与した結果、投与したDPAAの約8割が消化管から吸収され、経口吸収性は比較的高く、性差はないことが示唆された（D-1、D-3）。経皮的な吸収に関しては、1000 mg/kg/dayという高用量での投与ながら（A-4）、DPAAに特徴的な毒性作用（黄色尿および肝臓の腫大など）が認められたことから、DPAAは経皮吸収されることが示唆された。

分布
ラットにおいて、吸収されたDPAAは全身諸器官に分布し、特に腎臓に高い割合で分布し、次いで血液、骨格筋、小腸、肝臓および皮膚に分布した（D-2、D-8）。また、分布速度は緩やかながら、中枢・末梢神経へも分布していた。なお、中枢神経では、大脳、小脳、延髄、視神経にほぼ均等に分布（D-9）していたことから、中枢神経内の部位特異性はないものと考えられる。分布したDPAAはこれらの器官から次第に消失していくが、比較的、中枢・末梢神経および皮膚からの消失は緩やか（D-2、D-8）で、詳細は不明ながらDPAAは中枢・末梢神経および皮膚に長く留まる傾向が認められた。妊娠ラットを用い、DPAAの胎児への移行性について検討（D-5）した結果、DPAAの胎児への分布の割合は低く、DPAAの胎児への移行は胎盤により制限されていることが示唆された。

ラット新生児（4日齢）を用いてDPAAの体内分布を検討した結果、成獣ラット（8週齢）では腎臓に最も高い割合で分布（D-2）したのに対し、新生児ラットでは血液および肝臓に高い割合で分布（D-7）した。ラットでは腎系球体の形成は生後8〜14日と考えられている。従って、4日齢の新生児ラットでは腎臓からの排泄機能が未熟のため、腎臓ではなく血液や肝臓に分布したものと推察される。

血液中ではその多くが血球および血漿蛋白と結合していると思われる（D-2、D-10、D-11）。ヒトおよびラット血液を用いたin vitro試験（D-10）では、添加したDPAAの約2割が血球成分と結合し、種差は認められなかった。さらに、ヒトおよびラット血漿を用いたin vitro試験（D-11）では、添加したDPAAの約6割が血漿蛋白と結合しており、種差は認められなかった。ヒト血漿蛋白においては約6割がアルブミン（HSA）に、約1割がα₁-酸性糖蛋白（α₁-AGP）
に結合していた。
投与処置が進んだ後に発現しており,中枢・末梢神経にDPAAが蓄積することで発現した可能性が高い.前述の体内動態試験(D-2, D-8)においてもDPAAは中枢・末梢神経に残留傾向にあることが指摘されており,上述した説を裏付けるものと考えられる.

血液毒性
ラット28日間反復投与毒性試験(A-1)では1.2 mg/kg/day以上の用量,ラット91日間反復投与毒性試験(A-2)では2.0 mg/kg/dayの用量で赤血球数,ヘモグロビン濃度およびヘマトクリット值の低下などの貧血傾向が認められた。通常,鉄欠乏性貧血または溶血性貧血では,血液の酸素運搬能低下に対する代償として網赤血球数が上昇するが,28日間反復投与毒性試験(A-1)では上昇せず,むしろ低下していた。赤血球の生産場所である骨髄では造血細胞が減少していたことから,赤血球の骨髄における分化・成熟段階にDPAAが影響を及ぼしている可能性がある。前述のin vitro血球移行性試験(D-10)において,DPAAは血球成分に移行することが明らかとなっており,DPAAは血球(赤血球)に影響を及ぼす可能性がある。なお,91日間反復投与毒性試験(A-2)では,2.0 mg/kg/dayの用量で同じく貧血傾向が認められたものの,網赤血球数は上昇し,骨髄には異常所見は認められなかった。

肝毒性
ラット28日間反復投与毒性試験(A-1)では5.0 mg/kg/dayの用量,ラット91日間反復投与毒性試験(A-2)では2.0 mg/kg/dayの用量で肝臓の重量が増加し,病理組織学的に胆管増生やグリソン鞘における炎症性細胞浸潤,グリソン鞘内の肉芽腫が認められた。肝臓の胆管増生は正常の加齢ラットでも認められるが,DPAA投与によって発現した炎症性細胞浸潤を伴う胆管増生は対照群には認められなかったこと,用いたラットが若齢であったことから,DPAA投与に起因した変化である可能性がある。また,28日間反復投与毒性試験(A-1)における5.0 mg/kg/dayの用量でグリソン鞘内にみられた肉芽腫は,間断連続標本により小葉間胆管との移行像が確認され,胆管由来と考えられた。血液生化学的検査では,28日間反復投与毒性試験では5.0 mg/kg/dayの用量,91日間反復投与毒性試験では2.0 mg/kg/dayの用量でASA T(GOT), ALAT(GPT), γGTおよびALPなどの胆道系酵素の高値が認められた。さらに,胆道系障害を示唆する血漿総ビリルビンおよび尿素窒素の高値や尿ビリルビンおよびウロビリノーゲンの高値が認められたことから,DPAAは肝臓の胆道系に影響を及ぼすことが示唆された。前述の体内動態試験(D-2, D-8)では,DPAAは肝臓に高い割合で分布することが確認されている。消化管から吸収されたDPAAは先ず肝臓を通過することから,肝臓が主要な標的臓器となっているものと考えられる。

その他
ラット28日間反復投与毒性試験(A-1)では5.0 mg/kg/dayの用量,ラット91日間反復投与毒性試験(A-2)では2.0 mg/kg/dayの用量で胸腺の重量低下(小型化)がみられ,組織学的
には萎縮性変化が認められた。
免疫系への影響を精査するため、リンパ球サブセット解析（A-2）を実施した結果、リンパ球のプロポーションには変化は認められなかった。

無影響量
DPAA ラット 28 日反復経口毒性試験において、被験物質投与に起因すると考えられる変化が雌雄とも 1.2 mg/kg 以上の群に認められたことから、28 日反復経口毒性試験条件下における DPAA の無影響量（NOEL）は雌雄とも 0.3 mg/kg/day となる。
DPAA ラット 91 日反復経口毒性試験において、被験物質投与に起因すると考えられる変化が雌雄とも 2.0 mg/kg 以上の群に認められたことから、91 日反復経口毒性試験条件下における DPAA の無影響量（NOEL）は雌雄とも 0.8 mg/kg/day となる。

【DPAA の次世代への影響】
ラットを用いた催奇形性試験（B-1）の結果、最高用量である 3.0 mg/kg/day の用量でも陰性であったことから、DPAA はラットに対して奇形を誘発するような作用はないものと考えられる。
ラット生殖能試験（B-2）では、3.0 mg/kg/day の用量で動物状態の悪化に伴う二次的な交尾率の低下がみられたが、受胎率には DPAA 投与による影響は認められなかった。また、初期胚発生への影響として黄体数、着床数および生存胚数の低下、早期死亡胚数、着床前後ならびに総死亡率の増加が認められた。原因としては雌雄の状態悪化に伴う変化ならびに雌雄生殖器への直接的・間接的な影響により生じた変化的可能性が推察される。
ラット出生児(B-3)に対しては、オープンフィールド試験において、最低用量の 0.1 mg/kg/day から潜時の延長、区画移動数、立ち上がり数および身繕い数の減少がみられ、無影響量（NOEL）を観察することができなかった。ただし、実験動物におけるオープンフィールド試験の結果の解釈については、各測定指標の意味づけや評価方法も確定的なものとはいえず、ヒトへの外挿は極めて難しいものと考えられる。したがって、本試験結果の解釈には十分な留意が必要であると判断される。その他の胚の発生および出生児の成長、生後の形態的発育および分化、各種の反射および反応、ローターロッド試験、Beil 型水迷路学習試験、交尾および受胎能ならびに剖検の各検査では DPAA 投与の影響は認められなかった。
ラット新生児を用いた毒性試験（A-3）において、生後 4 日（ヒトでは出生前後に相当すると考えられる）から 0.1, 0.3 および 1.0 mg/kg/day の用量で 28 日間反復投与した結果、雄では 0.3 および 1.0 mg/kg/day、雌では 1.0 mg/kg/day の用量で、程度差はあるものの投与開始時の週齢が 5 週齢のラット（A-1）とほぼ同様の毒性変化が認められた。また、両試験の無影響量（NOEL）はほぼ同等（0.1~0.3 mg/kg/day）であり、DPAA は若齢動物に対して特に強い毒性作用を有することは考えられなかった。なお、前述のように新生児ラットでは腎臓からの排泄機能が未熟（D-7）と考えられることから、体内への残留傾向が高まり、毒性作用も強く発現することが予想された。しかし、結果はほぼ同等の毒性作用であった。詳細は不明ながら、新生児ラットを用いた毒性試験では、生後 32 日に解剖検査が実施されたことから、腎系球体
の形成後（生後 8〜14 日）に DPAA が排泄され、その間に毒性作用が軽減された可能性がある。

【DPAA の遺伝毒性】
遺伝毒性スクリーニング試験として、復帰突然変異試験（C-1）、染色体異常試験（C-2）および小核試験（C-3）を実施した。結果は、復帰突然変異試験および小核試験で陰性、染色体異常試験で陽性であった。染色体試験における、染色体構造異常誘発の D20 値は、短時間処理法 S9 mix 非共存下で 0.93 mg/mL、短時間処理法 S9 mix 共存下で 0.99 mg/mL（本試験）、0.92 mg/mL（確認試験）、連続処理法 24 時間処理で 0.11 mg/mL であった。また、短時間処理法 S9 mix 共存下では、用量依存性の無い数的異常誘発も認められた。この結果から、DPAA は in vitro 培養細胞に対して、染色体異常を誘発するポテンシャルを有していることが示された。ただし、in vivo における染色体異常誘発性検出系である小核試験では、染色体異常誘発性は確認されなかった。

【DPAA 関連物質（PMAA および MPAA）の毒性】
PMAA を 0.12、0.3、1.2 および 5.0 mg/kg/day の用量でラットに 28 日間反復経口投与（A-5）した結果、いずれの用量でも死亡例は発現しなかった。同じ用量で同じ期間、DPAA を投与（A-1）した場合、雄 2/10 例、雌 6/10 例が死亡したことから考えると、PMAA は DPAA と比較し、反復投与による致死作用は弱いものと考えられる。また、その他の検査でも総じて PMAA の毒性作用は弱く、DPAA の無影響量（NOEL）が 0.3 mg/kg/day であったのに対し、PMAA の NOEL は 1.2 mg/kg/day であった。病理組織学的検査において DPAA と同じ肝臓の胆管増生およびグリソン鞘における炎症性細胞浸潤が認められたことから、生体への作用機序としては DPAA と類似しているものの、PMAA の毒性作用は DPAA より弱いものと考えられる。

同じく DPAA の関連物質である MPAA を 2、5 および 15 mg/kg/day の用量でラットに 28 日間反復経口投与（A-6）した結果、MPAA の NOEL は 5 mg/kg/day であった。MPAA 投与により DPAA 投与時に発現した振戦、赤血球系パラメータの低値、尿素窒素および総ビリルビンの高値、肝臓の胆管増生、グリソン鞘における炎症性細胞浸潤および肉芽腫性炎が 15 mg/kg/day の用量で認められたことから、生体への作用機序としては DPAA と類似しているものの、MPAA の毒性作用は DPAA より弱いものと考えられる。