ナノ材料の有害性情報 (水生生物等を用いた試験)

著者1 著者2 Zhu, Shiqian M. Bischoff, L. Nies, B. Applegate, R. F. Turco Oberdorster, M. L. Haash Purdue University The University of Mississippi 著者所属 アメリカ 著者所属国 Impact of Fullerene(C60) on a soil microbial community Toxicity of an engineered nanoparticle (Fullerren, C60) in two 論文名 aquatic species, Daphnia and fathead minnow 国語 土壌細菌群集に対するフラーレン (C60)の影響 - 種の水生生物ミジンコとファットヘッドミノーにおける工業ナノ粒子(フ 論文名 日 ラーレン、C60)の毒性 Marine Environmental Research 本語 雑誌名 Environmental Science and Technology 2985-2991 出版年次 2007 2006 フラーレン (C60) フラーレン C60 対象物質 Sigma-Aldrich SES Research 試薬の出所 試薬の純度 100% 純度 99 5% 試薬の外形 水中の粒子サイズ:85nm Tetrahydofuranに溶解、一晩室温でスターラー、窒素ガスでTHFを除去、ろ過 | THF-Method 方法 $(0.2 \mu m)$ the water-stirred method 大学内の土壌(きょう雑物を除去、4mmで篩) 試験生物 Daphnia magna fathead minnow 試験用量、・C60:1μg/mL/g soil 期間、投与・対照としてTHFのみの前処理溶液 Daphnia:スタンダード US EPA プロトコル (EPA(1994)) による48hrEC50 THF:約35ppm、water-:約0.8ppm ・Fatheadminnow:合成硬水、0.5ppm THF-、0.5ppm water-5尾ずつ、48hrばく露、24hrごとに換水 方法 ストック溶液は分光光度計で計測:40 μ g/mL 作用濃度の 確認方法 呼吸量 試験事項 Daphnia Fatheadminnow ・脳及び鰓中の過酸化脂質濃度(malonaldehyde method) ・肝臓中のCYP2酵素濃度 レアーゼ の活性 試験結果 ・細菌及び細菌群集に対してほとんど影響はない ・Daphniaの48hrEC50は、THF分散法によるものは0.8ppmで、水分散法による ・ Daphniaの48hrEtS0は、IHF分散法によるものは0.8ppmで、水分散法によるものは35ppm以上であった。
・ fatheadminnowでは、THF-分散法の0.5ppm溶液中で、6-18hrで100%が死亡したが、水分散法による0.5ppmの溶液では48hr後でも影響は無かった。
・ 水分散法による溶液では、脳の過酸化脂質濃度を上昇させ、鰓中の過酸化脂質濃度は有意に増加した。
・ また、肝臓中のCYP2 の一群の酵素はコントロールに比べて有意に増加した

## ## 1	011	75 V:
著者1 著者2	Oberdorster, E.	Zhu, Xiaoshan Y. Li, Z. Duan, W. Chen, P. J. J. Alvarez
著者所属 著者所属国	Southern Methodist University マメリカ	Nankai University 中国
論 文名 外 国語	Manufactured Nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile Largemauth bass.	Developmental toxicity in Zebrafish (DAHIO Rerio) embryos after exposure to manufactured nanomaterials: BuckminsterFullerene aggregates (nC6O) and Fullerol
論 文名 日 本語	工業ナノ物質 (フラーレン 060)によるオオクチバス幼魚の脳内の酸化ストレスの誘引	工業ナノ物質に曝露させた後のゼブラフィッシュの卵における発育毒性:フラーレン凝集物(nC60)及びフレロール
雑誌名	Environmental Health Perspectives	Environmental Toxicology and Chemistry
巻	112	26
号	10	5 976–979
頁 出版年次	1058-1062 2004	2007
対象物質	フラーレン	nC60
		フレロール
試薬の出所 等	SES Deguchi et. Al. (2001)の方法による水懸濁溶液でRice大学から譲られたもの。	nC60 : SES フレロール : Qingdao大学からの寄贈
試薬の純度 等	uncoated 純度 99.5% フラーレン	nC60: uncoated 純度 99.5% フレロール(C60(OH)16-18:85%以上(不純物C70(OH)16-18が15%未満)
試薬の外形 等	・下記の分散方法により、溶液中で30-100nmの安定した凝集物となっていた。	・下記の方法で作成した溶液中のフラーレンの形状は不定形平均サイズは約 100nm
調整方法 試薬の分散 方法	溶液中で試験魚を飼育 ・TIF溶液(Tetrahydrofuran)に100mg/Lのフラーレン ・窒素封入、暗所で1晩スターラーで攪拌、0.22μmフィルターでろ過	3ppm濃度のストック溶液を同量のゼブラフィッシュ卵の入った液で希釈nc60: Scrivens and Tour (1995)の方法 ・まずベンゼンで溶解し、その100μLを10mLのTHF溶液(etrahydrofuran)に溶
	・ [エバポレーターで450mLまで濃縮⇒MilliQ水(ミリポア社) を添加して1Lに] の操作を2回繰り返す ・最後にこれを500mLまでエバポレーターで濃縮し、一晩放置した後、0.22 μ mフィルターでろ過 ・上記の操作で3.8ppmのフラーレン溶液を得た。	解。 ・この溶液を200mLのアセトン(スターラーで激しく攪拌) に滴下し、さらに 150mLの蒸留水 (MilliQ Water)をゆっくりと添加 (合計360mL) ・75℃で加熱50mLまで濃縮 ・この操作で3mg/Lの溶液を得る
		フレロール: ・10mgを100mLのmilliQに溶解(100mg/L)
試験生物	オオクチバス幼魚 体重5.3±2.0g 3尾/実験区×トリブル	ゼブラフィッシュ (実験室で産卵した二世代目)の受精卵(受精後1.5時間以内)
試験用量、 期間、投与 方法	0.5mg/L 48時間 半止水式、24時間後に30%を交換 対照区:合成硬水 陽性対照区:過酸化水素0.1mM ・24±1℃、14L/10D	・nC60:1.5mg/L、フレロール:50mg/L ・24個体を使用。20個にはナノ粒子をばく露、4個はコントロール(蒸留水のみ) ・その他にコントロールとしてTHF溶液144mg/L ・ばく露時間は最大96hr ・26±1°C、14L/10D
作用濃度の 確認方法		
試験事項	・脳、鰓、肝臓の過酸化脂質濃度 ・鰓及び肝臓のグルタチオン(酸素ラジカル・スカベンジャー指標)濃度 ・脳、鰓、肝臓の酸化たんぱく質濃度	 ・死亡率、孵化率、拍動数 ・抗酸化剤(還元グルタチオン60mg/L溶液)の効果
試験結果	・脳の過酸化脂質濃度、鰓の過酸化脂質濃度及び鰓の総グルタチオンで有意な差が確認された。	・フレロール50mg/Lはゼブラフィッシュの卵の致死には至らなかった。 ・nC60 1.5mg/Lは、ゼブラフィッシュ卵の発達の遅滞、生残率及び孵化率の 低下、心のうの水腫を生じさせる。 ・毒性は抗酸化剤で緩和される

英孝1	I Cong	IWang V
著者1 著者2	Fang J. D. Y. Lyon, M. R. Wiesner, J. Dong, P. J. J. Alvarez	Wang, Y. Y. Li, J. D. Fortner, J. B. Hughes, L. M. Abriola, K. D. Pennell
著者所属	lowa state University	Georgia institute of Technology
著者所属国	アメリカ	アメリカ
国語	Effect of a Fullerene water suspension on bacterial phospholipids and membrane phase behavior	Transport and retention of Nanoscale C60 aggregates in water- saturated porus media.
論 文名 日 本語	細菌のリン脂質及び膜相挙動に対する水分散フラーレンの影響	水で満たされた多孔体中のフラーレン凝集物の輸送と吸着
雑誌名	Environmental Science and Technology	Environmental Science and Technology
巻 号	41	42
頁	2336–2642	3588-3594
出版年次	2007	2008
対象物質	C60	C60
試薬の出所 等	MER Corporation	Materials Electronics Research Corp.
試薬の純度 等	0. 995	0.999
試薬の外形 等	下記の分散方法により、直径50-200nmで、平均直径95nm ・ストック溶液の濃度は11mg/L	約6.5mg/L、平均サイズ95nm (dynamic light scattering)
調整方法 試薬の分散 方法	THF法:Tetrahydofuran、窒素封入、一晩スターラー、0.22μmでろ過、エバポレーター(2回)、0.22μmでろ過→濃度11mg/L(直径50-200nm、平均直径95nm)	・THFで分散 ・暗所で1晩スターラーで攪拌、0.22 μmフィルターでろ過(250mL) -脱イオン水を添加(1L/min)し250mL⇒500mLに。 - エバポレーターで濃縮し、0.22 μmフィルターでろ過 - 暗所に保管
試験生物	Pseudomonas putida(グラム陰性菌)のF1 Baccilus Subtilis(グラム陽性菌)のCB310	(土壌への吸着実験)
試験用量、 期間、投与 方法	 ・低濃度と高濃度(生育阻害が生じる濃度)の2種+コントロール ・低濃度:0.01mg/L ・高濃度:0.5mg/L for <i>P. putida</i>、0.75mg/L for <i>B. subtilis</i> 	
作用濃度の 確認方法		紫外線吸光光度計 (344nm)
試験事項	・細菌の膜の脂質組成 ・相挙動(輸送温度)	・種々のカラム (15cmL×2.5cmφ) 中に、2種類の溶液 (脱イオン水、イオン添加水 (3.065mM)) でC60溶液を流した際の、カラム中への脱着状況を確認・カラムはガラスビーズ (球形 international surface preperation, Bellaire)、およびOttawa sand (F-42 U.S.Silica) (両者とも粒径は約0.36mm)を充填・カラムは前もって1.0mMCaCl2溶液および0.065mMNaHCO3溶液 (パッファー)(溶液はPh-P)で満たした。・その状態でシリンジポンプでC60溶液を添加した (流速2.8m/d)・C60の溶液として上記のpHパッファー溶液 (1.0mMCaCl2溶液および0.065mMNaHCO3溶液、イオン強度3.065mM) および水 (イオン強度0mM)の2種類とした。
試験結果	・P. putida: 不飽和脂質の減少、シクロプロパン脂肪酸の増加→酸化ストレスに対する保護の可能性また、高濃度 (0.5mg/L) 暴露群で、相輸送温度の若干の上昇と増殖のための膜の流動性が増加した。 ・B. subtilis: 低濃度 (0.01mg/L) 暴露群で、iso-及びanteiso-分枝脂肪酸が有意に増加し、高濃度 (0.75mg/L) 暴露群では 1 価不飽和脂肪酸が増加した。 また、P. putidaとは異なり、相輸送温度は低下し、膜の流動性は低下した。 ・このように、C60に対し、細菌は細胞膜の構造によって、脂質の組成と膜の相挙動を変化させることが認められた。	・ガラスピーズ、ottawa sandとも、イオン強度ゼロの水でカラムに添加した場合は吸着せず、カラムを通過した。 ・イオン強度3.065mMで流した場合は、ottawa sandのほうが吸着の度合いが強い傾向があった。 ・吸着度はガラスピーズで8.6-48.9%、ottawa sandで59.7-77.0%であった。 ・また、脱イオン水での場合は、吸着度はガラスピーズで0.018%、ottawa sandで4.67%であった。

++ + ₂ ,	IF	
著者1 著者2	Fortner, J. D. D. Y. Lyon, C. M. Sayes, A. M. Boyd, J. C. Falkner, E. M. Hotze, L.	Oberdorster, E. S. Zhu. T. M. Blickley, P. McClellan-Green, M. L. Haasch
4142	B. Alemany, Y. J. Tao, W. Guo, K. D. Ausman, V. L. Colvin, J. B.	,
著者所属	Rice University	Southern Methodist University
著者所属国	アメリカ C60 in water: Nanocrystal formation and microbial response.	アメリカ Ecotoxicology of carbon-based engineered nanoparticles: Effects of
国語 又名 外	too iii water. Wanoorystai Tormation and mitorobiai response.	fullerene (C60) on aquatic organisms.
シ ナタ ロ	 水中のC60:ナノ結晶の形成および微生物への反応	 炭素をベースにしたナノ粒子の生体毒性学:水生生物に対するフラーレン
本語	が十つ0000 :	(060)の毒性
雑誌名	Environmental Science and Technology	Carbon
巻 号	39	44
<u>芳</u> 頁	4307-4316	11112-1120
出版年次	2005	2006
対象物質	C60、C13で25%ラベルしたC60、C60(OH)22-24 (臭化物から作成したもの)	・フラーレン(C60)
発帯の川市	全てMaterials Electronics Research Corp. (Tucson、AZ)	SES Research
英架の山川 等	E Charlet lais Electronics Research Corp. (Tucson, AZ)	SLS Research
1,		
	C60 : 99. 9%	0. 995
等	C13で25%ラベルしたC60:99.5% C60 (OH) 22-24 (不明)	
	555 (517) 22 21 (1 33)	
試薬の外形		・ ・ ・ 下記の分散方法で、直径10-200nmの凝集物
試集の外形等		・・ト記の分散方法で、直径10-2000間の凝集物
47		
調整方法		
	Tetrahydofuranに溶解、一晩室温でスターラー、窒素ガスでTHFを除去、ろ過	・水分散法 からのののフェールン・オナ四半線カンスケンがショル・フィース フェース・カー
方法	$(0.2 \mu m)$	-約500mgのフラーレンを太陽光線を当てながら最低2ヶ月間スターラーで攪 拌。
		一遠心分離で凝集物を除去
		・THFといった溶媒は毒性影響のため良くない
		・また、超音波もフラーレンの毒性に影響を与えるので良くない (データは ここにはない)
試験生物	グラム陰性菌: <i>Escherichia coli</i> DH5α	・ミジンコ (Daphnia)
	グラム陽性菌: <i>Bacillus subtilis</i> CB315	・ヨコエビ (<i>Hyale la</i>) ・Copepods (海底匍匐製の <i>Harpacticoid</i>)
		・ Fatheadminnow
		・メダカ
	C60: 0. 04-4mg/L C60 (OH) 24: 5mg/L	・ミジンコ (Daphnia): EC50: EPAスタンダード、21日間の慢性毒性: 2-3に 値ごとに換水、毎日投餌。5日ごとにフラーレンの取り込み量を計測
方法	(細菌への試験では他に Luria broth、Luria broth+2.5mg/L C60 の2種類	・ヨコエビ(Hyalella): EPAスタンダード、最大7ppm
	の溶液を使用)	・Copepods (海底匍匐製のHarpacticoid): 96hrEC50、3.75, 7.5, 15, 22.5ppm
		・Fathead minnow: 試験前96hr無投餌、0.5ppmで96hr暴露、試験中は無投 餌、24hr及び72hrに半量ずつ換水、
		・メダカ: 0.5ppmで96hr、投餌(1ppmでも試験をしたが、ここでは掲示しな
佐田油店の	・セカのCCC海中・レルテンを活加し Ma(CLOA)のもていけ激して温味する。	(ハ)
作用濃度の 確認方法	- 水中のC60濃度: トルエンを添加し、Mg (C104) 2あるいは激しく浸透することでトルエンにC60を移行させ、その後HPLCで分析(336, 407, 540, 595nm)	・漂白剤か過酸化マグネシウムで酸化 ・トルエンで抽出
PILIPOTA IA	・水中のC60の形態: TEMによる観察	・吸光光度計で計測 (332nm)
	・水中のC60の粒子の大きさ:dynamic light scattering	
5. A BA		5 10 1 1 1 1 FOED (FEN - E - E - E - E - E - E - E - E - E -
試験事項	・C60の水や有機溶媒への溶解性 ・水に分散したC60の、pHやイオン強度を変化させた場合の粒子の大きさ等の	・ミジンコ (Daphnia): EC50 (EPAスタンダード)、21日間の慢性毒性 ・ヨコエビ (Hyalella): 48hrEC50、96hrEC50
	変化	・Copepods (海底匍匐製のHarpacticoid): 96hrEC50
	・細菌への影響(増殖の有無および002の発生量)	• Fathead minnow: mRNA
		・メダカ:mRNA
試験結果	・C60は有機溶媒に溶解した場合は紫、水に溶解した場合は黄色になる。 ・粒子の大きさは、ph5-9では約90nm、pH4では120nm、pH10では約60nmとなっ	・ミジンコ -最大35ppmで48hrEC50、96hrEC50は計測できず(50%死亡に達しなかった)
	・粒子の入ささは、pno-9では約900m、pn4では1200m、pn10では約000mとなった。	一最大5ppmで21日目に死亡率50%に達せず、21日EC50は計測できなかった。
	・水中に分散したC60の粒子の大きさおよび形状は、粒子の大きさが70nm以下	-8日目までは通常のように脱皮及び再生産を行っていたが、その後2.5ppm及
	では球形、80nm以上では矩形、より大きなサイズ(120nm以上)では三角形の外観を示す。	び5ppmでは脱皮及び産卵が減少した(有意差5%)。 ・ヨコエビ
	餓を示す。 ・イオン強度が0.01Mおよび0.1M (NaCl)では粒子の大きさは100日後でも	・ココエロ 一最大7ppmで48hrEC50及び96hrEC50は計測できず(50%死亡に達しなかった)
	100nm程度で変化なかったが、0.05Mでは徐々に増加し100日目には約350nmに	• Copepod
	なった。また、0.7M(海水に近い) や0.1Mでは48hrおよび72hr後には全て沈殿 してしまい、粒子サイズの計測ができなかった。	- 最大22.5ppmで96hrEC50は計測できず(50%死亡に達しなかった) ・Fathead minnow
	してしまい、粒子サイスの計測ができなかった。 ・細菌を用いた試験では0.4および4mg/LのC6Oでグラム陰性菌および陽性菌の	Fathead minnow -0.5ppmで96hrEC50は計測できず(50%死亡に達しなかった)
	増殖が見られず、4mg/LのC60でグラム陰性菌およびグラム陽性菌のCO2発生量	-CYP1A及びmRNAについても影響は認められなかった (0.5ppm)
	が低下した。 ・なお、C60 (OH) 24では顕著な影響は認められなかった。	・メダカ −0.5ppmで48hrEC50及び96hrEC50は計測できず(50%死亡に達しなかった)
	- 'なの、VUV(VII) 44 CIは戦者は影音は認めりりれなかつだ。	-0.5ppmで48nrE050及の96nrE050は計測できず(50%死亡に達しなかった) -CYP2M1、2K1、PMP70についても影響は認められなかった(0.5ppm)

著者1 著者2	Lovern, S.B. R. Klaper	Baun, A. S. N. Sorensen, R. F. Rasmussen, N. B. Hartmann, C. B. Koch.
	University of Wisconsin-Milwaukee	Technical University of Denmark
	アメッカ Daphnia magna Mortality when exposed to Titanium Dioxide and Fullerrene (C60) Nanoparticles.	デンマーク Toxicity and bioaccumulation of xenobiotic organic compounds on the presence of aqueous suspensions of aggregates of nano-C60.
論 文 名 日 本語	二酸化チタン及びフラーレン(C60)に暴露したミジンコの生死	ナノC60凝集物の懸濁液中での生物異物の有機化合物の毒性および蓄積性
雑誌名 巻	Environmental Toxicicology and Chemistry 25	Aquatic Toxicology 86
号		379–387
出版年次	2006	2008
対象物質	・フラーレン(C60) ・二酸化チタン	・ナノ物質: C60 ・生物体でない有機化合物4種類はC ¹⁴ でラベル ーatrazine(純度98%)、metyl parathion (純度99.8%)、phenanthrene(純度 98%)、pentachlorophenol (PCP) (純度98%)
試薬の出所 等	・C60:Alfa Aesar ・TiO2:不明	Sigma-Aldrich
試薬の純度 等	不明	0.98
寺		
試薬の外形 等	・C60の平均直径 一TH分散: 93nm - 水分散超音波のみ: 20-100nm - 水分散ろ過: 10-20nm ・T102の平均直径 - 超音波のみ: 100-500nm - ろ過: 30nm	C60の凝集物が混在(200nm以上と200nm以下に区別)
調整方法		
試薬の分散 方法	・フラーレン(C60) - 水分散: 水中で30分以上超音波 - 20mgのC60を Tetrahydofuran200mLに溶解、窒素封入、一晩スターラー、ろ過、エバボレーター(2回)、ろ過・二酸化チタン - 上記の両方の方法(水分散及びTHF分散)で作成したが、水に容易に懸濁したため、THFのものは使用しなかった。	・毒性試験用C60:2ヶ月間MilliQ watarで激しく攪拌(遮光なし)⇒凝集物の沈殿のため数分間静置し上澄みを使用
試験生物	ミジンコ (Daphnia magna)	・ミジンコ (Daphnia magna) ・藻類 (Selenastrum capricornutum)
試験用量、 期間、投与 方法	- C60 (THF液): 40,180,260,350,440,510,700,880ppb - C60 (水分散): 0.2,0.45,0.9,2.25,4.5,5.4,7.2,9ppm - Ti02 (ろ過溶液): 0.2,1,2,5,6,8,10ppm - Ti02 (ろ過しない溶液=超音波のみ): 50,200,250,300,400,500ppm	・ミジンコ:調整液(M7)-OECD、試験方法-ISO6341に準じた ・藻類の試験液-ISO8692に準じた
作用濃度の 確認方法	・C60: TEMで確認 ・二酸化チタン: 紫外線分光光度計で確認	・C60濃度:分光光度計(トルエン溶解C60で検量線を作成、336nm) ・その他の有機化合物:液体シンチレーション
試験事項	・EC50 (EPAスタンダード) ・100%死亡濃度 ・LOEC ・NOEC	・C60 (5mg/L)による有機物の取り込み ⇒phenanthreneは85%がC60に溶解、試験前と後で溶液を0.2 μでフィルター ⇒溶液およびフィルターを別々に有機物分析(シンチレーションによる) ・C60 (5-8mg/L)の有無によるミジンコの生残試験(24hrEC50、48hrEC50) ・C60 (6-10mg/L)の有無による豪類の増殖阻害試験(4初期細胞濃度 104cells/mL、20±2℃、24hrL、24、48時間後の増殖度) ・(C60凝集物の存在によるphenanthreneの毒性、溶解性に相違があったため)phenanthrene(49 μg/L)のミジンコへの生物濃縮試験(48hr)(20±2℃、12hrL:12hrD)(48hr接触後0,0.25,0.5,1,2,5,8,24hr後にミジンコ分析)
試験結果	・水分散 - EC50: 7.9ppm、100%死亡: NA(9ppm以上) 、L0EC: 0.5ppm、N0EC: 0.2ppm ・THF液 - EC50: 460ppb、100%死亡: 880ppb、L0EC: 260ppb、N0EC: 180ppb ・超音波Ti02 - EC50、100%死亡、L0EC、N0EC: NA(500ppm以上) ・ ろ過Ti02 - EC50: 5.5ppm、100%死亡: 10ppm、L0EC: 2.0ppm、N0EC: 1.0ppm	・ C60 (5mg/L)による有機物の取り込み ⇒ phenanthreneは85%がC60凝集物 (200mm以上) に溶解、But atrazine、 metyl parathion、PCPの溶解度は10%以下 (200mm以下のC60を含む溶液に90%程度) ・ C60 (5-8mg/L)の有無によるミジンコの生残試験 (24hrEC50、48hrEC50) ⇒ phenanthreneは10倍に増大、PCPは25%減少、atrazineとmetyl parathionは有意な変化なし ・ C60 (6-10mg/L)の有無による藻類の増殖阻害試験 ⇒ phenanthreneは60%増大、PCPは1/1.9に減少、atrazineとmetyl parathionは有意な変化なし ⇒ phenanthreneについては、C60に溶解したことによる毒性増加の疑い・ phenanthreneのミジンコへの生物濃縮試験 ⇒ 取り込み速度がより早くなり、蓄積濃度は1.7倍になった。 ⇒ 排泄も非常に速かった
	5	

Kashiwada, S.	Lin, D. B. Xing
National Institute for Environmental Studies	Zhejiang University
日本 Distribution of Nanoparticles in the See-through Medaka (Oryzias latipes)	中国 Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth.
シースルーメダカにおけるナノ粒子の分布	ナノ粒子の植物毒性:種子の発芽および根の成長の阻害
Environmental Health Perspectives 1114	Environmental Pollution
11 1697–1702	243–250
2006	2007
電光ポリスチレン (39.4,4/4,932,18600,42000nm) (39.4nm以外はサイス依存性確認のために使用)	- MWCNT - Al 1 - Al 203 - Zn
Polyscience, Inc	- ZnO - MWCNT (Shenzhen Nanotech Port Co.) - Al (Zunye Nanomaterials Co.) - Al203 (Hongchen Material Sci. & Tech. Co.) - Zn (Zunye Nanomaterials Co.) - Zn0 (Hongchen Material Sci. & Tech. Co.)
	- MWCNT: 95%以上 - AI: 99.9% - AI203: 99.99%以上 - Zn: 99.9% - Zn: 99.9%
(写真で見る限りは球形)	・MWCNT (直径:10-20nm、長さ: $1-2\mu$ m、表面積: $40-300\text{m}^2/\text{g}$ (メーカー表示)、 $126\text{m}^2/\text{g}$ (測定)) ・AI (粒径: 18nm 、表面積: $50\pm10\text{m}^2/\text{g}$ (メーカー表示)、 $23\text{m}^2/\text{g}$ (測定))・AI (203(粒径: 60nm 、表面積: $180\text{m}^2/\text{g}$ (メーカー表示)、 $230\text{m}^2/\text{g}$ (測定))・ 2n (粒径: 35nm 、表面積: $40\pm10\text{m}^2/\text{g}$ (メーカー表示)、 $4.4\text{m}^2/\text{g}$ (測定))・ 2n (粒径: $20\pm5\text{nm}$ 、表面積: $50\pm10\text{m}^2/\text{g}$ (メーカー表示)、 $58\text{m}^2/\text{g}$ (測定))・ 2n (粒径: $20\pm5\text{nm}$ 、表面積: $50\pm10\text{m}^2/\text{g}$ (メーカー表示)、 $58\text{m}^2/\text{g}$ (測
溶液中でメダカ(卵及び成魚)を飼育 特にナシ	・蒸留水に添加し、超音波(30分)で分散・使用前にスターラーで攪拌
シースルーメダカ(Oryzias latipes、STIIストレイン)	6種の植物(ハツカダイコン、セイヨウアブラナ、ライムギ、レタス、トウモロコシ、キュウリ)(全て種子をChas. C. Hart Seed Co.から入手)(発芽率は全て90%以上)(冷暗所に保存)
15個の卵に39.4nmのの蛍光粒子1mg/Lを3日間接触 ・粒子サイズ依存性試験では各サイズの1mg/L容器に同様に接触 ・塩分影響については30mg/Lの溶液で、ERM溶液の濃度を 1,5,7,5,10,15,20,30倍した溶液中で3日間飼育 ・毎日換水 ・ERM溶液(0.1%NaClを中心とした卵の培養液) ・その後ナノ粒子のない溶液で飼育し孵化させた *********************************	・発芽試験:10%次亜塩素酸ソーダで消毒(10分)、ナノ粒子懸濁溶液およびZn+溶液に浸漬(2hr)、湿らせたろ紙を入れたペトリ皿に1cm以上離して置く(10個/皿)、インキュベータで培養(室温、5日間)、(対照区で80%以上の発芽、最低20mm以上の発根)・ナノ粒子の濃度区分:20,200,2000mg/L)
· 26°C、16L/8D	
・卵及び孵化直後のメダカのナノ粒子の分布 ・メダカ卵のナノ粒子の吸着及び蓄積についての粒子サイズの関係 ・卵による吸収/蓄積及び水中での凝集に対する塩分の影響 ・成魚における血液や組織中のナノ粒子の分布 (分布は蛍光顕微鏡による観察)	・発芽および根の成長試験: -10%次亜塩素酸ソーダで消毒(10分) -ナノ粒子懸濁溶液およびZn+溶液に浸漬(2hr) -各試験溶液で湿らせたろ紙を入れたペトリ皿に1cm以上離して静置(10個/皿) -インキュベータで培養(室温、5日間) -対照区で80%以上の発芽、最低20mm以上の発根を確認して、発芽率および板の長さを測定
・39.4-42000nmの粒子は卵膜に吸着し、油球に蓄積する。 ・39.4nmの粒子は卵黄及び胆のうに蓄積した ・39.4nmの溶液(10mg/L)中においた場合、成魚のメダカでは鰓及び消化管に多く分布した。 ・また、ナノ粒子は脳、精巣、肝臓、血液に観察された。 ・ 誰及び離のメダカの血中のナノ粒子の濃度は血中蛋白量あたり16.5及び10.5ng/mgであった。 ・ これらの事実はナノ粒子は脳血液関門を通過し脳に到達することを示している。 ・ナノ粒子の24時間急性毒性値について、塩分依存性の急性毒性が確認された(コントロール及び異なるナノ粒子濃度については不明)	・発芽率では、ライムギおよびトウモロコシに対して、Zn および Zn0 の 2000mg/Lで影響が認められたが(約60-70%)、より低い濃度(20,200mg/L)では影響が認められず、他の物質では2000mg/Lでも影響は認められなかった。 ・2000mg/Lの試験区での根の成長でみても、Zn および Zn0 ではトウモロコシを除いて根の成長に顕著な影響が認められた。 ・Zn および Zn0 のナノ粒子の懸濁液中のZn+濃度は0.3-3.6mg/Lであったので、I-4mg/LのZn+ (ZnS04)の影響を見たが、発芽率や根の成長にまったく影響はなかった。 ・初期の浸漬時と培養時の培養液を Zn および Zn0 溶液とH20とで入れ替えて試験した結果、根の成長に対する影響は培養時に影響が大きく、浸漬時の影響はほとんど認められなかった。 ・Zn および Zn0 の影響は明らかな濃度依存性がみられ、IC50は、ハツカダイコンで50mg/L、セイヨウアブラナとライムギで20mg/Lであった。
	Bat Ba

著者1	Hyung, H.	Roberts, A. P.
	J. D. Fortner, J. B. Hughes, J. Kim	A. S. Mount, B. Seda, J. Souther, R. Qiao, S. Lin, P. C. Ke, A. M. Rao, S. J. Klaine
	Rice University	Clemson University
著者所属国論 文名 外	アメリカ Nastural organic matter stabilizes carbon nanotubes in the aqueous	アメリカ In vivo biomodification of lipid-coated carbon nanotubes by Daphnia
	phase.	magna
	自然由来の有機物による水相でのカーボンナノチューブの安定化	脂質でコートされたカーボンナノチューブのミジンコによる生物的分解に関 する生体内試験
本語 雑誌名	Environmental Science and Technology	Environmental Science and Technology
巻 号	41	41
頁	179–184	3025-3029
	2007 多層カーボンナノチューブ	2007 単層カーボンナノチューブ
	MER Corporation	Carbon Nanotechnologies Inc.
等		
試薬の純度	DOWN F	85%以上
武楽の純及 等	90%以工	05%以上
対変の外形	直径:140±30㎜	直径:約1.2nm
	長さ:7±2μm	平均分子量:10 ⁶ Da
調整方法		
	・SDS(Sodium dodecy sulphate)1%溶液 ・スワニー川の自然由来有機物質 (SR-NOM: International Humic	・CNTを脂質 (LysophophatidyIcholine)でコートした結果、20mg/L以上の溶液が作成できた。
	Substances Societyより購入、10-100mg/L液を24時間後に0.2μmでろ過)	ign if ig C e に。
	・実際のスワニー川の水	
試験生物		ミジンコ (Daphnia magna)
試験用量、	・各分散溶液にMWCNT液を添加し、1hr振とう、4日間静置、上澄み液を採取	・ミジンコに毎日餌を与え、水を毎日取り替えた試験
期間、投与 方法	し、ろ過後種々の分析	-0, 2.5, 5, 10, 20mg/L ・水は毎日取り替えるが餌を与えなかった場合
		-0, 0. 1, 0. 25, 0. 5, 1, 2. 5mg/L
/- m wh et -		
作用濃度の 確認方法		
e hash —la ce		
試験事項		・急性毒性 (48hrEC50等)
試験結果	・SR-NOMはMWCNTの溶解を促進し、初期MWCNT濃度50-500mg/L、SR-NOM濃度10-	
	100mg/Lで、得られたMMCNTの溶液の濃度は0.6-6.9mg/Lであった。 ・スワニー川の水自体も同様の効果があった。	- 餌を与えた場合は5mg/L以下では死亡率0%、10mg/Lで死亡率20%、20mg/Lで死亡率100%
	・この効果は1%のSDS溶液よりも大きかった。 ・分散の効果は1ヶ月以上続いた	一餌を与えなかった場合は0.5mg/L以上で死亡率が増大したが(2.5mg/Lで約60%死亡)、0.5mg/L以下でも濃度が低下するほど死亡率が増大するという二相
	・CNTは溶解しにくいが、自然の状態では異なる挙動を考慮することが必要と思われた。	
	120 PT	・その結果、SWCNTの溶解性は変化するものと思われた。
	7	

著者1	Smith, C. J. B. J. Shaw, R. D. Handy	Petersen, E. J.
著者2	D. J. Shaw, R. D. Handy	Q. Huang, W. J. Weber Jr
著者所属	University of Plymouth	University of Michigan
著者所属国	イギリス	アメリカ
	Toxicity of single walled carbon nanotubes to rainbow traut,	Ecological uptake and depuration of Carbon Nanotubes by Lumbriculus
国語	(Oncolhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological sffects.	variegatus.
論文名 日	ニジマスに対する単層カーボンナノチューブの毒性:呼吸毒性、期間の病	オヨギミミズによるカーボンナノチューブの生態学的取り込みおよび排泄
本語	変、その他の生理学的影響	
雑誌名	Aquatic Toxicology	Environmental Health Perspectives
巻	82	116
号	94–109	400 500
頁 出版年次	2007	496-500 2008
対象物質	単層カーボンナノチューブ	・SWCNT (C14でラベルしたもの)
		・MWCNT (C14でラベルしたもの) ・Pyrene (C14でラベルしたもの)
試薬の出所 等	Cheap Tubes Inc. (Vermont USA)	自らの合成
試薬の純度 等	96.3%以上C、最大不純物AL:0.08%、CI:0.41%、Co:2.91%、S:0.29% カタログベース (分析結果は使用不可)	• SWCNT : 92±0.4% • MWCNT : 99±1%
1		
試薬の外形 等	1. 1nmφ外径、5-30μmL	・MWCNT:直径 30-70nm ・SWCNT:直径 1-2nm (いずれもTEMによる確認)
調整方法	ストック溶液O.5g/Lを希釈し、ニジマスを飼育 O.5g/L(SWCNT) + 3g/L(SDS:Sodium dodecyl sulphate:界面活性剤の一	下記のとおり
方法	種) → 超音波 (2時間、35kHz:20分ごとに手動でタンクを揺らず) 試験時のSDSの最大濃度は0.15mg/Lで、致死濃度よりも数桁低い。	
試験生物	ニジマス未成魚(n=180) 30.0±5.0g 12尾/タンク × トリプル × 10日間 試験前1日及び試験期間中は無投餌	オヨギゴカイ (Lumbriculus variegatus)
試験用量、 期間、投与 方法	- SWCNT濃度(mg/L): 0.1、0.25、0.5 (そのときのSDSの濃度はそれぞれ(mg/L): 0.03、0.075、0.15) - control: SWCNT O、SDSのみ0.15mg/L - 12時間ごとに80%換水、再投与 - 14±1°C、12L/12D	・底泥(有機炭素含有率0.66%): ピート(有機炭素含有率45.1%)=9:1で混合したものを底泥として水槽に敷く (ピートの混入は試験生物の密度を高めることができるため) ・21±2°C、161:8D で飼育・SWCNT: 0.03mg/g乾泥(泥に混入前に超音波で分散)・MWCNT: 0.37mg/g乾泥、0.037mg/g乾泥(泥に混入前に超音波で分散)・pyrene: 0.054mg/g乾泥(混入前にアセトンに溶解)
作用濃度の 確認方法	ストック溶液をTEMで分析 (試験溶液は分析していない) 分散粒子のサイズは5nm未満	・試験前の底泥を分析 ・生物試料は下記の操作後に分析 ・分析はC14のカウントによる(シンチレーション)
試験事項	- 0, 3, 7, 9日目に鰓の活動量の測定 - 0, 4, 10日目に足尾/タンクで、血中のヘマトクリット、ヘモグロビン量、K+、Na+、浸透圧 - 上記試料について、脳、鰓、肝臓、顔面筋肉中のZn, Cu, Mn, Co (1CP-MS) - 別途0, 4, 10日目に2尾/タンクで、鰓、肝臓、消化管、脳のNa+, K+-ATPase分析 - 病理組織学的剖顕	・対象物質を混入した底泥によるオヨギゴカイの飼育による物質の蓄積 ・その後、対象物質を含まない底泥で飼育し、排泄状況を確認 ・いずれもEPA Methodに準じた(EPA 2000) ・生物の分析時には清澄海水中に6時間放置(消化管内の物質の98%が排泄され、かつ疎水性物質の排泄が最小の時間) ・分析は0,7,14,28日目に実施(蓄積量) ・14および28日目に取り出した生物を清澄な底泥、海水で飼育し、1,2,3に地目に取り出して分析
試験結果	- SWCNTで粘液の排泄及びいらいら状態(irritation) ・鰓の活動量は投与量に比例して増大 ・鰓の病理(水腫、粘液細胞の変化・過形成)が確認された ・ SWCNTの混じった粘液の排泄の確認 ・ SWCNTの混じった粘液の排泄の確認 ・ と SWCNTの混じった粘液の排泄の確認 ・ 鰓、消化管でのNa+, K+ATPaseの有意な増大(ただし、脳、肝臓では変化はない) ・ 鰓と肝臓でのグルタチオンレベルの増加(脳と消化管のグルタチオンは変化ナシ)	・試験生物の有意な死亡率の増加はなかった ・底泥の濃度に対する濃縮率 (BSAF: Biota-Sediment Accumulation Factor) は下記のとおりで、カーボンナノチューブの濃縮率はPAHよりもやや小さいとされた。 - SWCNT: 0.28±0.03 - MWCNT: 0.40±0.1 - pyrene: 3.6±0.2 ・ (排泄速度の数値はないが) 排泄に関してはMWCNT, SWCNTとも約3日後に80%が排泄され、pyreneの13%に比べて排泄速度は速いとされた。

香者1 香者2	Templeton, R. P.L. Ferguson, K. M. Washburn, W. A. Scrivens, G. T. Chandler	Ghafari, P. C. H. ST-Denis, M. E. Power, X. Jin, V. Tsou, H. S. Mandal, N. C.
	University of south carolina	Bols, X. Tang University of waterloo
	アメリカ Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an esturine meiobenthic copepod.	カナダ Impact of carbon nanotubes on the ongestion and digestion of bacteria by ciliated protozoa.
	河口域の微小コペポダに対するSWCNTのライフサイクル影響	繊毛虫による微生物の摂餌および消化に対するカーボンナノチューブの影響
話名	Environmental Science and Technology	Nature nanotechnology
-	40	on-line published 5/11
版年次	7387-7393 2006	2008
	SWCNT	SWCNT (酸化SWCNT=水溶性) (酸化は6M硝酸で20hr洗浄)
【薬の出所 ≦	アーク放電法により製造	
式薬の純度 等	副産物の影響を下記の3種類の試料を用いた。 一実験室内で製造したものを使用したそのもの	不明(鉄のコンタミは除去できた)
	ーそれを硝酸等で不純物を除去したもの(3.3Nの硝酸で洗浄) 一除去されたもの	
式薬の外形 等		直径2-10nm、長さ500nm未満
間整方法 式薬の分散 方法		・100nmのフィルターでろ過し、精製水に再懸濁させて1hr超音波。 ・遠心分離 (22000g,5hr)により大きな粒子を除去
式 験生物	微小コペポダ:Amphiascus tenuiremis (底泥中に孔を掘って生活する) (海水中、25℃で飼育 (ライフサイクルは15-18日間で、初期のノーブリウス期、コペポダイト期、	・繊毛虫(原生動物) Tetrahymena thermophyla ・原生動物は微生物を取り込み食細胞で消化する生物で、生態系上でも重要 な位置にあり、ナノ材料の影響確認には適していると判断。 ・培養液はOsterhout's 最少塩培地
、験用量、 明間、投与 方法	□ベポダ期(成個体)の3期を経る) • SWCNT: 0, 0.58, 0.97, 1.6, 10 mg/L	- SWCNT: 0 -17.2 μ g/mL(ぱく露濃度は明記されていないが、文中から 0, 1.6, 6.8, 11.9, 17.2 μ g/mLの5段階はある) ・原生動物の濃度: $5 \times 10^5 \text{cell/mL}$ ・大腸菌の濃度: $5 \times 10^6 \text{c.f.u./mL}$
F用濃度の 貧認方法	・重量測定方法で確認	
式験事項	・ASTM E-2317-04に従ったライフサイクルばく露試験: -96個のセルのあるブレートで試験液にばく露 -1回/4日間の頻度で換水し、そのつど10 ⁷ cell/mLの藻類を2μL添加 -28-35日間培養し、初期のノーブリウスが成育し、産卵し、その卵が孵化するまで行った。 - その間の死亡率および卵の孵化率等を測定した。 - 試験中の生物や糞等を共焦点レーザー走査顕微鏡で観察した。	・SWCNT: 0-17.2 μ g/mL (ばく露濃度は明記されていないが、文中から 0, 1.6, 6.8, 11.9, 17.2 μ g/mLの5段階はある)の溶液中で原生動物を飼育・位相差顕微鏡(ビデオつき)で3日間観察・共焦点顕微鏡(蛍光)での観察・共焦点顕微鏡(蛍光)での観察・機毛の運動により健康度をチェック・CB試験(摂餌能力を試験する方法で、大腸菌の蛍光発色の減少(摂餌されて消化されると蛍光が消失する))により測定する方法。
式 験結果	・SWCNTそのものをばく露(摂餌している)した場合は最大10mg/Lまでは生残率に影響はなかった。 ・また、成長についても純粋化したSWCNTは影響がなかった。 ・一方、精製しなかったSWCNTではやや影響が認められた。	・11.9μg/mLのばく露では、原生動物は一般に以下のように変化する。①運動の消失、②細胞の凝集、③細胞質の凝縮、④死亡一試験直後は全ての生物が①の状態になり、5-50細胞が凝集した(~3hr)。一その後回復が始まり、活動する個体が増加する。一その後は活動個体もあるが、細胞の死が確認され、液が暗くなってくる。・一方、6.8μg/mLでは、当初の凝集は生じるが、3日後でも運動の消失は生じない。・凝集の程度や活動消失の程度、細胞の死亡は1.6-11.9μg/mLの範囲では、濃度の上昇とともに増加する。・いのはいでは、6-11.9μg/mLの範囲では、濃度の上昇とともに増加する。・いの試験で見た摂餌能力では、3.6μg/mL以上で摂餌能力が確認できなかった(1.8μg/mL以下では対照と同等の摂餌能力が確認された)
	9	

著者1	Hund-Rinke, K.	Vevers, W. F.
著者2	M. Simon	A. N. Jha
著者所属 著者所属国	Fraunhofer-institut fur Molekularbiologie und Angewandte Oelkologie	University of Plymouth イギリス
	Ecotoxic effect of photocatalytic active Nanoparticles (TiO2) on Algae and Daphnids.	Genotoxic and cytotoxic potential titanium dioxide(TiO2) nanoparticles on fish cells in vitro
論 文名 日 本語	光触媒活性のあるナノ粒子 (TiO2)の藻類およびミジンコ類への生態影響	魚類細胞を用いたin vitro試験における二酸化チタンナノ粒子の遺伝子毒性 および細胞毒性
雑誌名	Environmenta Science & Pollution Research	Ecotoxicology
巻 号		17
頁	1-8	410-420
出版年次 対象物質	2006 Ti02	2008 Ti 02
// 张/// 貝	1102	
試薬の出所 等	企業からの提供(会社名は不明)	TiO2 : DeGussa AG
試薬の純度 等	不明	TiO2:不明 (ルチル75%、アナターゼ25%)
試薬の外形 等	1) 粒子径: 25nm (主にアナターゼ) 2) 粒子径: 100nm (100%アナターゼ)	Ti02:粉体
調整方法 試薬の分散 方法	(企業の推奨方法で実施) ・500mLの脱イオン水に10gのTi02を添加し、19hr室温で攪拌(スターラーによる)。 ・2000g 1hrで遠心分離後、沈殿物を500mLの脱イオン水に再分散させ、24hr 攪拌し、また遠心分離して55℃で乾燥。	水分散液(500μg/mL) をベースに①MEM溶液 (minimal essential media 超音 波で分散) ②PBS溶液(小酸パッファ-食塩水 超音波で分散) ③ そのままを超音 波で分散(対照) の3種の溶液を作成し、生物試験。
試験生物	・藻類:Desmodesmus subspicatus ・ミジンコ類:Daphnia magna	ニジマス生殖腺由来細胞(RTG-2)
試験用量、 期間、投与 方法	TiO2:0, 3.1, 12.5, 25, 50 mg/L	・各試験で、0.5μg/mL、5μg/mL、50μg/mLの3種(対照は50μg/mLのみ) ・同時に紫外線照射区を設定(1.5kJ、3.0kJ) ・対照としてH202試験区も設定(50μM)
作用濃度の 確認方法		
試験事項	 光触媒機能を持つナノ粒子の試験に適した試験方法として、藻類: ISO8692、0ECD201、DIN38412-33、ミジンコ類: ISO6341、0ECD202、DIN38412-30を活用 - 藻類試験: ナノ粒子を懸濁させた試験液中で培養し、最初(10000cells/ml)と最後(72br後)の藻類の増殖度を、蛍光測定(Spectrafluor ブレートリーダーで計測)。 ・ミジンコ類の試験: 20mLの溶液を入れたベトリ皿にミジンコ5個体をいれ、20±2°C 48hr 16L:8Dで飼育し、48hr後の活動停止個体(immobilization)を計数 	接触時間ごとに試験方法が異なる。 ・遺伝子毒性 ―SCGEのコメットアッセイ (4hr) ―コメットアッセイの改法 (24hr) ―細胞分裂が阻害された小核試験 (48hr) ー細胞毒性 ―ニュートラルレッド染色試験 (NRR assay) (24hr) ・その他 (DNA酸化影響試験) ―DNA分解酵素試験 (Fpg)
試験結果	・ 藻類試験: -1)のTi02では50%影響濃度は44mg/Lとされた。 -1)のTi02では50%影響濃度は44mg/Lとされた。 - 一方2)の製品では50mg/Lまで影響は認められなかった。 ・ミジンコ類の試験: - 濃度依存性は確認できなかったが、2種類の製品のいずれも、短時間の強い照明(250W、30分)をした実験では、照明をしなかった場合よりも、2種類の製品のいずれも影響が大きいと読める。) - (図からは、短時間の強い照明をしなかった実験では2)の製品は3mg/Lまでは影響は認められなかった。)	・遺伝子の損傷は、 $4hr$ 後(コメットアッセイ)、 $24hr$ (その改法)、 $48hr$ (小核試験)のいずれでも最大濃度($50\mu_{\rm g/mL}$)で有意な差がなかった。 ・しかし、紫外線を照射した場合は($1.5kJ$ 、 $3.0kJ$ の両者とも)遺伝子の損傷に有意な影響が見られた。 ・その程度は50 μ MのH202とほぼ同様の程度であった。 ・一方、細胞の損傷(24 時間接触)($NRR試験)では5\mu_{\rm g/mL}以下では影響は見られなかったが、50\mu_{\rm g/mL}(不有意に減少した。・NRR試験ではMEMを用いる場合にPDS溶液よりも紫外線の影響が出やすかったが、最大濃度(50\mu_{\rm g/mL})ではその差は見られなかった。・今後の試験では、凝集を避けつつ種々の毒性を総合的に把握する必要があると思われる。$

***	U 0 0	W 1 '- D D
著者1 著者2	Lovern, S. B. J. R. Strickler, R. Klaper	Warheit, D. B. R. A. Hoke, C. Finlay, E. M. Donner, K. L. Reed, C. M. Sayes
著者所属	University of Wisconsin	Dupont
著者所属国	アメリカ	アメリカ
国語	Nanoparticle suspensions (Titanium Dioxide, Nano-C60, and C60HxC70Hx)	Development of a base set of toxity tests, using ultrafine TiO2 particles as a component of nanoparticle risk management.
本語	ナノ粒子(Titanium Dioxide, Nano-C60, and C60HxC70Hx)の懸濁物への暴露 によるミジンコの行動及び生理学的変化	ナノ粒子のリスク管理の要素としての二酸化チタンの超微粒子についての毒性試験のペースセットの作成
<u>雑誌名</u> 巻	Environmental Science and Technology 41	Toxicology Letters 171
号	1405 4470	00.110
頁 出版年次	4465-4470 2007	99–110 2007
対象物質	- TiO2 - Nano-C60 - C60HxC70Hx(フラーレン派生物)	 ・ 粒子サイズの異なる2種の二酸化チタン: 肺疾患試験用 ・ もう一つの超微粒子二酸化チタン(uf-C): その他の水生生物試験用 ・ 対照としての超微粒子二酸化チタン: 対照 ・ 微粒子二酸化チタン (fine-TiO2): 対照 ・ α-量子粒子: US Silica Company: 対照
試薬の出所 等	全て:Alfa Aesar	・ 粒子サイズの異なる2種の二酸化チタン(uf-A, uf-B): Dupont ・もう一つの超微粒子二酸化チタン(uf-C): 不明 ・対照としての超微粒子二酸化チタン: Degussa Corporation ・微粒子二酸化チタン (fine-TiO2): Dupont ・ α-量子粒子: US Silica Company
試薬の純度 等	全て: 99.5%	 ・純度は不明 ・結晶構造; uf-A: 100%ルチル、uf-B: 100%ルチル、uf-C: 79%ルチル・21%アナターゼ、対照超微粒子TiO2: 80%7+ターゼ・20%ルチル、微粒子TiO2: ルチル
試薬の外形 等	Nano-C60、C60HxC70Hx:10-20nm 二酸化チタン:30nm	- 水中でのサイズ> ・ uf-A: 136.0 mm、uf-B: 149.4 nm、uf-C: 140.0 nm、対照超微粒子: 129.4 nm、微粒子TiO2: 約380 nm、対照αー量子粒子:約480 nm < 比表面積> ・ uf-A: 18.2 m²/g、uf-B: 35.7 m²/g、uf-C: 38.5 m²/g、対照超微粒子: 53.0 m²/g、微粒子TiO2: 約5.8 m²/g、対照αー量子粒子: 5.2 m²/g
調整方法		
試薬の分散 方法	3種の粒子全て: Tetrahydofuran、窒素封入、一晩スターラー、 0.22μ mでろ過、エパポレーター(2 回)、 0.22μ mでろ過 THFの使用については最近論議があるが、この実験では粒子サイズを $10-20$ nm に保つために使用した。 サイズの相違はフラーレンでは毒性に大きく影響する。また、THFはほとんど除去され、作成された溶液を紫外線分光光度計で確認してもピークはなかった。またTHFのLD50は 5930 ppmで本実験で使用した粒子の毒性の 20 倍以上ある。さらに、このような手法は科学的かつ工業的に使用されているものに正確に	・水分散 ・PBS (phosphate buffered saline)分散
試験生物	に表している。 ミジンコ (Daphnia magna)	ニジマス、ミジンコ、藻類
	• 17°C、12L:12D • 260ppb ≥ 2. 0ppm	
作用濃度の 確認方法		
試験事項	・事前に30分行動を顕微鏡で観察 ・各濃度の溶液にミジンコを暴露させ、1hr顕微鏡で行動を観察 ・その後、ナノ粒子を含まない水に戻して1hr行動観察 ・観察内容(下記行動の変化状況):hopping行動(触角による遊泳活動)、 心臓の拍動数、付属肢の活動、尾爪(postabdominal claw ミジンコ類の腹部 の末端にある1対の長いトゲ状の突起)の巻き具合、暴露後の回復状況	・X線分析:純度、組成、結晶構造、 ・dynamic light scattering (DSL)、BET表面積分析:粒子サイズ、表面積 ・急性毒性(肺疾患試験、急性経口毒性試験、皮膚刺激性試験、皮膚感受性、眼刺激性試験) ・遺伝子毒性試験(復帰突然変異試験、染色体異常試験) ・遺伝子毒性試験群(ニジマス、ミジンコ、藻類)
試験結果	・C60: Hopping: + (増加)、拍動数: + (増加)、付属肢の活動: + (増加)、尾爪: 一、回復状況: 左記の有意に増加したものは全て回復しなかった。 ・C60HxC70Hx: Hopping: + (増加)、拍動数: 一、付属肢の活動: + (増加)、尾爪: 一、回復状況: 左記の有意に増加したものは全て回復した。	・サイズ、サイズ分布:上記 ・結晶構造:上記 ・化学組成: (文中に記載) ・表面反応性(Chemical Reactivity delta b) : uf-A 10.1、uf-B 1.2、uf-C 0.9 ・急性毒性 一肺疾患試験:低い 一急性経口毒性試験: 低い 一皮膚刺激性試験:皮膚刺激性はない 一皮膚刺激性試験: 若干の結膜の赤化 ・遺伝子毒性試験 : (復帰突然変異試験: 陰性 ・ 全性毒性試験群 ーニジマス: 影響は小さい ー ミジンコ: 影響は小さい ー 漢類: 中程度の影響

		T
著者1	Federici, G.	Lee, K. J.
著者2	B. J. Shaw, R. D. Handy	P. D. Nallathamby, L. M. Browning, C. J. Osgood, X. N. Xu
著者所属	University of Plymouth	Old Dominion University
著者所属国		アメリカ
論文名 外	Toxicity of Titanium dioxide nanoparticles to rainbow traut	In vivo imaging of transport and biocompatibility of single silver
国語	(Oncolhynchus mykiss): Gill injury, Oxidative stress, and other	nanoparticles in early development of Zebrafish embryos.
	physiological effects.	
論文名 日	ニジマスに対する二酸化チタンナノ粒子の毒性:鰓の障害、酸化ストレス、	ゼブラフィッシュの胚の初期発生における銀ナノ粒子の輸送および生物的適
本語	その他の生理学的影響	合性の生体画像 (in vivo)
雑誌名	Aquatic Toxicology	Acsnano
巻	84	1
号		2
頁	415–430	133–143
出版年次	2007	2007
対象物質	Ti02	銀ナノ粒子
試薬の出所	DeGussa AG, Lawrence Insustries	自ら作成
等	(Aeroxide P25 TiO2 type)	- AgClO4を還元 (還元剤: sodium citrate and sodium borohydride)
,		
きを並み仕座	JEN II T II DEN TALE L'	
	75%ルチル、25%アナターゼ 純度99%以上、最大不純物 Si:1%	
等	市に文ママルめ上、 収入** *中代17/J OI・ 7	
I		
試薬の外形	平均の直径:21nm、比表面積50±15m²/g	直径11.6±3.5nmの球形の粒子
等		(試験時の観察では最終的に5-46nm)
1		
I		
I		
I		
I		
I		
I		
調整方法	ストック溶液0. 5g/Lを希釈し、ニジマスを飼育	
	TiO2の10g/L溶液 (超純水)	
方法	超音波 (6時間、35kHz、毎日の投与前に30分の超音波)	
73 12		
5-1-10 th sky	- パーフ + 中央 /100\	
試験生物	ニジマス未成魚(n=189) 28.1±0.4g	ゼブラフィッシュ (Danio rerio)
	20.1±0.4g 14尾/タンク × トリプル × 10日間	
	試験前1日及び試験期間中は無投餌	
	Property - H X O Brooklastel 100/M/XM4	
試験用量、	・TiO2濃度(mg/L): 0.1、0.5、1.0	
期間、投与	・12時間ごとに80%換水、再投与	
方法	• 15. 5±0. 3°C、12L/12D	
た田油座の	TEM:- F Z AH	
作用張度の 確認方法	TEMによる分析 分散粒子のサイズは24.1±2.8nm	
唯吣刀法	オ 舣和子の 9 ~ スは24. 1 ± 2. 61111 ストック溶液中では160nmサイズの凝集物もあったが、おおよそは分散状態で	
	あった	
	試験溶液は冠水直後の溶液は0.1⇒0.095±0.006mg/L、0.5⇒0.490±	
	0.012mg/L、1.0⇒0.965±0.021mg/Lで、12時間後(換垂直前)は0.1⇒0.089	
m h mrt	±0.006mg/L、0.5⇒0.431±0.008mg/L、1.0⇒0.853±0.014mg/Lであった。	art I property W property to the control of the con
試験事項	・0, 4, 14日目に2尾/タンクで、血中のヘマトクリット、ヘモグロビン量、K+、Na+	・暗視野光学顕微鏡分光装置 (dark-field single nanoparticle optical
	・上記試料について、脳、鰓、肝臓、顔面筋肉中のTi,Zn,Cu,Mn(ICP-MS)	microscopy and spectroscopy (SNOMS)) を用いて、生体内の銀ナノ粒子を直接組織・計測し、その輸送や上が生物液合体について根据した。
	- り途0, 4, 14日目に2尾/タンクで、鰓、肝臓、消化管、脳のNa+, K+-ATPase分析 - 寿理組織学的剖野	接観察・計測し、その輸送および生物適合性について把握した。
	• 病理組織学的剖顕	
I		
試験結果	・1.0g/Lで2尾、コントロールで1尾が死亡したが、いずでもTi02の曝露によ	・銀ナノ粒子は胚のchorion pore canals (絨毛膜の裂孔) 通して胚に入り込
	るものではなかった。	む。
	・試験後半では粘液を放出するものが多かった。 ・1.0mg//の試験区では試験の後半で位置を変失する(水中で縦になる)まの。	・その運動はブラウン運動のような動きで能動的なものではない。
	・1.0mg/Lの試験区では試験の後半で位置を喪失する(水中で縦になる)ものがあり、浮力調節に異常をきたしていた。が、それ以外の異常な行動はな	・chorion pore canalsの拡散係数は大きいが、胚の内部では小さくなり拡散 は抑制される。
	かのり、洋刀調即に乗吊をさたしていた。か、それ以外の乗吊な打動はなかった。	・銀ナノ粒子は正常に発達した胚や死亡した胚等にすべて見られ、影響の出
	♪・鰓の膜の水腫及び肥厚が認められた。ヘマトクリット等の血液性状や組織のNa+, K+	
I	濃度では変化が無かった。	・他の粒子と異なり、銀ナノ粒子は光学的に確認できるので、生体内の影響
I	・組織の金属濃度 (Na+, K+, Ca2+, Mn) は変化が無かった。	検討等に有用である。
I	・ただ、CuとZnについては特に脳において濃度依存の傾向が見られた。	
I	・Na+, K+ATPase活性は、鰓及び消化管では顕著に減少し、脳においては減少	
I	の傾向が認められたが、肝臓ではそのような傾向は無かった。	
	・鰓のグルタチオン濃度は有意に増加したが、脳及び消化管ではそのような	
1	変化は無かった。	
1	・結論として、TiO2は電解質の制御、血液に対しては、この範囲の濃度及び	
I	暴露時間では影響がないとされたが、呼吸器障害が関係があり、酸化ストレ	
1	スや組織の障害、グルタチオンといった抗酸化物質の誘発といった致死的で	
1	はない影響があり得る。	

著者1	Asharani, P. V.	Blaser, S. A.
著者2	ASNAYANI, P. V. Y. L. Wu, Z. Gong, S. Valiyaveettil	M. Scheringer, M. MacLeod, K. Hungerbuhler
	National University of Singapore	Institute for chemical and bioengeneering
	シンガポール Toxicity of silver nanoparticles in zebrafish models	スイス Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalozed plastics and textiles.
本語	ゼブラフィッシュを対象とした銀ナノ粒子の毒性	水中での銀のばく露およびリスクの蓄積に関する推定:ナノの機能を持たせ たプラスチックおよび繊維製品の分布
雑誌名 巻	Nanotechnology 19	Science of the total environment 390
号	255102	
頁 出版年次	2008	396–409 2008
対象物質	銀ナノ粒子	銀ナノ粒子
等	硝酸銀を水酸化ホウ素ナトリウム還元し、下記のようにして2種類のコートされた銀ナノ粒子を作成 ①デンプン溶液を加えてデンプンでコートした銀ナノ粒子(攪拌しながら、 還元とコーティング。デンプン溶液や還元剤の残留状況は不明) ②BSE (bovine serun albmin)でコートした銀ナノ粒子(分散前に遠心分離 し、還元剤とBSAは除去)	
試薬の純度 等	不明	
試薬の外形 等	粒子径:5-20nm (形状はTEM画像ではほぼ球形) デンプンでコートした銀ナノ粒子は褐色溶液で400nmに最大吸収があり、BSA でコーティングしたものは424nmに最大吸収があった。	
調整方法 試薬の分散 方法	①は攪拌(2時間) (還元剤、デンプン溶液の残留状況は不明) ②は超音波(分散前に銀ナノ粒子を遠心分離して還元剤やBSAを除去)	
試験生物	ゼブラフィッシュ(<i>Danio rerio</i>)の胚(シンガポール大学生物化学部門から 入手)	
試験用量、期間、投与方法	 ・培養条件: 28.5°C (最大72hr) ・銀ナノ粒子濃度: 5, 10, 25, 50, 100 µg/mL ・対照:銀イオン溶液-2.5, 5, 10, 15, 20 µg/mL ・同上: デンブンおよびBSA溶液-500, 1000 µg/mL 	
作用濃度の 確認方法		
試験事項	 顕微鏡観察 TEMによる観察 (X線分析 EDS を含む) (48hr、25 μg/mLのみ) 生死判定 (24, 48, 72hr) アクリジンオレンジ染色による (死細胞の核酸を染色) DAP 染色 (卵内への核酸の放出を観察する) ・孵化率 ・孵化後72時間目の心拍数 	・銀ナノ粒子の環境中挙動をモデル化(ヨーロッパを想定) ・インブットは抗菌プラスチックおよび繊維、およびその他の排出源 ・アウトプットは下水処理場、河川、海等の濃度 ・モデル自体は、移流等を考慮した分配係数を用いたモデル(フガシティを 応用したものと推測定される)
試験結果	・銀ナノ粒子の濃度の増加につれ、卵は茶色に着色し、粘膜で覆われた。 ・DAP I 染色観察では卵内の液中への核酸の流出が確認された。 ・心拍数、孵化率(母数には72時間後の生卵を含む)、死亡率は銀ナノ粒子の増加とともに影響が大きくなった。 ・50%死亡率は25-50 μg/mLの間にあった。 ・また、銀ナノ粒子の濃度の増加とともに、孵化に要する時間が長くなった。 ・(図からは) 心拍数および孵化率の50%影響は50-100 μg/mlの間にある。 ・(濃度100 μg/ml実験区の孵化魚の写真から) 形態以上が認められた。 ・銀イオンや他の対照区では(実験の濃度範囲では)影響は認められなかった。 ・またでの観察では、銀ナノ粒子は脳、心臓、卵のうおよび肺の血液に認められた。	・抗菌プラスチックおよび繊維で190t/y、その他の1470t/yの消費があり、・抗菌プラスチックおよび繊維の工場から50t/y、その他から270t/yが排水され、下水処理施設に207t/y、自然河川に50t/yが流入する。・一方、焼却施設等から大気、陸上埋め立てへの経路等のシナリオを作成。・シナリオの強度(3種類)によって異なるが、中度のシナリオでは下水処理場の濃度は9 μ g/L、河川濃度は140ng/L等になった。・影響濃度としては、下水処理場については200 μ g/Lが算出され、上記の予測濃度(下水の場合は9 μ g/L)との比較では、影響がないものと推測された。・一方、河川水については影響濃度が低いため(0.1ng/L)、上記の予測濃度(河川水の場合は140ng/L)との比較では、影響ありとなる。ただし、硫化物としての存在等を考えると環境中濃度がそれほど高くならないとも考えられる。

Nurmi, J. T.	IZhu, H.
P. G. Tratnyek, V. Sarathy, D. R. Baer, J. E. Amonette, K. Pecher, C.	J. Han, J. Q. Xiao, Y. Jin
Oregon Health and Science University	University of Delaware
アメリカ Characterization and Properties of Metallic Iron Nanoparticles: Spectroscopy, Electrochemistry, and Kinetics.	アメリカ Uptake, translocation, and accumulation of manufactures iron oxide nanoparticles by pumpkin plants.
ナノ粒子:金属鉄の(分光学的、電気的、動力学的)特徴及び性質	カボチャによる鉄ナノ粒子の取り込み、輸送、蓄積
Environmental science technology	J. Environmental Monitoring
39 5	10
1221–1230	713–717
	2008 鉄ナノ粒子
で日間の金属鉄(FeO) (種々の還元方法で作成したもの)	款 プノ 和丁
	NanoAmor Inc.,
	不明
・試験対象項目	・直径20nm(メーカー表示) ・平均直径40nmと2μmの2つの分布(Dynamic light scatteringによる計測: 図からの読み取り)
(不明
	カボチャ(22°C、湿度60%で育成し、3nd leafが出現したもの) (その他に予備試験でマメの一種(リママメ)でも同様の試験を実施)
	・鉄ナノ粒子濃度:0.5g/L
	・重量測定方法で確認
・ゼロ価のナノ鉄の土壌中での使用について、その生成方法(H2による還元、化学物質による還元)の相違について検討・サイズ、比表面積等・有機化合物の分解産物(クロロホルム)の分布状況	・培養液を用いてカボチャを育成し、鉄ナノ粒子を懸濁させた場合の、粒子の取り込み部位をVSM(Vibration sample magnetometer)で計測 (予備試験で、砂および土を用いても試験を実施)
・ナノサイズの粒子はその生成方法(H2還元、BH還元)によらず、ミクロンサイズの鉄よりも有機化合物の分解について大きな反応性を持っていた。・クロロホルムの分布でみた場合、H2還元鉄の方が若干良好(クロロホルムの分布範囲が小さく、量が少ない)	・カボチャの根、茎(地上部0-6cm)、葉に鉄粒子が確認された。 ・粒子の存在量は、根が最も多く、次いで茎、葉の順であった。 ・根では表面に付着していたものが多いと思われた。 ・茎では地上から23-27cmの部位のものでは確認されなかった。 ・葉では地上から22-23cmのものと、27cm以上のものでは差がなかった。 ・ ザマは此上から22-23cmのものと、27cm以上のものでは差がなかった。 ・ リママメでは根や葉等に鉄粒子の存在は確認できなかった。 ・ カボチャを砂で育成したものは鉄粒子の存在量が少なく、土で育成した場合は鉄粒子の存在は確認できなかった。
	Wang、J. C. Linehan, D. W. Matson, R. L. Penn, M. D. Driessen Oregon Health and Science University アメリカ Characterization and Properties of Metallic Iron Nanoparticles: Spectroscopy, Electrochemistry, and Kinetics. ナノ粒子:金属鉄の(分光学的、電気的、動力学的)特徴及び性質 Environmental science technology 39 1221-1230 2005 セロ価の金属鉄 (FeO) (穏々の還元方法で作成したもの) ・試験対象項目 ・対ス、比表面積等 ・ 有機化合物の分解企物 (クロロホルム) の分布状況 ・ナノサイズの鉄よりも有機化合物の分解について大きな反応性を持っていた。 クロンサイズの鉄よりも有機化合物の分解について大きな反応性を持っていた。 クローホルムの分布でみた場合 (Nanoparticles) 1221-1230 2005 2005 2005 2005 2005 2005 2005 2

著者1	Griffitt, R. J.	Yang, L.
著者2	R. Well, K. A. Hyndman, N. D. Denslow, K. Powers, D. Taylor, D. S.	D. J. Watts
著者所属	Barber University of Florida	University Heights
著者所属国	アメリカ	アメリカ
論文名 外 国語	Exposure to Copper Nanoparticles causes Gill injury and acute lethality in Zebrafish (Danio rerio)	Particle surfice characteristics may play an important role in phytotoxicity of alumina nanoparticles.
本語	銅ナノ粒子のばく露によるゼブラフィッシュの鰓の損傷及び急性毒性	アルミナナノ粒子の植物毒性における粒子表面の特性の重要な役割
<u>雑誌名</u> 巻	Environmental Science and Technology 41	Toxicology letters
号	41	130
頁	8178–8186	122–132
出版年次	2007	2005
対象物質	銅	アルミナ (AL203)
試薬の出所 等	Quantum Sphere Incorp.	Degussa
試薬の純度 等	不明	99.6%以上
試薬の外形 等	 直径 80nm ストック溶液濃度:270mg/L 試験溶液中の粒子サイズ:80-450nm 	 平均粒径:13nm (メーカによる) 凝集物の直径:201nm (測定、Coilter N4+) 表面積:103m²/g (測定、BET method)
調整方法 試薬の分散 方法	・ろ過水に懸濁(分散方法は特に記載なし)	スターラーによる攪拌
試験生物	・Zebrafish (Danio rerio) ・27±2℃ ・毎日体重あたり1%の投餌(ペレット) ・14上:10D	5種類の植物 ・トウモロコシ、キュウリ、ダイズ、キャベツ、ニンジン(全て Territorial Seed Companyから入手)(発芽率85%以上)
試験用量、 期間、投与 方法	 最初の粒子の濃度: 270mg/L 溶解した銅の濃度: 0.19±0.05mg/L未満 溶解銅の影響として CuSO4溶液 	 アルミナナノ粒子: 2mg/mL (予備調査で0.02, 0.2, 2mg/mLを試験した結果 2mg/Lのみが有意な影響が見られたため) Phenanthren容液: 2.83, 28.4, 122.81 mg/g7ルミナ (アセトンに溶解させ、水で希釈し、一晩放置してアセトンを飛ばす) 陽性対照: 0.05M CdC12
作用濃度の 確認方法	・濃度はICP-0ESで分析、粒子径や表面積はSEMで確認 ・ただし、試験期間 (48hr) 中は液の交換等は実施しておらず、粒子径の増大 等を述べているのみ。LC50の結果は初期添加量 ・粒子は添加後凝集して1 μ m以上のサイズになったが、50-60%の分量が懸濁 していた(サイズは不明)。	
試験事項	・48hrEC50 ・病歴診断(頭部から尾部までの切片作成による剖類) ・生化学的分析(Plasma alanine aminotransferase(ALT)、 Urea Nitrogen(BUN)、鰓のNa-K ATP ase) ・DNA分析 ・鰓の損傷に関する詳細分析 ・鰓の肉の濃度分析 ・鰓の病歴分析(切片作成による剖類) ・マイクロアレイ分析(CY3等の分析)	・フーリエ変換赤外分光光度計によるナノ粒子表面特性の測定 ・発芽試験(根の発育を測定): ・ベトリ皿に種子を1cm以上離して静置、試験前に放置(25±1℃、暗所、24- 48hr) ・この皿に試験溶液、対照液等を5mL添加し、25±1℃、暗所に24hr放置 ・この操作において試験(ぱく露)前後の根の長さを測定
試験結果	・ CuSO4の48hrLC50: 0.25 mgCu/L に対し、 銅ナノ粒子の48hrLC50: 1.56mg/L ・ 銅ナノ粒子の溶液中で溶解した銅の濃度は0.09mg/Lで、死亡率に対する影響は16%程度であった。 ⇒ これらの結果から、銅ナノ粒子のLC50は アメリカの基準で Moderateであることになる ・ 鰓のL皮の増大、鰓の第1,第2フィラメントの水腫 ・ 鰓のNKA(Na+/K+ase)は 0.25mgCu/LのCuSO4溶液で88%減少: 0.25mg/L及び 1.5mg/L nanoCuで29-58%。 ・ ALT (Plasma a lanine aminotransrferase) , BUN (Urea nitrogen) (腎臓及び肝臓の機能)は有意な影響は無かった。 ・ 鰓の損傷は溶解した銅だけでは説明できず、ナノ粒子による影響が大きいと考えられた。	・(予備試験結果も参考にすると)アルミナナノ粒子の根の成長に対しては、0.2mg/mL以下では影響がなく、2mg/mLで影響が確認された。・その影響は phenanthrene や DMSO の添加により低減された。・phenanthrene は粒子の表面を覆う作用があり、DMSOは水酸化ラジカルを消費する作用があることから、上記の根の成長に対するアルミナナノ粒子の影響はその表面にの特性に左右されているものと思われた。

	 	
著者1 著者2	Gagne, F. J. Auclair, P. Turcotte, M. Fournier, C. Gagnon, S. Sauve, C. Blaise	Holbrook, R. D. K. E. Murphy, J. B. Morrow, K. D. Cole
著者所属	Environment Canada	National institute of standards and technology
著者所属国	カナダ	アメリカ
国語	Ecotoxicity of CdTe quantum dots to freshwater mussels: Impacts on immune system, oxidative stress and genotoxicity	Trophic transfer of nanoparticles in a simplified invertebrate food web
論 文名 日 本語	CdTe量子ドットの淡水二枚貝への生態影響: 免疫機構、酸化ストレス、および遺伝子毒性	単純化した無脊椎動物食物網でのナノ粒子の栄養段階に伴う移動
雑誌名	Aquatic Toxicology	Nature nanotechnology
巻 号	86	on-line published 5/30
頁	333-340	land
出版年次 対象物質	2008 CdTe量子ドット	2008 量子ドット (Carboxylated and biotinylated)
NAWA		(665nm 最大吸収) (楕円形) (CdSeの核、ZnSの殻)
試薬の出所 等	American Dye Source	Invitrogen
試薬の純度 等	不明	
試薬の外形 等	・粒子の85%が100nm以上 ・15%が100nm未満 ・したがって、8mg/L Cd 中 1.2mg/Lが100nm未満ということになる。	- 楕円形 - 長軸12nm、短軸6nm - 1個あたりのCd*の量: 4.52×10-10 ngCd*/ドット
調整方法 試薬の分散 方法	・100ppmのストック溶液を作成し、遠心分離して(2000rpm、5分)0.1% Na- thioglycolateで透析(10kDa membrane dialysis pores)(pH10、4hr、 20℃) ・Cd濃度にして1.6、4、8mg/Lに希釈して使用	
試験生物	・対照として CdS04溶液 (0.5mg/L)も使用	大陽菌:30℃で培養 原生動物: <i>Tetrahymena pyriformis</i> (8L:16D、室温培養) ワムシ: <i>Brachionus calyciflorus</i> (クロレラで培養、8L:16D)
試験用量、		
期間、投与方法		- Carboxylated量子ドット: 2.58×10 ¹² 個/mL - Biotinylated量子ドット: 1.63×10 ¹² 個/mL
作用濃度の	・試験溶液中のCd濃度は分光光度計 (入射波長 400nm、放出波長535nm)で計	
	測・試験に用いた量子ドットのサイズ分布は、種々のサイズのフィルターで分離した後に各溶液をICP-MSで分析	
試験事項	・ばく露後に血液を採取し、血液中の免疫機構について検査(血球の量、食 細胞の活動、血球の生死、K562細胞を用いた免疫機能) ・鰓および消化管での脂質酸化酵素活性 (lipid peroxidase)と DNAの損傷度 を測定	・CLSM(共焦点レーザー走査顕微鏡) による観察(量子ドットは赤く見える)・原生動物による量子ドットの取り込み及び排泄の確認(Cd+分析による体内濃度変化に基づく)・ワムシによる量子ドットの取り込み及び排泄の確認(Cd+分析による体内濃度変化に基づく)
試験結果	・免疫系の検査では、CdTe濃度の増加により、血球密度の増加と活性の低下が確認された。 ・食細胞の活性の低下も確認されたが濃度依存性は明確ではなかった。 ・K542細胞による免疫機能(細胞殺傷能)は濃度依存的に増加した。 ・脂質過酸化酵素活性は鰓では濃度依存的に上昇し、逆に消化管では濃度依存的に低下した。 ・DNAの損傷は鰓ではわずかに濃度依存的に上昇した(ものの明瞭な変化はなく=図からの読み取り)、消化管ではむしろ対照区よりも少なくなった。 ・全体を通して、CdTeは淡水二枚貝の免疫系に影響を及ぼし、鰓および消化管に酸化ストレスを与えDNAに損傷を与えた(消化管のDNA損傷は明瞭ではない)。	・原生動物による量子ドットの取り込みが確認されたが、速やかに排泄され、生物濃縮は認められなかった。 ・ワムシによる量子ドットの取り込みはカルボン酸で修飾したものでは明瞭に認められ、一部消化管から体腔に移行したものが観察された。・ワムシによる量子ドットの取り込みはピオテンでコートした量子ドットでは小さかったが、これは実験上の問題と考えられる(餌とした原生動物が成育しすぎ、量子ドットの濃度が薄まった等)・原生動物からワムシへのBMF(栄養段階における濃縮係数)は0.29-0.62で、濃縮は認められなかった。

女 李 4	Mandy, D. D.	IDaun A
著者1 著者2	Handy, R. D. B. J. Shaw	Baun, A N. B. Hartmann, K. Grieger, K. O. Kusk
著者所属	University of Plymouth	Technical University if Denmark
著者所属国 論 文名 外	イギリス Toxic effects of nanoparticles and nanomaterials: Implications for	デンマーク Ecotoxicity of engineered nanoparticles to aqiatic invertebrates: a
国語	public health, risk assessment and the public perception of nanotechnology.	brief review and recommendations for future toxicity testing.
	ナノ粒子およびナノ材料の毒性:一般公衆への健康影響、リスク評価および	水生無脊椎動物に対するナノ材料の生態毒性:レビューおよび将来の毒性試験に対するナノ材料の生態毒性:
本語 雑誌名	ナノテクノロジーに対する理解 Health, risk & society	験に対する勧告 Ecotoxicology
巻 号	9	17
頁	125-144	387–395
出版年次 対象物質	2007	2008
7.1 S. 1.7 J.		
試薬の出所		
等		
試薬の純度		
等		
試薬の外形		
等		
調整方法		
試薬の分散 方法		
試験生物		
H III AN 4.5		
試験用量、 期間、投与		
方法		
作用濃度の		
確認方法		
試験事項		
試験結果	(ナノ粒子の毒性に関するレビュー)	(ナノ材料の水生無脊椎動物に関する影響の総説)
	・現状でのナノ粒子のばく露に関する情報の整理(ビタミンE粒子等の食品、 医療、土壌浄化等のほか、火山灰やDEPも含まれる)	・水生生物影響の模式図あり ・13種類の文献の抄訳あり
	・ヒト健康影響に関する試験結果の集約(約20例) ・その他は毒性に関する総説等	・特に現状で毒性を懸念するといった表現はない ・むしろ、初期にあった分散剤の影響を述べる程度
	2 Into the Into Into Ample 4.	・将来の勧告では下記の3点
		1)取り敢えず現状の試験方法に基づく急性毒性試験の実施から始めるのが適当
		2) 将来的には慢性毒性試験が必要 (無脊椎動物ではライフサイクルが短いので世代試験は比較的容易)
		3) 濃縮性に特化した検討が必要
	1	1

Chrostian P	Conti, J. A.
F. Kammer, M. Baalpusha, T. Hofmann.	K. Killpack, G. Gerritzen, L. Huang, M. Mircheva, M. Delmas, B. H.
University of Manahastar	Harthrorn, R. P. Applebaum, P. A. Holden University of California
	アメリカ
Nanoparticles: structure, prpperties, preperation and behavoour in environmental media.	Health and safety practices in the Nanomaterials workplace: Results from an international survey.
ナノ粒子:構造、特性、調整および環境媒体中での挙動	作業環境でのナノ物質の健康および安全の状況:国際的調査の結果
Ecotoxicology	Environmental Science and Technology
17	9
326–343	3155-3162
2008	2008
	・世界中のナノ物質関連の工場や研究所に対する電話による聞き取り調査 (357箇所、回答件数82 (23%))
(ナノ材料の環境中挙動の総説) ・拡散に関する数式 (Df=kT D:拡散係数、f:粒子に関する係数 (=6π na、n : 粘性定数、a:粒子の直径)、k:ボルツマン定数、T:温度) から、一定時間後の粒子間の距離は粒子の直径のルートに反比例する。 (小さい粒子ほど一定時間での移動距離が大きい=拡散し易い)・しかし、上記のことは逆に表面活性を無視しており、コロイドでは凝集と沈殿が生じる。したがって、ナノ粒子の拡散については粒子間の相互作用を考慮する必要がある。・粒子は帯電するのでその表面には同じ荷電の層 (Ster Layer)が生じ、そのため凝集はしにくくなる。・水中ではナノ粒子は若干のイオン強度の増加で凝集する。0.001MのNaClでC60の安定した溶液を凝集させた。・一方、フミン酸といった有機物は天然由来有機物はナノ粒子の表面をコートし、ナノ粒子の安定性を持続させる。一方、その場合でも強度のイオン強度 (CaCl2 10mM)は逆にフミン酸自体のブリッジ構造を形成させ、凝集を促進させる。 (水中での挙動模式図あり)	・ナノ物質を対象としたEHS関連の訓練、装備を実施しているとの回答が6-8割りあるが、モニタリングやリスク評価、廃棄時の措置の実施件数は少なかった。 ・また、多くの機関がEHS関連の情報の整備を望んでいた。
	University of Manchester イギリス Nanoparticles: structure, properties, preperation and behavoour in environmental media. ナノ粒子・構造、特性、調整および環境媒体中での挙動 Ecotoxicology 17 326-343 2008 (ナノ村科の理境中学動の総説 ・ 活液性の自身を表現している。 19 326-343 2008 (ナノ村科の理境中学動の総別に対している。 19 326-343 2008 (ナノ社学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学

	Crane, M.	Handy, R. D.
著者2	R. D. Handy, J, Garrod, R. Owen	F. Kammer, J. R. Lead, M. Hassellov, R. Owen, M. Crane
英老託屋	WCA Environ Limited	University of Plymouth
著者所属 著者所属国	mon Livi 1011 Limit tou イギリス	イギリス
<u> </u>	Ecotoxicity test methods and environmental hazard assessment for	The ecotoxicology and chemistry of manufactures nanoparticles.
国語	enginerred nanoparticles.	manaractures nanopareros.
	工業ナノ材料の環境毒性試験方法および環境有害性評価	工業ナノ粒子の毒性学および化学
本語		
雑誌名	Ecotoxicology	Ecotoxicology
巻	17	17
号		
頁	421-437	287–314
出版年次	2008	2008
対象物質		
試薬の出所		
等		
,,		
3 h +t+ - 4 k ele		
試薬の純度		
等		
試薬の外形		
等		
1		
1		
1		
調整方法		
試薬の分散		
方法		
試験生物		
試験用量、		
期間、投与		
方法		
作用濃度の		
確認方法		
試験事項		
1		
1		
		I I
試験結果	(環境毒性に関する試験方法および評価方法のレビュー)	(ナノ材料の化学および毒性学に関する総説)
試験結果	・OECDで用いられている試験方法の一覧	・ナノ材料の毒性試験 (げっ歯類 inv ivo) の事例集約 (7例)
試験結果	・OECDで用いられている試験方法の一覧 ・4種類の分散方法(分散剤なし、溶媒使用、超音波、攪拌)についての長所	・ナノ材料の毒性試験(げっ歯類 inv ivo) の事例集約(7例) ・ナノ材料の水生生物試験事例(9例)(うち2例を使ったEC50等の整理票が
試験結果	・OECDで用いられている試験方法の一覧 ・4種類の分散方法(分散剤なし、溶媒使用、超音波、攪拌)についての長所 と短所の比較表。	・ナノ材料の毒性試験(げっ歯類 inv ivo)の事例集約(7例) ・ナノ材料の水生生物試験事例(9例)(うち2例を使ったEC50等の整理票が あるが、粒子サイズ等が不明で、分散方法の問題等が示されておらず、不十
試験結果	- OECDで用いられている試験方法の一覧 ・4種類の分散方法(分散剤なし、溶媒使用、超音波、攪拌)についての長所 と短所の比較表。 ・超音波や攪拌でも、表面構造の変化や活性化といった影響があると指摘さ	・ナノ材料の毒性試験(げっ歯類 inv ivo)の事例集約(7例) ・ナノ材料の水生生物試験事例(9例)(うち2例を使ったEC50等の整理票があるが、粒子サイズ等が不明で、分散方法の問題等が示されておらず、不十分と思われる)
試験結果	・OECDで用いられている試験方法の一覧 ・4種類の分散方法(分散剤なし、溶媒使用、超音波、攪拌)についての長所 と短所の比較表。	・ナノ材料の毒性試験(げっ歯類 inv ivo)の事例集約(7例) ・ナノ材料の水生生物試験事例(9例)(うち2例を使ったEC50等の整理票が あるが、粒子サイズ等が不明で、分散方法の問題等が示されておらず、不十
試験結果	- OECDで用いられている試験方法の一覧 ・4種類の分散方法(分散剤なし、溶媒使用、超音波、攪拌)についての長所 と短所の比較表。 ・超音波や攪拌でも、表面構造の変化や活性化といった影響があると指摘さ	・ナノ材料の毒性試験(げっ歯類 inv ivo)の事例集約(7例) ・ナノ材料の水生生物試験事例(9例)(うち2例を使ったEC50等の整理票があるが、粒子サイズ等が不明で、分散方法の問題等が示されておらず、不十分と思われる) ・ナノ材料の化学(表面化学、凝集に注目)
試験結果	- OECDで用いられている試験方法の一覧 ・4種類の分散方法(分散剤なし、溶媒使用、超音波、攪拌)についての長所 と短所の比較表。 ・超音波や攪拌でも、表面構造の変化や活性化といった影響があると指摘さ	・ナノ材料の毒性試験(げっ歯類 inv ivo)の事例集約(7例) ・ナノ材料の水生生物試験事例(9例)(うち2例を使ったEC50等の整理票があるが、粒子サイズ等が不明で、分散方法の問題等が示されておらず、不十分と思われる) ・ナノ材料の化学(表面化学、凝集に注目)
試験結果	- OECDで用いられている試験方法の一覧 ・4種類の分散方法(分散剤なし、溶媒使用、超音波、攪拌)についての長所 と短所の比較表。 ・超音波や攪拌でも、表面構造の変化や活性化といった影響があると指摘さ	・ナノ材料の毒性試験(げっ歯類 inv ivo)の事例集約(7例) ・ナノ材料の水生生物試験事例(9例)(うち2例を使ったEC50等の整理票があるが、粒子サイズ等が不明で、分散方法の問題等が示されておらず、不十分と思われる) ・ナノ材料の化学(表面化学、凝集に注目)
試験結果	- OECDで用いられている試験方法の一覧 ・4種類の分散方法(分散剤なし、溶媒使用、超音波、攪拌)についての長所 と短所の比較表。 ・超音波や攪拌でも、表面構造の変化や活性化といった影響があると指摘さ	・ナノ材料の毒性試験(げっ歯類 inv ivo)の事例集約(7例) ・ナノ材料の水生生物試験事例(9例)(うち2例を使ったEC50等の整理票があるが、粒子サイズ等が不明で、分散方法の問題等が示されておらず、不十分と思われる) ・ナノ材料の化学(表面化学、凝集に注目)
試験結果	- OECDで用いられている試験方法の一覧 ・4種類の分散方法(分散剤なし、溶媒使用、超音波、攪拌)についての長所 と短所の比較表。 ・超音波や攪拌でも、表面構造の変化や活性化といった影響があると指摘さ	・ナノ材料の毒性試験(げっ歯類 inv ivo)の事例集約(7例) ・ナノ材料の水生生物試験事例(9例)(うち2例を使ったEC50等の整理票があるが、粒子サイズ等が不明で、分散方法の問題等が示されておらず、不十分と思われる) ・ナノ材料の化学(表面化学、凝集に注目)
試験結果	- OECDで用いられている試験方法の一覧 ・4種類の分散方法(分散剤なし、溶媒使用、超音波、攪拌)についての長所 と短所の比較表。 ・超音波や攪拌でも、表面構造の変化や活性化といった影響があると指摘さ	・ナノ材料の毒性試験(げっ歯類 inv ivo)の事例集約(7例) ・ナノ材料の水生生物試験事例(9例)(うち2例を使ったEC50等の整理票があるが、粒子サイズ等が不明で、分散方法の問題等が示されておらず、不十分と思われる) ・ナノ材料の化学(表面化学、凝集に注目)
試験結果	- OECDで用いられている試験方法の一覧 ・4種類の分散方法(分散剤なし、溶媒使用、超音波、攪拌)についての長所 と短所の比較表。 ・超音波や攪拌でも、表面構造の変化や活性化といった影響があると指摘さ	・ナノ材料の毒性試験(げっ歯類 inv ivo)の事例集約(7例) ・ナノ材料の水生生物試験事例(9例)(うち2例を使ったEC50等の整理票があるが、粒子サイズ等が不明で、分散方法の問題等が示されておらず、不十分と思われる) ・ナノ材料の化学(表面化学、凝集に注目)
試験結果	- OECDで用いられている試験方法の一覧 ・4種類の分散方法(分散剤なし、溶媒使用、超音波、攪拌)についての長所 と短所の比較表。 ・超音波や攪拌でも、表面構造の変化や活性化といった影響があると指摘さ	・ナノ材料の毒性試験(げっ歯類 inv ivo)の事例集約(7例) ・ナノ材料の水生生物試験事例(9例)(うち2例を使ったEC50等の整理票があるが、粒子サイズ等が不明で、分散方法の問題等が示されておらず、不十分と思われる) ・ナノ材料の化学(表面化学、凝集に注目)
試験結果	- OECDで用いられている試験方法の一覧 ・4種類の分散方法(分散剤なし、溶媒使用、超音波、攪拌)についての長所 と短所の比較表。 ・超音波や攪拌でも、表面構造の変化や活性化といった影響があると指摘さ	・ナノ材料の毒性試験(げっ歯類 inv ivo)の事例集約(7例) ・ナノ材料の水生生物試験事例(9例)(うち2例を使ったEC50等の整理票があるが、粒子サイズ等が不明で、分散方法の問題等が示されておらず、不十分と思われる) ・ナノ材料の化学(表面化学、凝集に注目)
試験結果	- OECDで用いられている試験方法の一覧 ・4種類の分散方法(分散剤なし、溶媒使用、超音波、攪拌)についての長所 と短所の比較表。 ・超音波や攪拌でも、表面構造の変化や活性化といった影響があると指摘さ	・ナノ材料の毒性試験(げっ歯類 inv ivo)の事例集約(7例) ・ナノ材料の水生生物試験事例(9例)(うち2例を使ったEC50等の整理票があるが、粒子サイズ等が不明で、分散方法の問題等が示されておらず、不十分と思われる) ・ナノ材料の化学(表面化学、凝集に注目)

著者1 著者2	Handy, R. D. T. B. Henry, T. M. Scown, B. D. Johmston, C. R. Tyler.	Hansen, S. F. E. S. Michelson, A. Kamper, P. Borling, F. Stuer-Lauridsen, A. Baun
著者所属	University of Plymouth	Technical University if Denmark
著者所属国	イギリス	デンマーク
論文名 外 国語	Manufactured nanoparticles: their uptake and effects on fish- a mechanistic analysis.	Categorization framework to aid exposure assessment of nanomaterials in consumer products.
論 文名 日 本語	工業ナノ材料:その魚類への取り込み及び影響ーメカニズムの検討	製品中のナノ材料のばく露評価のための分類試案
雑誌名	Ecotoxicology	Ecotoxicology
<u>巻</u> 号	17	17
頁	396-409	438-447
出版年次	2008	2008
対象物質		
試薬の出所 等		
試薬の純度 等		
試薬の外形 等		
調整方法 試薬の分散 方法		
試験生物		
試験用量、		
期間、投与方法		
作用濃度の 確認方法		
試験事項		
試験結果	(ナノ材料の魚類に関する影響の総説) ・まず、海水あるいは硬度の高い淡水中では凝集が生じるので、このような環境では魚類は分散した状態よりも凝集したナノ材料と接触することが多いと想定される。 ・表面処理を施したもの以外はたいていは水に不溶であり、水中で懸濁態の状態である。 ・表面処理を施したもの以外はたいていは水に不溶であり、水中で懸濁態の状態である。 ・サノ材料はまず粘液層でトラップされるが、その率は他の物質よりも多いと思われる。 ・ナノ材料はまず粘液層でトラップされるが、その率は他の物質よりも多いと思われる。 ・お油性の高いナノ材料は膜を透過し排泄されない可能性が高いが、結論として魚類の粘液層はナノ材料に対する保護膜となる。(粘液層となの材慮野挙動モデル図が記載されている) ・しかし、損傷を受けた鰓では直接に体内に取り込まれる可能性があり、下i02などは鰓の損傷を起こすことが知られている。 ・等々(概説)	(ナノ材料を用いた製品に係るばく露評価の分類と試み) ・ナノ材料の製品中の状態で製品からのばく露を分類(製品の分散状態はWWIの製品情報から類推)。同じナノ材料でも使用方法が異なれば異なる分類になっている。 - 「液体中に分散」あるいは「大気中に放出」状態で使用されるものは「ばく露があると推測」に分類 - 「表面に固着」は「ばく露の可能性がある」 - 「固体中に分散」はばく露はないと想定 ・また、幾つかのシナリオ(「化粧用クリーム」、「日焼け止め」、「屋外で表面処理に用いるもの(車のワックス等)」、「屋外でのスプレーによる表面処理」)についてばく露評価を試行。

著者1	Hassellov M.	Navarro E.
	J.W. Readman, J. F. Ranville, K. Tiede.	A. Baun, R. Behra, N. B. Hartmann, J. Filser, A. Miao, A. Quigg, P.
著者所属	University of Gothenburg	H. Santschi, L. Sigg Swiss Federal Institute of Aquatic Science and Technology
著者所属国	スウェーデン	スイス
論文名 外 国語	Nnoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles.	Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants, and fungi.
本語	ナノ材料の環境リスク評価におけるナノ粒子の分析および特性把握手法	工業ナノ材料の環境挙動および藻類、植物、真菌類への影響
雑誌名	Ecotoxicology	Ecotoxicology
<u>巻</u> 号	17	17
頁	344–361	372–386
出版年次	2008	2008
対象物質 試薬の出所		
等		
試薬の純度 等		
試薬の外形 等		
調整方法 試薬の分散 方法		
試験生物		
試験用量、		
期間、投与方法		
作用濃度の 確認方法		
試験事項		
試験結果	(ナノ材料の測定方法に関する総説:詳細な分析手法の記載もあるが、環境 試料の分析に適したものは下記のとおり) ・粒子数(ある分級されたものについて):顕微鏡、LIBD (Laser induced breakdown detection、レーザー誘起ブレークダウン分光法) ・量あるいは体積(ある分級されたものについて):FFF(Field-Flow Fractionation 流動場分画法)およびSEC(多くの分析方法を付加して)、ろ 過 ・ Z-平均サイズ:DSL(dynamic light scattering 動的光散乱)	(ナノ材料の藻類、植物等に関する影響の総説) ・(学動の部分は省略) ・緑藻のDesmodesmus subspicatus に対して、TiO2の毒性はより大きなサイズのものでは影響は減少し、表面積に依存しているものとされた。 ・酸化アルミニウムのナノ粒子の根の成長に対する影響では、化学組成よりもそのサイズに依存しているとされ、また、ZnおよびZnOのナノ粒子はラディッシュ、セイヨウアブラナ、ホソムギの成長に影響した。 ・他の種々の情報から、陸生および水中の主に植物生態系への影響の推定・他にブラス影響の若干の紹介 ・他に試験方法についての問題点が挙げられているが、問題点のみで修正案は示されていない。
		は亦されていない。

	.
著者1	Neal A. L.
著者2	
著者所属	Centre for Soils and ecosystem function
著者所属国	イギリス
	What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to
国語	nanoparticles.
論文名 日	
本語	用からどのような影響が生じるか。
雑誌名 巻	Ecotoxicology 17
号	17
頁	362–371
出版年次	2008
対象物質	
試薬の出所	
等	
試薬の純度 等	
4	
試薬の外形	
等	
調整方法	
試薬の分散	
方法	
試験生物	
試験用量、	
期間、投与 方法	
作用濃度の	
確認方法	
試験事項	
此项八丁气	
試験結果	(ナノ材料の微生物影響に関する総説)
	・ZnO、Ag、MgO、CeO2、SWCN、キトサンのナノ材料による膜構造の損傷につ
	いての報告がある。 ・MgO、Ag、C60について、大きなサイズのものよりも小さなものでより大き
	な影響があるとした報告がある。
	・C60により細菌の膜の化学構成に変化が生じたという報告がある。 ・その他、若干の報告の紹介
	・その他、右十の戦告の紹介 ・他に、バクテリア作用に関する推定図があるが、模式図のみ。
	The state of the s
L	