Chapter 3 Results of the Environmental Monitoring in FY2017

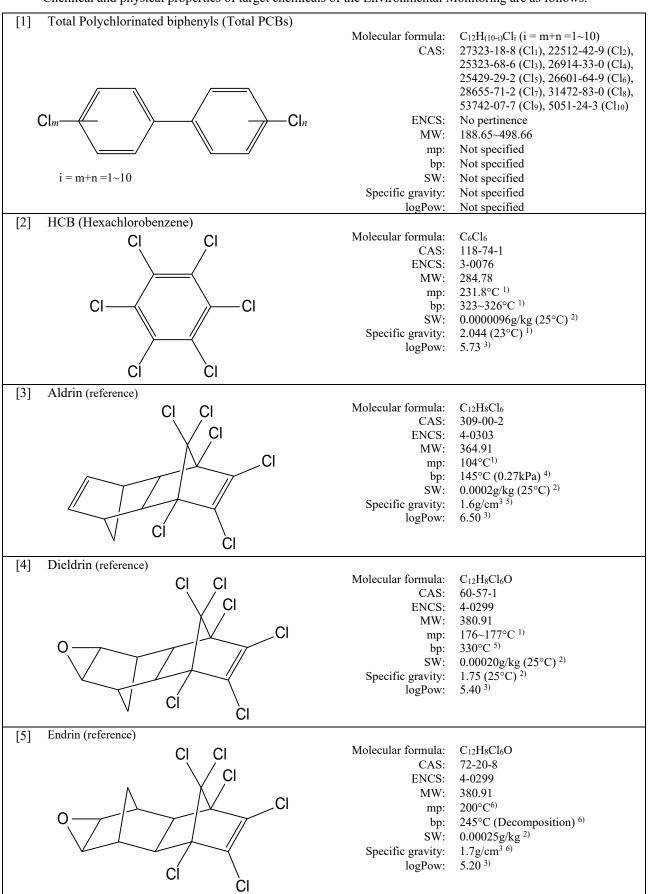
1. Purpose of the monitoring

Environmental Monitoring provides annual surveys of the environmental persistence of target chemicals as listed in the Stockholm Convention, chemicals that while undesignated are still subject to review for potential risk, and/or highly persistent chemicals annotated as Specified Chemical Substances and Monitored Chemical Substances under the Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances (aka, the Chemical Substances Control Law), all target chemicals whose year to year changes in persistence in the environment must be understood.

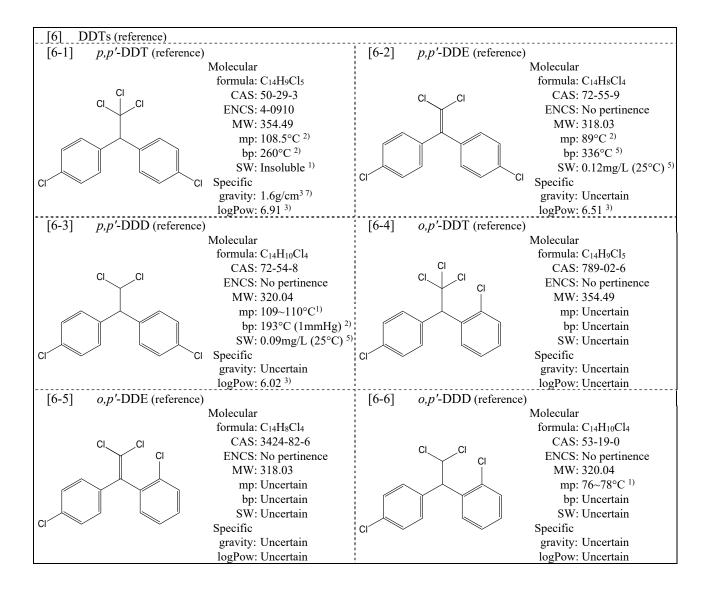
*POPs: persistent organic pollutants

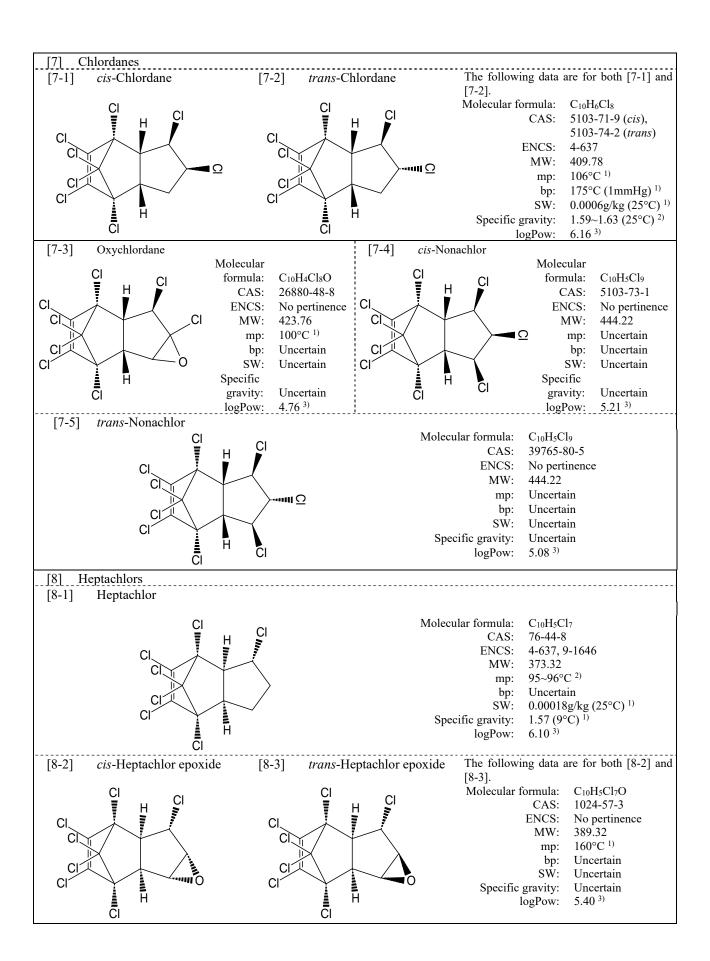
2. Target chemicals

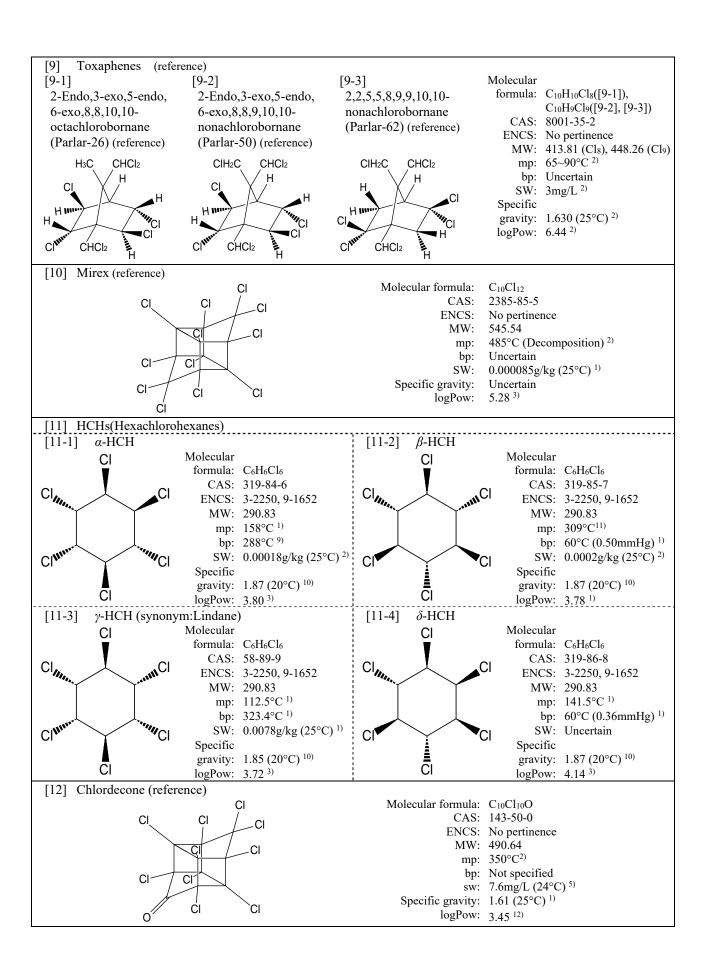
In the FY2017 Environmental Monitoring, 14chemicals (groups) which added to initial 4 chemicals (groups) out of 10 chemicals (groups) ¹ designated in 2004, namely, Total Polychlorinated biphenyls (Total PCBs), Hexachlorobenzene, Chlordanes², and Heptachlors³, included in the Stockholm Convention (hereafter, POPs), and 4 chemicals (groups), namely, HCHs (Hexachlorohexanes)⁴, Polybromodiphenyl ethers (Br4~Br10)⁵, Perfluorooctane sulfonic acid (PFOS)⁶, and Pentachlorobenzene, which were adopted to be POPs in the Stockholm Convention at fourth meeting of the Conference of the Parties held from 4 to 8 May 2009, and 1,2,5,6,9,10-Hexabromocyclododecanes⁷ which was adopted to be POPs in the Stockholm Convention at sixth meeting of the Conference of the Parties held from 30 April to 2 May 2013, and 3 chemicals (groups), namely, Polychlorinated Naphthalenes⁸, Hexachlorobuta-1,3-diene and Pentachlorophenol and its salts and esters⁹ which were adopted to be POPs in the Stockholm Convention at seventh meeting of the Conference of the Parties held in April 2015, and Short-chain chlorinated paraffins¹⁰, which was adopted to be POPs in the Stockholm Convention at eighth meeting of the Conference of the Parties held from 24 April to 5 May 2017, and Perfluorooctanoic acid (PFOA)¹¹ which has been discussed whether to be adopted to be POPs in the persistent organic pollutants review committee, were designated as target chemical. The combinations of target chemicals and the monitoring media are given below.

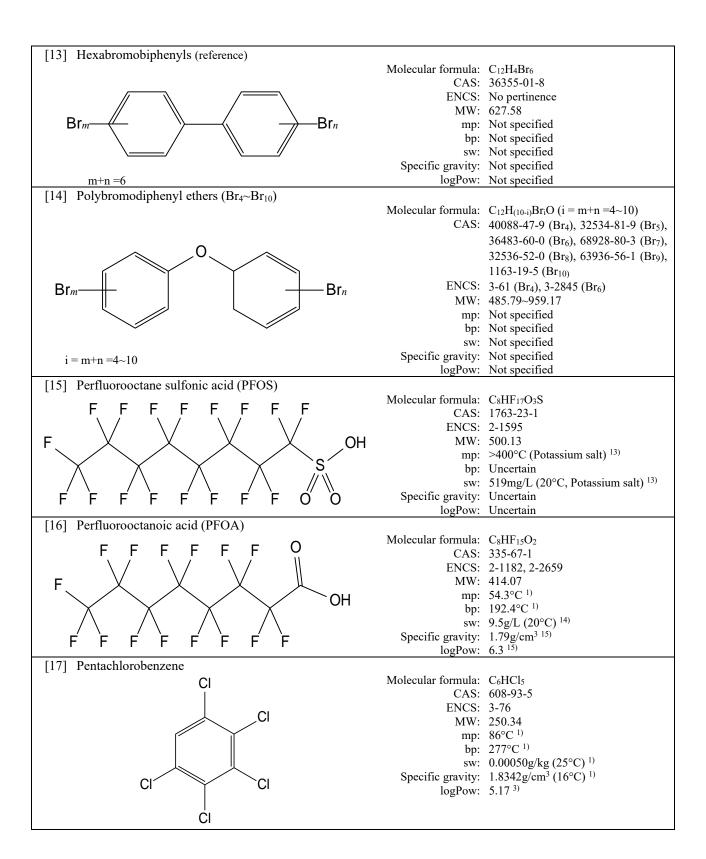

- (Note 1) Up to FY2009, the ten (10) target substance groups of pollutants annotated in the Stockholm Convention with the exceptions of Polychlorinated dibenzo-p-dioxin (PCDDs) and Polychlorinated dibenzofurans (PCDFs) were monitored each fiscal year. As of FY2010, the scope of monitoring had been reviewed and adjustments made to implementation frequency; as some target substances were re-designated for every few years monitoring, the scope did not include ten (10) substances (groups): Aldrin, Dieldrinm, Endrin, DDTs¹², Toxaphenes¹³, Mirex, Chlordecone, Hexabromobiphenyls, Endosulfans and Dicofol which has been discussed whether to be adopted to be POPs in the persistent organic pollutants review committee. In this vein, the latest fiscal year findings for ten (10) target substances not specifically monitored in FY2017 have been included in this report for purpose of reference.
- (Note 2) *cis*-Chlordane and *trans*-Chlordane were adopted as target chemical of the Stockholm convention on Persistent Organic Pollutants. In the survey, Chlordanes including *cis*-Chlordane, *trans*-Chlordane Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor are target chemicals.
- (Note 3) Heptachlor was adopted as target chemical of the Stockholm convention on Persistent Organic Pollutants. In the survey, Heptachlors including *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide are target chemicals.

- (Note 4) In the COP4, α -HCH, β -HCH and γ -HCH (synonym: Lindane) were adopted to be POPs among HCHs, but in this Environmental Monitoring, HCHs which were able to include δ -HCH were designated as target chemicals.
- (Note 5) Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, and Heptabromodiphenyl ethers were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants. Decabromodiphenyl ether was adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants. In the survey, Polybromodiphenyl ethers including those from 4 to 10 bromines are target chemicals.
- (Note 6) Perfluorooctane sulfonic acid (PFOS) and its salts and Perfluorooctane sulfonyl fluoride were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants. The survey of the Perfluorooctane sulfonic acid (PFOS) only monitored linear octyl Perfluorooctane sulfonic acid (PFOS).
- (Note 7) α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane were adopted as target chemicals at the COP6 of the Stockholm convention on Persistent Organic Pollutants. In the survey, 1,2,5,6,9,10-Hexabromocyclododecanes including δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecane are target chemicals. The survey of the Hexabromocyclododecane only monitored α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane since 2016.
- (Note 8) PCNs (Cl₂~Cl₈) was adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants. In the survey, PCNs including those with one (1) chlorine are target chemicals.
- (Note 9) Pentachlorophenol and its salts and esters were adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants, the survey monitored Pentachlorophenol and Pentachloroanisole.
- (Note 10)Chlorinated paraffins ($C_{10}\sim C_{13}$) was adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants. In the survey, Chlorinated paraffins ($C_{10}\sim C_{13}$) with 5~9 chlorines are target chemicals in surface water, sediment and wildlife, and Chlorinated paraffins ($C_{11}\sim C_{13}$) with 4~7 chlorines are target chemicals in air.
- (Note 11) The survey of the Perfluorooctanoic acid (PFOA) only monitored linear octyl Perfluorooctanoic acid (PFOA).
- (Note 12)p,p'-DDT and o,p'-DDT were adopted as target chemicals of the Stockholm convention on Persistent Organic Pollutants. In the survey, DDTs including environmental degraded products p,p'-DDT, o,p'-DDT, p,p'-DDD and o,p'-DDD were target chemicals.
- (Note 13)Chlorobornane and Chlorocamphene of industrial blended material (about 16,000 congeners or isomer) were adopted as target chemicals of the Stockholm convention on Persistent Organic Pollutants. In the survey, 2-endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (Parlar-26), 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-nonachlorobornane (Parlar-50) and 2,2,5,5,8,9,9,10,10-Nonachlorobornane (Parlar-62) are target chemicals.

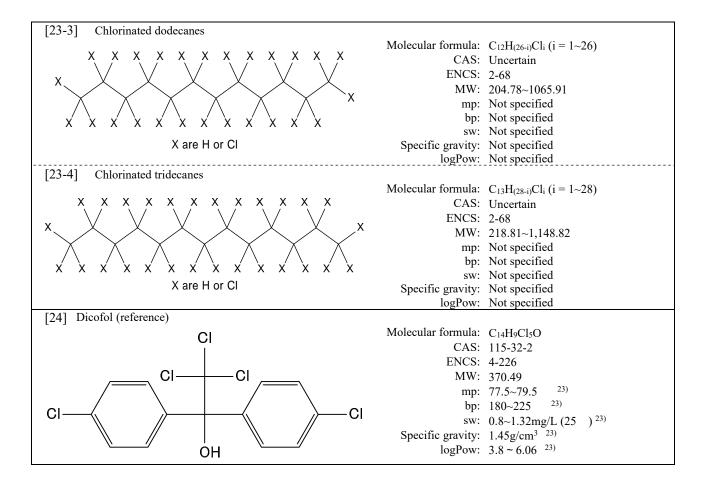

			Monitore	ed media	
No	Name	Surface water	Sediment	Wildlife	Air
[1]	Total Polychlorinated biphenyls (Total PCBs) Total PCBs represents the sum of the PCB congeners listed in the table below. "Total PCBs" only indicates the total amount in the following pages, and the measured values of the individual congeners and coplanar PCBs are listed on the website. [1-1] Monochlorobiphenyls [1-2] Dichlorobiphenyls [1-3] Trichlorobiphenyls [1-4-1] 3,3',4,4'-Tetrachlorobiphenyl (#77) [1-4-2] 3,4,4',5-Tetrachlorobiphenyl (#81) [1-5] Pentachlorobiphenyls [1-5-1] 2,3,3',4,4'-Pentachlorobiphenyl (#105) [1-5-2] 2,3,4,4',5-Pentachlorobiphenyl (#118) [1-5-3] 2,3',4,4'-5-Pentachlorobiphenyl (#123) [1-5-4] 2',3,4,4',5-Pentachlorobiphenyl (#126) [1-6] Hexachlorobiphenyls [1-6-1] 2,3,3',4,4',5-Hexachlorobiphenyl (#156) [1-6-2] 2,3,3',4,4',5-Hexachlorobiphenyl (#157) [1-6-3] 2,3',4,4',5,5'-Hexachlorobiphenyl (#167) [1-6-4] 3,3',4,4',5,5'-Hexachlorobiphenyl (#169) [1-7-1] 2,2',3,3',4,4',5-Heptachlorobiphenyl (#169) [1-7-1] 2,2',3,3',4,4',5-Heptachlorobiphenyl (#170) [1-7-2] 2,2',3,4,4',5,5'-Heptachlorobiphenyl (#189) [1-8] Octachlorobiphenyls [1-9] Nonachlorobiphenyls [1-9] Nonachlorobiphenyl	0	0	0	•
[2] [3]	Hexachlorobenzene Aldrin (reference)	0	0	0	0
[4]	Dieldrin (reference)				
[6]	Endrin (reference) DDTs (reference) [6-1] p,p'-DDT (reference) [6-2] p,p'-DDE (reference) [6-3] p,p'-DDD (reference) [6-4] o,p'-DDT (reference) [6-5] o,p'-DDE (reference) [6-6] o,p'-DDD (reference)				
[7]	Chlordanes [7-1] cis-Chlordane [7-2] trans-Chlordane [7-3] Oxychlordane [7-4] cis-Nonachlor [7-5] trans-Nonachlor	0	0		
[8]	Heptachlors [8-1] Heptachlor [8-2] cis-Heptachlor epoxide [8-3] trans-Heptachlor epoxide	0	0		
[9] [10]	Toxaphenes (reference) [9-1] 2-endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (Parlar-26) (reference) [9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-nonachlorobornane (Parlar-50) (reference) [9-3] 2,2,5,5,8,9,9,10,10-Nonachlorobornane (Parlar-62) (reference) Mirex (reference)				
[11]	HCHs (Hexachlorohexanes) [11-1] α -HCH [11-2] β -HCH [11-3] γ -HCH (synonym:Lindane) [11-4] δ -HCH Chlordecone (reference)	0	0	0	0
	Hexabromobiphenyls (reference)				


	Name		Monitored media		
No	Name	Surface water	Sediment	Wildlife	Air
[14]	Polybromodiphenyl ethers(Br ₄ ~Br ₁₀) [14-1] Tetrabromodiphenyl ethers [14-1-1] 2,2',4,4'-Tetrabromodiphenyl ether (#47) [14-2] Pentabromodiphenyl ethers [14-2-1] 2,2',4,4',5-Pentabromodiphenyl ether (#99) [14-3] Hexabromodiphenyl ethers [14-3-1] 2,2',4,4',5,5'-Pentabromodiphenyl ether (#153) [14-3-2] 2,2',4,4',5,6'-Pentabromodiphenyl ether (#154) [14-4] Heptabromodiphenyl ethers [14-4-1] 2,2',3,3',4,5',6'-Pentabromodiphenyl ether (#175) [14-4-2] 2,2',3,4,4',5',6'-Pentabromodiphenyl ether (#183) [14-5] Octabromodiphenyl ethers [14-6] Nonabromodiphenyl ethers [14-7] Decabromodiphenyl ether	0	0	0	0
	Perfluorooctane sulfonic acid (PFOS)			0	0
	Perfluorooctanoic acid (PFOA)			0	0
[17]	Pentachlorobenzene	0	0	0	0
[18]	Endosulfans (reference) [18-1] α-Endosulfan (reference) [18-2] β- Endosulfan (reference)				
[19]	1,2,5,6,9,10-Hexabromocyclododecanes [19-1] α -1,2,5,6,9,10-Hexabromocyclododecane [19-2] β -1,2,5,6,9,10-Hexabromocyclododecane [19-3] γ -1,2,5,6,9,10-Hexabromocyclododecane			0	0
	[19-4] δ -1,2,5,6,9,10-Hexabromocyclododecane (reference) [19-5] ε -1,2,5,6,9,10-Hexabromocyclododecane (reference)				
[20]	Total Polychlorinated Naphthalenes Total Polychlorinated Naphthalenes represents the sum of the Polychlorinated Naphthalenes congeners. The measured values of the individual congeners are listed on the website.		0	0	0
[21]	Hexachlorobuta-1,3-diene				0
[22]	Pentachlorophenol and its salts and esters [22-1] Pentachlorophenol [22-2] Pentachloroanisole	0	0	0	0
[23]	Short-chain chlorinated paraffins [23-1] Chlorinated decanes [23-2] Chlorinated undecanes [23-3] Chlorinated dodecanes [23-4] Chlorinated tridecanes Dicofol (reference)	0	0	0	0


Chemical and physical properties of target chemicals of the Environmental Monitoring are as follows.



(Abbreviations) CAS: CAS registry number, ENCS: registry number in the Existing and New Chemical Substances List, MW: molecular weight, mp: melting point, bp: boiling point, SW: solubility in water, logPow: *n*-octanol-water partition coefficient, kPa: kilopascal (1 atom approximately equal to 101.3kPa).



[18] Endosulfans (reference) [18-1] α -Endosulfan (reference) Molecular formula: C9H6Cl6O3S CAS: 959-98-8 ENCS: No pertinence MW: 406.93 mp: 109.2°C 16) bp: Uncertain sw: 0.33mg/L (25°C) 16) CI Specific gravity: Uncertain logPow: 4.7 16) [18-2] β -Endosulfan (reference) Molecular formula: C₉H₆Cl₆O₃S CAS: 33213-65-9 ENCS: No pertinence MW: 406.93 mp: 213.3°C 16) CI bp: Uncertain sw: 0.32mg/L (25°C) 16) CI Specific gravity: Uncertain logPow: 4.7 ¹⁶⁾ [19] 1,2,5,6,9,10-Hexabromocyclododecanes [19-1] α -1,2,5,6,9,10-Hexabromocyclododecane [19-2] β -1,2,5,6,9,10-Hexabromocyclododecane Molecular Molecular formula: C₁₂H₁₈Br₆ formula: C₁₂H₁₈Br₆ CAS: 134237-50-6 CAS: 134237-51-7 ENCS: 3-2254 ENCS: 3-2254 MW: 641.70 MW: 641.70 mp: 170~172°C 17) mp: 179~181°C 17) Br bp: Uncertain bp: Uncertain SW: 48.8µg/L 17) SW: 14.7µg/L 17) Specific Specific gravity: Uncertain gravity: Uncertain logPow: 5.07 ¹⁷⁾ logPow: 5.12 17) γ-1,2,5,6,9,10-Hexabromocyclododecane Molecular formula: C₁₂H₁₈Br₆ CAS: 134237-52-8 ENCS: 3-2254 MW: 641.70 mp: 207~209°C 17) Br_{III}, bp: Uncertain SW: 2.1µg/L 17) Specific gravity: Uncertain logPow: 5.47 ¹⁷⁾ [19-5] [19-4] δ -1,2,5,6,9,10-Hexabromocyclododecane ε -1,2,5,6,9,10-Hexabromocyclododecane (reference) (reference) Molecular Molecular formula: C₁₂H₁₈Br₆ formula: C₁₂H₁₈Br₆ CAS: Uncertain CAS: Uncertain ENCS: 3-2254 ENCS: 3-2254 MW: 641.70 MW: 641.70 mp: Uncertain mp: Uncertain Br_{III}, Br bp: Uncertain bp: Uncertain SW: Uncertain SW: Uncertain Specific Specific gravity: Uncertain gravity: Uncertain logPow: Uncertain logPow: Uncertain

[20] Total Polychlorinated Naphthalenes $\label{eq:constraint} Molecular \ formula: \ C_{10}H_{(8\text{-}i)}Cl_i \ (i=m+n=1 \sim 8)$ CAS: 25586-43-0(Cl₁), 28699-88-9(Cl₂), 1321-65-9(Cl₃), 1335-88-2(Cl₄), 1321-64-8(Cl₅), 1335-87-1(Cl₆), 32241-08-0(Cl₇), 2234-13-1(Cl₈) Cl_n ENCS: No pertinence MW: 162.6~403.7 mp: Not specified bp: Not specified $i = m + n = 1 \sim 8$ sw: Not specified Specific gravity: Not specified logPow: Not specified [21] Hexachlorobuta-1,3-diene Molecular formula: C₄Cl₆ CI CI CAS: 87-68-3 ENCS: 2-121 MW: 260.76 CI mp: -21°C 2) Cl bp: 215°C²⁾ sw: 0.0005% (20°C)²⁾ Specific gravity: 1.682 (20/4°C) 2) CI CI logPow: 4.9 18) [22] Pentachlorophenol and its salts and esters [22-1] Pentachlorophenol Molecular formula: C₆HCl₅O ОН CAS: 87-86-5 ENCS: 3-2850 CI, CI MW: 266.35 mp: 174°C (Monohydrate), 191°C (Anhydrous) 19) bp: 309~310°C (Decomposition) 2) Cl sw: 14mg/L (26.7°C) ²⁰⁾ Specific gravity: 1.978 (22°C) 2) logPow: 5.12 ²¹⁾ [22-2] Pentachloroanisole Molecular formula: C7H3Cl5O CAS: 1825-21-4 ENCS: No pertinence CI CI, MW: 280.36 mp: 233.9°C 1) bp: Uncertain sw: Less than 1mg/L ²²⁾ CI CI Specific gravity: Uncertain logPow: 5.45 22) [23] Short-chain chlorinated paraffins [23-1] Chlorinated decanes Molecular formula: $C_{10}H_{(22-i)}Cl_i$ ($i = 1\sim22$) CAS: Uncertain ENCS: 2-68 MW: 176.73~900.07 mp: Not specified bp: Not specified sw: Not specified Specific gravity: Not specified X are H or CI logPow: Not specified [23-2] Chlorinated undecanes Molecular formula: $C_{11}H_{(24-i)}Cl_i$ ($i = 1 \sim 24$) CAS: Uncertain ENCS: 2-68 MW: 190.75 ~ 982.99 mp: Not specified bp: Not specified sw: Not specified Specific gravity: Not specified X are H or CI logPow: Not specified

References

- 1) John R. Rumble, CRC Handbook of Chemistry and Physics, 98th Edition, CRC Press LLC (2017)
- 2) O'Neil, The Merck Index An Encyclopedia of Chemicals, Drugs, and Biologicals 15th Edition, Merck Co. Inc. (2013)
- 3) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 4) IPCS, International Chemical Safety Cards, Aldrin, ICSC0774 (1998)
- 5) Howard et al., Handbook of Physical Properties of Organic Chemicals, CRC Press Inc. (1996)
- 6) IPCS, International Chemical Safety Cards, Endrin, ICSC1023 (2000)
- 7) IPCS, International Chemical Safety Cards, DDT, ICSC0034 (2004)
- 8) Biggar et al., Apparent solubility of organochlorine insecticides in water at various temperatures, Hilgardia, 42, 383-391 (1974)
- 9) IPCS, International Chemical Safety Cards, alpha-Hexachlorocyclohexane, ICSC0795 (1998)
- 10) ATSDR, Toxicological Profile for alpha-, beta-, gamma- and delta-Hexachlorocyclohexane (2005)
- 11) IPCS, International Chemical Safety Cards, beta-Hexachlorocyclohexane, ICSC0796 (1998)
- 12) IPCS, International Chemical Safety Cards, Chlordecone ICSC1432 (2003)
- 13) United Nations Environment Programme (UNEP), Risk profile on perfluorooctane sulfonate, Report of the Persistent Organic Pollutants Review Committee on the work of its second meeting (2006)
- 14) OECD, Perfluorooctanoic Acid & Ammonium Perfluorooctanoate, SIDS Initial Assessment Profile for 26th SIAM (2008)
- 15) IPCS, International Chemical Safety Cards, Perfkuorooctanoic acid, ICSC1613 (2005)
- 16) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on endosulfan, Report of the Persistent Organic Pollutants Review Committee on the work of its fifth meeting (2009)
- 17) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on hexabromocyclododecane, Report of the Persistent Organic Pollutants Review Committee on the work of its sixth meeting (2010)
- 18) IPCS, International Chemical Safety Cards, Hexachlorobutadiene ICSC0896 (1997)
- 19) International Agency for Research on Cancer(IARC), IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man(1972)
- 20) Yalkowsky et al., Aquasol Database of Aqueous Solubility Version 5, College of Pharmacy, University of Arizona(1992)
- 21) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 22) United Nations Environment Programme (UNEP), Risk profile on pentachlorophenol and its salts and esters, Report of the Persistent Organic Pollutants Review Committee on the work of its ninth meeting (2013)
- 23) United Nations Environment Programme (UNEP), Risk profile on dicofol, Report of the Persistent Organic Pollutants Review Committee on the work of its twelfth meeting (2016)

3. Monitored site and procedure

In the Environmental Monitoring (of surface water, sediment, wildlife, and air), the sampling of specimens was entrusted to prefectural governments and government-designated cities across Japan and the specimens sampled were analysed by private analytical laboratories.

(1) Organisations responsible for sampling

Local			Monitore	ed media	
communities	Organisations responsible for sampling	Surface water	Sediment	Wildlife	Air
Hokkaido	Environmental Promotion Section, Environment Division, Department of Environment and Lifestyle, Hokkaido Prefectural Government and Hokkaido Research Organization Environmental and Geological Research Department Institute of Environmental Sciences				
Sapporo City	Sapporo City Institute of Public Health				
Iwate Pref.	Research Institute for Environmental Sciences and Public Health of Iwate Prefecture				
Miyagi Pref.	Miyagi Prefectural Institute of Public Health and Environment				
Sendai City	Sendai City Institute of Public Health				
Akita Pref.	Akita Research Center for Public Health and Environment				
Yamagata Pref.	Yamagata Institute of Environmental Sciences				
Fukushima Pref.	Fukushima Prefectural Environmental Center				
Ibaraki Pref.	Ibaraki Kasumigaura Environmental Science Center				
Tochigi Pref.	Tochigi Prefectural Institute of Public Health and Environmental Science				
Saitama Pref.	Center for Environmental Science in Saitama				
Chiba Pref.	Chiba Prefectural Environmental Research Center				
Chiba City	Chiba City Institute of Health and Environment				
Tokyo Met.	Environmental Improvement Division, Bureau of Environment, Tokyo Metropolitan Government and Tokyo Metropolitan Research Institute for Environmental Protection				
Kanagawa Pref.	Kanagawa Environmental Research Center				
Yokohama City	Yokohama Environmental Science Research Institute				
Kawasaki City	Kawasaki Environment Research Institute				
Niigata Pref.	Niigata Prefectural Institute of Public Health and Environmental Sciences				
Toyama Pref.	Environment Preservation Division, Living Environmental and Cultural Affairs Department, Toyama Prefectural Government and Toyama Prefectural Environmental Science Research Center				
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental Science				
Fukui Pref.	Fukui Prefectural Institute of Public Health and Environmental Science				
Yamanashi Pref.	Yamanashi Institute for Public Health and Environment				
	Yamanashi Prefectural Fisheries Technology Center			*	
Nagano Pref.	Nagano Environmental Conservation Research Institute				
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental Sciences				
Shizuoka Pref.	Shizuoka Institute of Environment and Hygiene				
Aichi Pref.	Aichi Environmental Research Center				
Nagoya City	Nagoya City Environmental Science Research Center, Regional Environmental measures Division, Environmental Bureau, Nagoya city				
Mie Pref.	Mie Prefecture Health and Environment Research Institute				
Shiga Pref.	Lake Biwa Environmental Research Institute				
Kyoto Pref.	Kyoto Prefectural Institute of Public Health and Environment				
Kyoto City	Kyoto City Institute of Health and Environmental Sciences, Health and Welfare Bureau, Kyoto City				
Osaka Pref.	Environment Preservation Division, Environment Management Office, Department of Environment, Agriculture, Forestry and Fisheries, Osaka Prefectural Government and Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture				

Local communities		Monitored media					
	Organisations responsible for sampling		Sediment	Wildlife	Air		
Osaka City	Osaka City Institute of Public Health and Environmental Sciences						

Local			Monitore	ed media	
communities	Organisations responsible for sampling	Surface water	Sediment	Wildlife	Air
Hyogo Pref.	Water and Air Quality Control Division, Environmental Management Bureau, Agricultural and Environmental Affairs Department, Hyogo Prefectural Government and Hyogo Prefectural Institute of Environmental Sciences, Hyogo Environmental Advancement Association				
	Water and Air Quality Control Division, Environmental Management Bureau, Agricultural and Environmental Affairs Department, Hyogo Prefectural Government and Green Nature Division, Environmental Policy Office, Department of Citizen Autonomy, Itami City			*	
Kobe City	Natural Environmental Symbiotic Division, Environmental Presevation Branch, Environment Bureau, Kobe City and Kobe Institute of Health, Welfare Bureau, Health Division, Health				
Nara Pref.	Nara Prefecture Landscape and Environment Center				
Wakayama Pref.	Wakayama Prefectural Research Center of Environment and Public Health				
Tottori Pref.	Tottori Prefectural Institute of Public Health and Environmental Science				
Shimane Pref.	Shimane Prefectural Institute of Public Health and Environmental Science and Oki Public Health Center				
Okayama Pref.	Okayama Prefectural Institute for Environmental Science and Public Health				
Hiroshima Pref.	Hiroshima Prefectural Technology Research Institute Health and Environment Center				
Hiroshima City	Hiroshima City Institute of Public Health				
Yamaguchi Pref.	Environmental Policy Division, Public Environmental Affairs Department, Yamaguchi Prefectural Government and Yamaguchi Prefectural Institute of Public Health and Environment				
Tokushima Pref.	Tokushima Prefectural Pablic Health, Pharmaceutical and Environmental Sciences Center				
Kagawa Pref.	Kagawa Prefectural Research Institute for Environmental Sciences and Public Health				
Ehime Pref.	Ehime Prefectural Institute of Public Health and Environmental Science				
Kochi Pref.	Kochi Prefectural Environmental Research Center				
Fukuoka Pref.	Fukuoka Institute of Health and Environmental Sciences				
Kitakyushu City	Institute of Health and Environmental Sciences, Public Health and Welfare Bureau, Kitakyushu City				
Fukuoka City	Fukuoka City Institute for Hygiene and the Environment				
Saga Pref.	Saga Prefectural Environmental Research Center				
Nagasaki Pref.	Regional Environment Division, Environment Bureau, Nagasaki Prefecture				
Kumamoto Pref.	Kumamoto Prefectural Institute of Public-Health and Environmental Science				
Oita Pref.	Environment Preservation Division, Department of Environment, Oita Prefectural Government and Oita Prefectural Institute of Health and Environment				
Miyazaki Pref.	Miyazaki Prefectural Institute for Public Health and Environment				
Kagoshima Pref.	Kagoshima Prefectural Institute for Environmental Research and Public Health				
Okinawa Pref.	Okinawa Prefectural Institute of Health and Environment				

(Note 1) Organisations responsible for sampling are described by their official names in FY2017.

(Note 2) *: Because there were the examples of survey that obtained the eggs in other countries, the eggs of great cormorants were taken in this survey by Yamanashi Prefectural Fisheries Technology Center and Water and Air Quality Control Division, Environmental Management Bureau, Agricultural and Environmental Affairs Department, Hyogo Prefectural Government and Green Nature Division, Environmental Policy Office, Department of Citizen Autonomy, Itami City. The results were treated as the reference values.

(2) Monitored sites (areas)

In the Environmental Monitoring (of surface water, sediment, wildlife, and air), the sampling of specimens was entrusted to prefectural governments and government-designated cities across Japan and the specimens sampled were analysed by private analytical laboratories.

The monitored sites (areas) are shown in Table 3-1-1 and Figure 3-1-1 for surface water, Table 3-1-2 and Figure 3-1-2 for sediment, Table 3-1-3 and Figure 3-1-3 for wildlife and Table 3-1-4 and Figure 3-1-4 for air. The breakdown is summarized as follows.

Monitored	Numbers of local	Numbers of target	Numbers of monitored	Numbers of samples at a
media	communities	chemicals (groups)	sites (or areas)	monitored site (or area)
Surface water	42	9	47	1
Sediment	47	10	62	1*
Wildlife (bivalves)	3	11	3	1**
Wildlife (fish)	17	11	19	1**
Wildlife (birds)	4***	11	4***	1**
Air (warm season)	35	12	37	1 or 3****
All media	57	14	127***	

(Note 1) "*": For sediment, at each monitoring point, three(3) specimen samples were collected. The target substances were analysed for each place with one(1) specimen sample that is a mixture of equal parts of the three(3) specimen samples.

(3) Sampling method of specimens

The sampling of specimens and the preparation of samples were carried out following the "Environmental Monitoring Instruction Manual" (No. 040309001, published on March 9th, 2004) by the Environment Health and Safety Division, Environmental Health Department, Ministry of the Environment of Japan (MOE).

(4) Target species

The species to be monitored among the wildlife media were selected considering the possibility of international comparison, as well as their significance and practicality as indicators: 1 bivalve (blue mussel), 8 fishes (predominantly sea bass), and 1 bird, namely, 10 species in total.

The properties of the species determined as targets in the FY2017 monitoring are shown in Table 3-2. Moreover, Table 3-1-3 summarizes the outline of the samples used for analysis.

⁽Note 2) "**": For wildlife species, at each monitoring point, three(3) specimen samples were collected. The target substance group Total Polychlorinated Naphthalenes were analysed with the three(3) specimen samples for each place. The other substances were analysed for each place with one(1) specimen sample that is a mixture of equal parts of the three(3) specimen samples.

(Note 3) "***": Samples obtained in 2 sites of the birds as wildlife eggs of Great Cormorant, and the samples were measured each the eggs yolk and

the eggs white, the results were treated as a reference values.

⁽Note 4) "****": The target substances other than [21] Hexachlorobuta-1,3-diene were analysed with one (1) sample for each sit. The target substance [21] Hexachlorobuta-1,3-diene was analysed with the three(3) specimen samples for each site.

Table 3-1-1 List of monitored sites (surface water) in the Environmental Monitoring in FY2017

Table 3-1-1 List of	f monitored sites (surface water) in the Environmental Monitoring in FY	Y2017
Local communities	Monitored sites	Sampling dates
Hokkaido	Suzuran-ohashi Bridge, Riv Tokachi (Obihiro City)	October 19, 2017
Tiokkuido	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari (Ishikari City)	November 2, 2017
Iwate Pref.	Riv. Toyosawa (Hanamaki City)	October 12, 2017
Miyagi Pref.	Sendai Bay (Matsushima Bay)	October 18, 2017
Akita Pref.	Lake Hachiro	September 7, 2017
Yamagata Pref.	Mouth of Riv. Mogami (Sakata City)	October 28, 2017
Fukushima Pref.	Onahama Port	October 18, 2017
Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City)	November 2, 2017
Tochigi Pref.	Riv. Tagawa (Utsunomiya City)	October 12, 2017
Saitama Pref.	Akigaseshusui of Riv. Arakawa (Shiki City)	November 2, 2017
Chiba City	Mouth of Riv. Hanami (Chiba City)	November 10, 2017
Tokyo Met.	Mouth of Riv. Arakawa (Koto Ward)	November 1, 2017
TORYO MEL.	Mouth of Riv. Sumida (Minato Ward)	November 1, 2017
Yokohama City	Yokohama Port	October 13, 2017
Kawasaki City	Keihin Canal, Port of Kawasaki*	October 13, 2017
Niigata Pref.	Lower Riv. Shinano (Niigata City)	October 19, 2017
Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City)	October 19, 2017
Ishikawa Pref.	Mouth of Riv. Sai (Kanazawa City)	November 2, 2017
Fukui Pref.	Mishima-bashi Bridge, Riv. Shono (Tsuruga City)	November 2, 2017 November 2, 2017
		November 2, 2017 November 2, 2017
Nagano Pref. Shizuoka Pref.	Lake Suwa (center)	
Aichi Pref.	Riv. Tenryu (Iwata City)	October 25, 2017
	Nagoya Port* Yokkaichi Port	October 25, 2017 October 25, 2017
Mie Pref.		October 23, 2017 October 21, 2017
Shiga Pref.	Lake Biwa (center, offshore of Karasaki)	,
Kyoto Pref.	Miyazu Port	October 25, 2017
Kyoto City	Miyamae-bashi Bridge, Riv. Katsura (Kyoto City)	October 28, 2017
Osaka Pref.	Mouth of Riv. Yamato (Sakai City)	November 9, 2017
Osaka City	Osaka Port	October 25, 2017
Hyogo Pref.	Offshore of Himeji	October 18, 2017
Kobe City	Kobe Port (center)	November 1, 2017
Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)	October 19, 2017
Okayama Pref. Hiroshima Pref.	Offshore of Mizushima Kure Port	October 26, 2017
Hirosnima Prei.		November 7, 2017 November 7, 2017
V	Hiroshima Bay	October 14, 2017
Yamaguchi Pref.	Tokuyama Bay	
	Offshore of Ube	November 21, 2017
T 1 1' D C	Offshore of Hagi	November 4, 2017
Tokushima Pref.	Mouth of Riv. Yoshino (Tokushima City)	October 19, 2017
Kagawa Pref.	Takamatsu Port	October 4, 2017
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	October 14, 2017
Kitakyushu City	Dokai Bay	October 18, 2017
Saga Pref.	Imari Bay	October 26, 2017
Nagasaki Pref.	Omura Bay	December 15, 2017
Kumamoto Pref.	Hiraki-bashi Bridge, Riv. Midori (Uto City)	November 15, 2017
Miyazaki Pref.	Mouth of Riv. Oyodo (Miyazaki City)	October 31, 2017
Kagoshima Pref.	Riv. Amori (Kirishima City)	November 17, 2017
Ol: P 3	Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)	October 31, 2017
Okinawa Pref.	Naha Port	October 27, 2017

(Note) *: "Keihin Canal, Port of Kawasaki" of Environmental Monitoring and "Keihin Canal, Port of Kawasaki (front of Ogimachi)" of Detailed Environmental Survey are the same point each.

Figure 3-1-1 Monitored sites (surface water) in the Environmental Monitoring in FY2017

	monitored sites (sediment) in the Environmental Monitoring in FY20	17
Local communities	Monitored sites	Sampling dates
Hokkaido	Onnenai-ohashi Bridge, Riv. Teshio (Bifuka Town)	September 13, 2017
	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari (Ishikari City)	November 2, 2017
	Tomakomai Port	September 14, 2017
Iwate Pref.	Riv. Toyosawa (Hanamaki City)	October 12, 2017
Miyagi Pref.	Sendai Bay (Matsushima Bay)	October 18, 2017
Sendai City	Hirose-ohashi Bridge, Riv. Hirose (Sendai City)	November 16, 2017
Akita Pref.	Lake Hachiro	September 7, 2017
Yamagata Pref.	Mouth of Riv. Mogami (Sakata City)	October 28, 2017
Fukushima Pref.	Onahama Port	October 18, 2017
Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City)	November 2, 2017
Tochigi Pref.	Riv. Tagawa (Utsunomiya City)	October 12, 2017
Chiba Pref.	Coast of Ichihara and Anegasaki	October 19, 2017
Chiba City	Mouth of Riv. Hanami (Chiba City)	November 10, 2017
Tokyo Met.	Mouth of Riv. Arakawa (Koto Ward)	November 1, 2017
	Mouth of Riv. Sumida (Minato Ward)	November 1, 2017
Yokohama City	Yokohama Port	October 13, 2017
Kawasaki City	Mouth of Riv. Tama (Kawasaki City)	October 13, 2017
37" · 5 °	Keihin Canal, Port of Kawasaki*	October 13, 2017
Niigata Pref.	Lower Riv. Shinano (Niigata City)	October 19, 2017
Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City)	October 19, 2017
Ishikawa Pref.	Mouth of Riv. Sai (Kanazawa City)	November 2, 2017
Fukui Pref.	Mishima-bashi Bridge, Riv. Shono (Tsuruga City)	November 2, 2017
Yamanashi Pref.	Senshu-bashi Bridge, Riv. Arakawa (Kofu City)	October 21, 2017
Nagano Pref.	Lake Suwa (center)	November 2, 2017
Shizuoka Pref.	Shimizu Port	October 13, 2017
	Riv. Tenryu (Iwata City)	October 25, 2017
Aichi Pref.	Kinuura Port	October 25, 2017
	Nagoya Port*	October 25, 2017
Mie Pref.	Yokkaichi Port	October 25, 2017
	Toba Port	October 18, 2017
Shiga Pref.	Lake Biwa (center, offshore of Minamihira)	October 21, 2017
	Lake Biwa (center, offshore of Karasaki)	November 28, 2017
Kyoto Pref.	Miyazu Port	October 25, 2017
Kyoto City	Miyamae-bashi Bridge, Riv. Katsura (Kyoto City)	October 28, 2017
Osaka Pref.	Mouth of Riv. Yamato (Sakai City)	November 9, 2017
Osaka City	Osaka Port	October 26, 2017
	Outside Osaka Port	October 25, 2017
	Mouth of Riv. Yodo (Osaka City)	October 25, 2017
	Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)	October 25, 2017
Hyogo Pref.	Offshore of Himeji	October 18, 2017
Kobe City	Kobe Port (center)	November 1, 2017
Nara Pref.	Riv. Yamato (Oji Town)	October 19, 2017
Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)	October 19, 2017
Okayama Pref.	Offshore of Mizushima	October 26, 2017
Hiroshima Pref.	Kure Port	November 7, 2017
Vama1' D C	Hiroshima Bay	November 7, 2017
Yamaguchi Pref.	Tokuyama Bay Offshore of Ube	October 14, 2017
	Offshore of Ube Offshore of Hagi	November 16, 2017 November 4, 2017
Tokuchime Deef	ĕ	
Tokushima Pref. Kagawa Pref.	Mouth of Riv. Yoshino (Tokushima City) Takamatsu Port	October 19, 2017 October 4, 2017
Ehime Pref.	Niihama Port	October 4, 2017 October 25, 2017
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	October 14, 2017
Kitakyushu City	Dokai Bay	October 14, 2017 October 18, 2017
Fukuoka City	Hakata Bay	October 18, 2017 October 18, 2017
Saga Pref.	Imari Bay	October 18, 2017 October 26, 2017
Nagasaki Pref.	Omura Bay	December 15, 2017
Oita Pref.	Mouth of Riv. Oita (Oita City)	October 31, 2017
Miyazaki Pref.	Mouth of Riv. Oyado (Miyazaki City)	October 31, 2017 October 31, 2017
Kagoshima Pref.	Riv. Amori (Kirishima City)	November 17, 2017
ragosiiiiia Fici.	Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)	October 31, 2017
Okinawa Pref.	Naha Port	October 31, 2017 October 27, 2017
	Nana Port	

(Note) *: "Keihin Canal, Port of Kawasaki" of Environmental Monitoring and "Keihin Canal, Port of Kawasaki (front of Ogimachi)" of Detailed Environmental Survey are the same point each.

Figure 3-1-2 Monitored sites (sediment) in the Environmental Monitoring in FY2017

Table 3-1-3 List of monitored areas (wildlife) in the Environmental Monitoring in FY2017

Local communities	Monitored sites	Sampling dates		Wildlife species
Hokkaido	Offshore of Kushiro	December 15, 2017	Fish	Rock greenling (Hexagrammos lagocephalus)
	Offshore of Kushiro	October 25, 2017	Fish	Chum salmon (Oncorhynchus keta)
	Offshore of Japan Sea (offshore of Iwanai)	January 17, 2018	Fish	Greenling (Hexagrammos otakii)
Iwate Pref.	Yamada Bay	October 30, 2017	Bibalves	Blue mussel (Mytilus galloprovincialis)
	Yamada Bay	October 30, 2017	Fish	Greenling (Hexagrammos otakii)
Miyagi Pref.	Sendai Bay(Matsushima Bay)	December 18, 2017	Fish	Greenling (Hexagrammos otakii)
Ibaraki Pref.	Offshore of Joban	November 14, 2017	Fish	Pacific saury (Cololabis saira)
Tokyo Met.	Tokyo Bay	September 19, 2017	Fish	Sea bass (Lateolabrax japonicus)
Yokohama City	Yokohama Port	November 16, 2017	Bibalves	Blue mussel (Mytilus galloprovincialis)
Kawasaki City	Offshore of Ogishima Island, Port of Kawasaki	September 25, 2017	Fish	Sea bass (Lateolabrax japonicus)
Ishikawa Pref.	Coast of Noto Peninsula	August 1, 2017	Bibalves	Blue mussel (Mytilus galloprovincialis)
Nagoya City	Nagoya Port	August 29, 2017	Fish	Striped mullet (Mugil cephalus)
Shiga Pref.	Lake Biwa(Lake Kita, offshore of Tikubushima Island)	August 9, 2017	Birds	Great Cormorant (Phalacrocorax carbo)
	Lake Biwa, Riv. Ado (Takashima City)	April 5, 2017	Fish	Dace (Tribolodon hakonensis)
Osaka Pref.	Osaka Bay	November 4, 2017	Fish	Sea bass (Lateolabrax japonicus)
Hyogo Pref.	Offshore of Himeji	November 20, 2017	Fish	Sea bass (Lateolabrax japonicus)
Tottori Pref.	Riv.Tenjin(Kurayoshi City)	May 2, 2017	Birds	Great Cormorant (Phalacrocorax carbo)
	Nakaumi	October 24, 2017	Fish	Sea bass (Lateolabrax japonicus)
Hiroshima City	Hiroshima Bay	November 6 and 12, 2017	Fish	Sea bass (Lateolabrax japonicus)
Kagawa Pref.	Takamatsu Port	August 16, 2017	Fish	Striped mullet (Mugil cephalus)
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	September~November, 2017*	Fish	Sea bass (Lateolabrax japonicas)
Oita Pref.	Mouth of Riv. Oita(Oita City)	January 22, 2018	Fish	Sea bass (Lateolabrax japonicas)
Kagoshima Pref.	West Coast of Satsuma Peninsula	November 27 and 28, 2017	Fish	Sea bass (Lateolabrax japonicas)
Okinawa Pref.	Nakagusuku Bay	January 30, 2018	Fish	Okinawa seabeam (Acanthopagrus sivicolus)

(Note) "*" means details of the sampling date unknown.

Figure 3-1-3 Monitored areas (wildlife) in the Environmental Monitoring in FY2017

Table 3-1-4 List of	monitored sites (air) in the Environmental Monitoring in FY2	
Local communities	Monitored sites	Sampling dates (Warm season)
Hokkaido	Kamikawa Joint Government Building (Asahikawa City)	October 10 ~17** or October 10 ~ 13*, 2017
Sapporo City	Sapporo Art Park (Sapporo City)	September 12 ~ 15, 2017
Iwate Pref.	Sugo Air Quality Monitoring Station (Takizawa City)	September 12 ~ 15, 2017
Miyagi Pref.	Miyagi Prefectural Institute of Public Health and Environment (Sendai City)	September $5 \sim 12**$ or September $5 \sim 8*$, 2017
Yamagata Pref.	Yamagata Institute of Environmental Sciences (Murayama City)	August 23 ~ 30** or August 23 ~ 26*, 2017
Ibaraki Pref.	Ibaraki Kasumigaura Environmental Science Center (Tsuchiura City)	September $6 \sim 13**$ or September $6 \sim 9*$, 2017
Chiba Pref.	Ichihara-Matsuzaki Air Quality Monitoring Station (Ichihara City)	September 13 ~ 20** or September 13 ~ 16*, 2017
Tokyo Met.	Tokyo Metropolitan Research Institute for Environmental Protection (Koto Ward)	September 19 ~ 26** or September 19 ~ 22*, 2017
	Chichijima Island	October 6 ~13** or October 6 ~ 12*, 2017
Kanagawa Pref.	Kanagawa Environmental Research Center (Hiratsuka City)	September $5 \sim 8,2017$
Yokohama City	Yokohama Environmental Science Research Institute (Yokohama City)	September 15 ~ 22** or September 19 ~ 22*, 2017
Niigata Pref.	Oyama Air Quality Monitoring Station (Niigata City)	August 22 ~ 25, 2017
Toyama Pref.	Tonami Air Quality Monitoring Station (Tonami City)	September 19 ~ 22, 2017
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental Science (Kanazawa City)	September $5 \sim 8,2017$
Yamanashi Pref.	Yamanashi Institute for Public Health and Environment (Kofu City)	September 12 ~ 15, 2017
Nagano Pref.	Nagano Environmental Conservation Research Institute (Nagano City)	September 20 ~ 27** or September 20 ~ 23*, 2017
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental Sciences (Kakamigahara City)	September 12 ~ 15, 2017
Nagoya City	Chikusa Ward Heiwa Park (Nagoya City)	August 29 ~ September 5** or August 29 ~ September 1*, 2017
Mie Pref.	Mie Prefecture Health and Environment Research Institute (Yokkaichi City)	September 19 ~ 22, 2017
Kyoto Prif.	Kyoto Prefecture Joyo Senior High School(Joyo City)	October 3 ~ 6, 2017
Osaka Pref.	Annex of 2nd Osaka common building for government offices (Osala City)	September 19 ~ 22, 2017
Hyogo Pref.	Hyogo Prefectural Environmental Research Center (Kobe City)	August 29 ~ September 1, 2017
Kobe City	Kobe City Government Building (Kobe City)	September 12 ~ 15, 2017
Nara Pref.	Tenri Air Quality Monitoring Station (Tenri City)	August 22 ~ 25, 2017
Shimane Pref.	Oki National Acid Rain Observatory (Okinoshima Town)	September 26 ~ 29, 2017
Hiroshima City	Hiroshima City Kokutaiji Junior High School (Hiroshima City)	September 12 ~ 15, 2017
Yamaguchi Pref.	Yamaguchi Prefectural Institute of Public Health and Environment (Yamaguchi City)	September 19 ~ 26** or September 19 ~ 22*, 2017
	Hagi Health and Welfare Center (Hagi City)	September 19 ~ 26** or September 19 ~ 22*, 2017
Tokushima Pref.	Tokushima Prefectural Pablic Health, Pharmaceutical and Environmental Sciences Center (Tokushima City)	September 26 ~ 29, 2017
Kagawa Pref.	Kagawa Prefectural Public Swimming Pool (Takamatsu City)	September 27 ~ October 4** or September 27 ~ 30*, 2017
Ehime Pref.	Ehime Prefectural Government Nanyo Regional Office (Uwajima City)	August 22 ~ 25, 2017
Fukuoka Pref.	Omuta City Government Building (Omuta City)	September 25 ~ 28, 2017
Saga Pref.	Saga Prefectural Environmental Research Center (Saga City)	September 19 ~ 26** or September 19 ~ 22*, 2017
Kumamoto Pref.	Kumamoto Prefectural Institute of Public Health and Environmental Science (Udo City)	October 3 ~ 6, 2017
Miyazaki Pref.	Miyazaki Prefectural Institute for Public Health and Environment (Miyazaki City)	September $5 \sim 12**$ or September $5 \sim 8*$, 2017
Kagoshima Pref.	Kagoshima Prefectural Institute for Environmental Research and Public Health (Kagoshima City)	August 29 ~ September 1, 2017
Okinawa Pref.	Cape Hedo (Kunigami Village)	August 28 ~ 31, 2017
	sampling except [21] Hexachlarabuta 1.3 diene "** " means sampli	

(Note) " * " means sampling except [21] Hexachlorobuta-1,3-diene. " ** " means sampling [21] Hexachlorobuta-1,3-diene.

Figure 3-1-4 Monitored sites (air) in the Environmental Monitoring in FY2017

Table 3-2 Properties of target species

L	Species	Properties	Monitored areas	Aim of monitoring	Notes
Bibalves	Blue mussel (Mytilus galloprovincialis)	Distributed worldwide, excluding tropical zones Adheres to rocks in inner bays and to bridge piers	Yamada bayYokohama portCoast of Noto Peninsula	Follow-up of the environmental fate and persistency in specific areas	Monitored in the 3 areas with different levels of persistency
	Greenling (Hexagrammos otakki)	Distributed from Hokkaido to southern Japan, the Korean Peninsula, and China Lives in shallow seas of 5-50 m depth from sea level	Offshore of Iwanai Yamada bay Sendai Bay	Follow-up of the environmental fate and persistency in specific areas	
	Rock greenling (Hexagrammos lagocephalus)	Lives in cold-current areas of Hidaka and eastward (Hokkaido) Larger than the greenling and eats fish smaller than its mouth size at the sea bottom	Offshore of Kushiro	Follow-up of the environmental fate and persistency in specific areas	
	Pacific saury (Cololabis saira)	Distributed widely in northern Pacific Ocean Migrates around Japanese Archipelago; in Chishima in autumn and northern Kyushu in winter Bioaccumulation of chemicals is said to be moderate	Offshore of Joban	Follow-up of the environmental fate and persistency around the Japanese archipelago	
Fish	Chum salmon (Oncorhynchus keta)	Distributed in northern Pacific Ocean, Sea of Japan, Bering Sea, Sea of Okhotsk, the whole of the Gulf of Alaska, and part of the Arctic Ocean Runs the Tone River on the Pacific Ocean side and rivers in Yamaguchi Prefecture and northward on the Sea of Japan side in Japan Bioaccumulation of chemicals is said to be moderate	Offshore of Kushiro	Follow-up of the environmental fate and persistency on a global scale	
H	Sea bass (Lateolabrax japonicus)	Distributed around the shores of various areas in Japan, the Korean Peninsula, and the coastal areas of China Sometimes lives in a freshwater environment and brackish-water regions during its life cycle Bioaccumulation of chemicals is said to be high	Tokyo Bay Offshore of Ogishima Island, Port of Kawasaki Osaka Bay Offshore of Himeji Nakaumi Hiroshima Bay Mouth of Riv. Shimanto Mouth of Riv. Oita West Coast of Satsuma Peninsula	Follow-up of the environmental fate and persistency in specific areas	Monitored in the 9 areas with different levels of persistency
	Striped mullet (Mugil cephalus)	Distributed widely in the worldwide tropical zones and subtropical zones Sometimes lives in a freshwater environment and brackish-water regions during its life cycle	Nagoya Port Takamatsu Port	Follow-up of the environmental fate and persistency in specific areas	
	Okinawa seabeam (Acanthopagrus sivicolus)	Distributed around Nansei Shoto (Ryukyu Islands) Lives in coral reefs and in bays into which rivers flow	• Nakagusuku Bay	Follow-up of the environmental fate and persistency in specific areas	
	Dace (Tribolodon hakonensis)	Distributed widely in freshwater environments throughout Japan Preys mainly on insects	• Lake Biwa, Riv. Ado (Takashima City)	Follow-up of the environmental fate and persistency in specific areas	
Birds	Great Cormorant (immature)* (Phalacrocorax carbo)	Distributed widely throughout Japan Eats primarily fish Bioaccumulation of chemicals is said to be high	Lake Biwa(Lake Kita, offshore of Tikubushima Island) Riv.Tenjin(Kurayoshi City)	concentrations of chemicals in top predators	Monitored in the 2 areas with different levels of persistency

^{*} Because there were the examples of survey that obtained the eggs in other countries, the eggs of great cormorants were taken in this survey. The results were treated as the reference values.

Table 3-3-1 Basic data of specimens (bivalves as wildlife) in the Environmental Monitoring in FY 2017

Bivalve species (Area)	No.	Sampling month	Sex	Number of animals		ngth (cm) Average)			Veight (g) (Average)		Water content %	Lipid content %
Blue mussel	1	October.	Uncertain	100	8.7 ~	10.4 (9.3)	49 ~	101 (67)	80	1.8
(Mytilus galloprovincialis)	2	2017	Uncertain	190	7.6 ~	8.4 (8.1)	35 ~	62 (47)	79	1.8
Yamada Bay	3	2017	Uncertain	367	6.7 ~	7.5 (7.3)	23 ~	33 (29)	79	0.5
Blue mussel	1	November.	Mixed	155	3.0 ~	4.2 (3.3)	2.7 ~	10.1 (4.1)	85	0.5
(Mytilus galloprovincialis)	2	2017	Mixed	143	2.6 ~	5.5 (3.4)	2.7 ~	17.8 (5.6)	85	0.5
Yokohama Port	3	2017	Mixed	133	2.5 ~	4.7 (3.4)	2.2 ~	13.6 (5.5)	85	0.5
Blue mussel	1		Uncertain	62	10.4 ~	12.9 (11.7)	94.9 ~	189.7 (124.7)	70	1.7
(Mytilus galloprovincialis) Coast of Noto Peninsula	2	August, 2017	Uncertain	66	8.2 ~	10.8 (9.3)	51.5 ~	112.1 (72.1)	70	2.4
	3	2017	Uncertain	94	6.2 ~	8.7 (7.3)	31.8 ~	60.5 (43.3)	67	2.0

Table 3-3-2 Basic da	ta o	f specime	ns (fish as	wildlife	e) in the E	nvironme	ntal Mo	onitoring i	n FY 201	17 (Part	1)	
		Commline		Number	La	moth (oma)		7	Vaialet (a)		Water	Lipid
Fish species (Area)	No.	Sampling month	Sex	of		ngth (cm) Average)			Veight (g) (Average)		content	content
		month		animals	(4	Average)			(Average)		%	%
Rock greenling	1		Uncertain	1		36.0			1,340		65	1.6
(Hexagrammos	2	December,	Uncertain	2	33.0 ~	33.0 (33.0)	880 ~	920 (900)	63	1.7
lagocephalus)		2017		_	33.0 ~	34.0 (33.5	1,020 ~	1,080 (1,050)	63	1.6
Offshore of Kushiro	3		Uncertain	2			,			, ,		
Chum salmon	1	October,	Female	2	56.5 ~	59.5 (58.0)	2,780 ~	3,260 (3,020)	70	1.3
(Oncorhynchus keta) Offshore of Kushiro	2	2017	Female	2	62.5 ~	64.5 (63.5)	2,560 ~	2,580 (2,570)	64	1.5
	3		Female	3	51.0 ~	55.0 (53.1)	2,260 ~	2,980 (2,706)	72	1.6
Greenling	1	T	Uncertain	3	26.0 ~	34.5 (31.5)	440 ~	1,040 (820)	71	1.9
(Hexagrammos otakii) Offshore of Japan	2	January, 2018	Uncertain	3	27.0 ~	34.5 (31.5)	480 ~	1,040 (813)	73	2.1
Sea(offshore of Iwanai)	3	2018	Uncertain	5	23.0 ~	29.5 (26.2	300 ~	620 (436)	73	3.3
Greenling	1		Uncertain	4	41.5 ~	46.5 (44.6)	1,217 ~	1,577 (1,420)	72	5.9
(Hexagrammos otakii)	2	October,	Uncertain	6	35.0 ~	40.5 (37.3)	815 ~	1,175 (936)	71	6.1
Yamada Bay	3	2017	Uncertain	8	30.5 ~	35.0 (33.3)	471 ~	748 (620)	71	5.2
Greenling	1		Mixed	25	12.4 ~	25.8 (19.2	35 ~	331 (150)	78	1.0
(Hexagrammos otakii)		December,				`	,		`			_
Sendai Bay	2	2017	Mixed	10	26.0 ~	27.5 (26.8)	302 ~	469 (380)	78	1.0
(Matsushima Bay)	3		Mixed	7	28.2 ~	30.6 (29.4)	413 ~	616 (512)	78	1.0
Pacific saury	1	Marranahan	Mixed	13	32.0 ~	35.0 (32.8)	126 ~	172 (138)	65	8.6
(Cololabis saira)	2	November, 2017	Mixed	18	31.0 ~	33.0 (32.2)	116 ~	124 (121)	66	5.9
Offshore of Joban	3	2017	Mixed	21	27.0 ~	32.0 (29.8)	78 ~	114 (101)	67	5.0
Sea bass	1	September,	Mixed	4	47.4 ~	51.0 (50.0)	1,624 ~	1,950 (1,764)	75	2.3
(Lateolabrax japonicus)	2	2017	Mixed	5	44.7 ~	47.8 (45.9)	1,318 ~	1,543 (1,402)	74	2.9
Tokyo Bay	3	2017	Mixed	6	38.9 ~	43.5 (40.8)	969 ~	1,201 (1,081)	77	1.8
Sea bass	1		Female	12	29.7 ~	31.4 (30.2)	377 ~	509 (431)	74	3.2
(Lateolabrax japonicus)	2	September,	Male	16	26.4 ~	35.4 (29.4)	306 ~	662 (402)	67	1.3
Offshore of Ogishima Island, Port of Kawasaki	3	2017	Female	12	28.7 ~	29.6	29.3	337 ~	424 (396)	69	1.9
	1		Mixed	5	38.5 ~	45.2 (40.1)	1,093 ~	1,537 (1,252)		_
Striped mullet (Mugil cephalus)	2	August,	Mixed	5	38.7 ~	39.7 (39.2)	1,112 ~	1,348 (1,242)	_	_
Nagoya Port	3	2017	Mixed	5	37.0 ~	41.0 (38.4)	912 ~	1,408 (1,105)	-	_
					21.5 ~	25.4	23.6	142 ~	262 (192)	74	3.1
Dace (Tribolodon hakonensis)	1	April,	Male	30		`	,		,			
Lake Biwa, Riv. Ado	2	2017	Female	26	23.2 ~	28.6 (25.2)	201 ~	395 (263)	75	3.0
(Takashima City)	3	2017	Male	30	21.0 ~	25.1 (22.8)	128 ~	251 (177)	74	3.3
Sea bass	1	November.	Uncertain	10	38.6 ~	44.3 (41.6)	522 ~	787 (660)	73	2.1
(Lateolabrax japonicus)	2	2017	Uncertain	10	37.9 ~	44.2 (41.4	559 ~	727 (653)	71	2.3
Osaka Bay	3	2017	Uncertain	10	35.7 ~	42.9 (39.9)	505 ~	692 (614)	73	2.4
Sea bass	1	November,	Female	1	62.0 ~	62.0 (62.0)	2,800 ~	2,800 (2,800)	77	1.3
(Lateolabrax japonicus)	2	2017	Male	1	60.0	60.0	60.0	2,300 ~	2,300 (2,300)	77	3.9
Offshore of Himeji	3	2017	Female	2	56.0	58.0	57.0	1,700 ~	2,000 (1,850)	77	4.6
Sea bass	1	October,	Mixed	10	37.0 ~	42.3 (39.4)	660 ~	1,050 (841)	79	1.2
(Lateolabrax japonicus)	2	2017	Mixed	10	32.4 ~	40.8 (37.1)	490 ~	880 (655)	79	1.0
Nakaumi	3		Mixed	13	29.5 ~	36.0 (32.4)	320 ~	670 (475)	80	1.0
Sea bass	1	November,	Female	1	51.0 ~	51.0 (51.0)	1,877 ~	1,877 (1,877)	75	2.6
(Lateolabrax japonicus) Hiroshima Bay	2 3	2017	Female	1	56.0 ~	56.0 (56.0)	2,626 ~	2,626 (2,626)	74	3.0
			Male	2	50.0 ~ 65.0 ~	50.2 (50.1)	1,752 ~	1,959 (1,855)	75	2.1
Striped mullet (Mugil cephalus)	1 2	September,	Uncertain Uncertain	1 3	65.0 ~ 58.0 ~	65.0 (63.0 (65.0) 61.0)	2,800 ~ 2,100 ~	2,800 (2,500 (2,800) 2,300)	72 70	5.5 4.5
Takamatsu Port	3	2017	Uncertain	2	58.0 ~ 60.0 ~	61.0 (60.5)	2,100 ~	2,300 (2,350)	74	4.3
I unumuou I olt	J		Oncertain	2	00.0 ~	01.0 (00.5)	∠,500 ∼	4, 4 00 (2,330)	/+	4.4

Table 3-3-2 Basic data of specimens (fish as wildlife) in the Environmental Monitoring in FY 2017 (Part 2)

Fish species (Area)	No.	Sampling month	Sex	Number of animals			ngth (cm) average)			,	Weight (Avera	٠.			Water content %	Lipid content %
Sea bass	1	September	Uncertain	18	14.8	~	29.3 (20.3)	62	~	444	(185)	68	0.8
(<i>Lateolabrax japonicus</i>) Mouth of Riv. Shimanto	2	~ November,	Uncertain	18	15.6	~	29.0 (20.2)	73	~	480	(185)	63	1.0
(Shimanto City)	3	2017	Uncertain	18	13.6	~	33.1 (19.8)	41	~	690	(186)	68	1.0
Sea bass	1		Female	2	54.2	~	64.2 (59.2)	2,060	~	2,720	(2,390)	80	1.1
(Lateolabrax japonicus) Mouth of Riv. Oita	2	January, 2018	Mixed	2	54.8	~	59.1 (57.0)	2,140	~	2,640	(2,390)	80	1.0
(Oita City)	3	2016	Female	2	56.3	~	57.8 (57.1)	2,160	~	2,440	(2,300)	80	1.1
Sea bass	1		Mixed	9	26.2	~	27.9 (27.2)	332	~	435	(366)	78	0.8
(Lateolabrax japonicus) West Coast of Satsuma	2	November, 2017	Mixed	8	28.3	~	29.0 (28.7)	354	~	452	(415)	78	0.9
Peninsula)	3	2017	Mixed	9	24.3	~	29.8 (27.9)	242	~	468	(374)	77	1.0
Okinawa seabeam	1		Female	2	33.3	~	37.5 (35.4)	1,118	~	1,542	(1,330)	75	1.2
(Acanthopagrus sivicolus)	2	January, 2018	Female	2	32.4	~	33.5 (33.0)	1,034	~	1,095	(1,065)	75	1.2
Nakagusuku Bay	3	2016	Male	2	29.5	~	30.5 (30.0)	793	~	822	(808)	76	1.5

Table 3-3-3 Basic data of specimens (birds as wildlife) in the Environmental Monitoring in FY 2017

Bird species (Area)	No.	Sampling month	Sex	Number of animals	Le	ngth (cm)			V	Veight	(g)			Water content %	Lipid content %
Great Cormorant (immature)	1		Male	1		103				1,720					
(<i>Phalacrocorax carbo</i>) Lake Biwa(Lake Kita,	2	August, 2017	Male	1		107				1,960				67	4.1
offshore of Tikubushima Island)	3		Female	1		111				2,040					
Great Cormorant (immature)	1	M	Uncertain	3	41.0 ~	55.0 (46.3)	700	~	1,340	(1,020)		
(Phalacrocorax carbo) Riv.Tenjin	2	May, 2017	Female	2	47.0 ~	49.0 (48.0)	1,080	~	1,220	(1,150)	82	1.8
(Kurayoshi City)	3		Uncertain	2	57.0 ~	66.5 (62.5)	1,340	~	1,440	(1,390)		

(Note) The great cormorants (Note) The great cormorants (immature) killed as harmful birds were used as specimens.

4. Method for regression analysis and testing

The analysis procedure and the evaluation for the analysis result shown in Fig.2 were carried out by the following method.

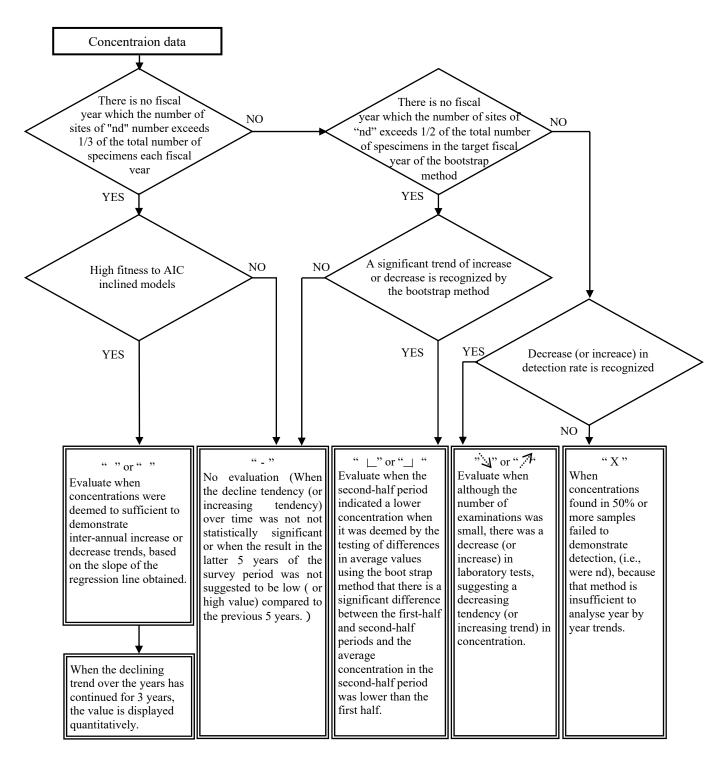


Figure 2 Method for regression analysis and testing

5. Summary of monitoring results

The detection ranges are shown in Table 3-4, and the detection limits are shown in Table 3-5.

The substances which were moniterd FY2017 and past six or more years on the same media, were statistically analysed in order to detect inter-annual trends of increase or decrease. The results of the analyses are shown in Table 3-6

OData were carefully handled on the basis of following points.

· For sediment

At each monitoring point, three (3) specimen samples were collected. And the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples.

· For wildlife

At each monitoring point, three (3) specimen samples were collected in principle. And the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples.

• For air

At each monitored site, the sampling was for the monitoring in the warm season (Augast 22, $2017 \sim October 17$, 20).

Table 3-4-1 List of the detection ranges in the Environmental Monitoring in FY2017 (Part 1)

ν Τ -	Towast -1		water (pg/L)	Sediment (p	og/g-dry)
No.	Target chemicals	Range (Frepuency)	Av.	Range (Frepuency)	Av.
[1]	Total PCBs	nd~2,400 (46/47)	84	nd~610,000 (61/62)	4,600
2]	НСВ	2.9~180 (47/47)	12	3 ~11,000 (62/62)	82
3]	Aldrin (reference)				
4]	Dieldrin (reference)				
5]	Endrin (reference)				
	DDTs (reference)		-		
	[6-1] <i>p,p</i> '-DDT (reference)				
	[6-2] <i>p,p</i> '-DDE (reference)				
6]	[6-3] <i>p,p</i> '-DDD (reference)				
	[6-4] o,p'-DDT (reference)				
	[6-5] o,p'-DDE (reference)				
	[6-6] o,p'-DDD (reference)				
	Chlordanes	2 210		1.2000	
	[7-1] <i>cis</i> -chlordane	2~210 (47/47)	19	nd~2,800 (61/62)	47
	[7-2] trans-chlordane	tr(2)~150 (47/47)	15	tr(1)~3,000 (62/62)	53
7]	[7-3] Oxychlordane	nd~12 (19/47)	nd	nd~78 (41/62)	tr(1)
	[7-4] cis-Nonachlor	tr(0.6)~36 (47/47)	4.6	nd~1,500 (61/62)	31
	[7-5] trans-Nonachlor	tr(2)~120 (47/47)	13	nd~2,600 (61/62)	47
	Heptachlors	nd~6		nd~40	
01	[8-1] Heptachlor	(2/47)	nd	(53/62)	1.2
8]	[8-2] cis-heptachlor epoxide	nd~83 (46/47)	4.7	nd~150 (51/62)	1.9
	[8-3] trans-heptachlor epoxide	nd (0/47)	nd	nd (0/62)	nd
	Toxaphenes (reference)				
01	[9-1] Parlar-26 (reference)				
9]	[9-2] Parlar-50 (reference)				
	[9-3] Parlar-62 (reference)				
[0]	Mirex (reference)				
	HCHs	27.700		10 1000	
	[11-1] α-HCH	3.7~680 (47/47)	47	1.0 ~1,900 (62/62)	77
1]	[11-2] <i>β</i> -HCH	12~830 (47/47)	100	5.7 ~3,400 (62/62)	140
	[11-3] γ -HCH (synonym:Lindane)	2.1~190 (47/47)	17	tr(0.4)~1,900 (62/62)	23
	[11-4] δ-HCH	tr(0.4)~690 (47/47)	8.2	tr(0.2)~1,700 (62/62)	25
12]	Chlordecone (reference)				
13]	Hexabromobiphenyls (reference)				

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

(Note 2) " " means the medium was not monitored.

(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

Table 3-4-2 List of the detection ranges in the Environmental Monitoring in FY2017 (Part 2)

N.T.	T . 1 . 1	Surface wa	ter (pg/L)	Sediment (p	g/g-dry)
No.	Target chemicals	Range (Frepuency)	Av.	Range (Frepuency)	Av.
	Polybromodiphenyl ethers (Br ₄ ~Br ₁₀)				
	[14-1] Tetrabromodiphenyl ethers	nd~12 (44/47)	tr(4)	nd~570 (44/62)	13
	[14-2] Pentabromodiphenyl ethers	nd~8 (24/47)	nd	nd~560 (37/62)	10
Г141	[14-3] Hexabromodiphenyl ethers	nd~tr(6) (1/47)	nd	nd~570 (44/62)	16
	[14-4] Heptabromodiphenyl ethers	nd~30 (1/47)	nd	nd~580 (36/62)	18
	[14-5] Octabromodiphenyl ethers	nd~33 (22/47)	tr(2)	nd~1,900 (48/62)	38
	[14-6] Nonabromodiphenyl ethers	nd~460 (37/47)	17	nd~29,000 (61/62)	400
	[14-7] Decabromodiphenyl ether	nd~4,100 (46/47)	150	tr(27)~580,000 (62/62)	4,600
[15]	Perfluorooctane sulfonic acid (PFOS) (reference)				
	Perfluorooctanoic acid (PFOA) (reference)				
	Pentachlorobenzene	2.0 ~140 (47/47)	8.8	1.3 ~2,800 (62/62)	61
	Endosulfans(reference) [18-1] α-Endosulfan				
	[18-1] α-Endosultan (reference)				
	[18-2] β-Endosulfan (reference)				
	1,2,5,6,9,10-Hexabromo cyclododecanes (reference)				
	[19-1] \(\alpha -1, 2, 5, 6, 9, 10 - \) Hexabromo cyclododecane (reference)				
	[19-2] β -1,2,5,6,9,10- Hexabromo cyclododecane (reference)				
	[19-3] γ-1,2,5,6,9,10- Hexabromo cyclododecane (reference)				
	[19-4] δ -1,2,5,6,9,10- Hexabromo cyclododecane (reference)				
	[19-5] ε-1,2,5,6,9,10- Hexabromo cyclododecane (reference)				
	Total Polychlorinated Naphthalenes			tr(16)~32,000 (62/62)	630
[21]	Hexachlorobuta-1,3-diene (reference)				
	Pentachlorophenol and its salts and esters				
[22]	[22-1] Pentachlorophenol	nd~3,500 (43/47)	86	8 ~7,400 (62/62)	350
	[22-2] Pentachloroanisole	nd~1,000 (32/47)	tr(10)	nd~190 (61/62)	34
	Short-chain chlorinated paraffins	1 . (1 .000		1.17.000	
	[23-1] Chlorinated decanes	nd~tr(1,600) (1/47)	nd	nd~17,000 (12/62) nd~37,000	nd
[23]	[23-2] Chlorinated undecanes	nd~3,100 (13/47)	nd	(19/62)	nd
	[23-3] Chlorinated dodecanes	nd~10,000 (4/47)	nd	nd~44,000 (19/62)	nd
i		nd~10,000		nd~94,000	

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

⁽Note 2) "I" means the medium was not monitored.
(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

Table 3-4-3 List of the detection ranges in the Environmental Monitoring in FY2017 (Part 3)

		P.1. 1		Wildlife (p		D:		Air (pg	
No.	Target chemicals	Range (Frepuency)	ves Av.	Range (Frepuency)	Av.	Range (Frepuency)	ds Av.	Range (Frepuency)	eason Av.
[1]	Total PCBs	500~19,000 (3/3)	2,500	860~160,000 (19/19)	10,000	4,000~380,000 (2/2)	39,000	26~3,300 (37/37)	120
[2]	НСВ	26~99 (3/3)	41	33~1,100 (19/19)	190	230~4,900 (2/2)	1,100	73~550 (37/37)	130
[3]	Aldrin (reference)								
[4]	Dieldrin (reference)								
[5]	Endrin (reference)								
	DDTs (reference)								
	[6-1] p,p'-DDT (reference)								
	[6-2] p,p'-DDE (reference)								
[6]	[6-3] p,p'-DDD (reference)								
	[6-4] o,p'-DDT (reference)								
	[6-5] o,p'-DDE (reference)								
	[6-6] o,p'-DDD (reference)								
	Chlordanes								
	[7-1] <i>cis</i> -chlordane (reference)								
	[7-2] trans-chlordane			1					
	(reference)							-	
[7]	[7-3] Oxychlordane (reference)								
	[7-4] cis-Nonachlor								
	(reference)								
	[7-5] trans-Nonachlor								
	(reference) Heptachlors								
	[8-1] Heptachlor	ļ							
	(reference)								
[8]	[8-2] cis-heptachlor epoxide								
	(reference)								
	[8-3] <i>trans</i> -heptachlor epoxide (reference)								
	Toxaphenes (reference)								
	[9-1] Parlar-26 (reference)								
[9]									
[۷]	[9-2] Parlar-50 (reference)								
	[9-3] Parlar-62 (reference)								
[10]	Mirex (reference)								
	HCH 類	(22		1 100		7.020		40.700	
	[11-1] α-HCH	6~32 (3/3)	15	nd~130 (18/19)	20	7~930 (2/2)	81	4.9~700 (37/37)	36
[11]	[11-2] β-HCH	21~60 (3/3)	39	4~290 (19/19)	54	300~3,500 (2/2)	1,000	0.67~59 (37/37)	4.1
1	[11-3] γ -HCH (synonym:Lindane)	tr(2)~11 (3/3)	4	nd~30 (16/19)	5.9	tr(1)~20 (2/2)	4	0.84~93 (37/37)	10
	[11-4] δ-HCH	tr(1.0)~3 (3/3)	tr(1.7)	nd~23 (15/19)	2.4	nd~tr(1.0) (1/2)	nd	nd~46 (36/37)	0.80
[12]	Chlordecone (reference)	(5.5)		(13.17)		(1.2)		(33.21)	
[12]	Hexabromobiphenyls								
[13]	(reference)								

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

(Note 2) """ means the medium was not monitored.

(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

Table 3-4-3 List of the detection ranges in the Environmental Monitoring in FY2017 (Part 4)

		D'I I	1	Wildlife (D.	1	Air (p	
No.	Target chemicals	Bibal	lves	Fi	sh	Bir	ds	Warm	season
		Range	Av.	Range	Av.	Range	Av.	Range	Av.
	511 11 11	(Frepuency)		(Frepuency)		(Frepuency)		(Frepuency)	
	Polybromodiphenyl ethers (Br ₄ ~Br ₁₀)								
		22 200		. (7) 2(0		26.660		. (0.00) 4.1	
	[14-1] Tetrabromodiphenyl	23~200	47	tr(7)~360	80	26~660	130	tr(0.06)~4.1	0.39
	ethers	(3/3)		(19/19)		(2/2)		(37/37)	
	[14-2] Pentabromo diphenyl	tr(6)~62	18	nd~87	23	12~500	77	nd~3.4	0.11
	ethers	(3/3)		(18/19)		(2/2)		(33/37)	
	[14-3] Hexabromodiphenyl	nd~36	tr(14)	nd~210	49	51~1,000	230	nd~2.1	nd
F 1 4 2	ethers	(2/3)		(18/19)		(2/2)		(11/37)	
[14]	[14-4] Heptabromo diphenyl	nd~tr(9)	nd	nd~55	tr(11)	tr(18)~440	89	nd~3.2	nd
	ethers	(1/3)		(10/19)		(2/2)		(10/37)	
	[14-5] Octabromodiphenyl	nd~tr(9)	nd	nd~88	tr(9.7)	25~720	130	nd~5.7	tr(0.19)
	ethers	(1/3)		(9/19)		(2/2)		(28/37)	
	[14-6] Nonabromodiphenyl	nd	nd	nd~68	nd	nd	nd	nd~40	0.75
	ethers	(0/3)		(1/19)		(0/2)		(31/37)	
	[14-7] Decabromodiphenyl	nd~tr(180)	nd	nd~2,100	nd	nd	nd	nd~140	4.2
	ether	(1/3)		(1/19)		(0/2)		(34/37)	
[15]	Perfluorooctane sulfonic acid		22	tr(4)~11,000	150	3,000~32,000	9,800	1.1~8.9	2.9
	(PFOS)	(2/3)		(19/19)		(2/2)	- ,	(37/37)	
[16]	Perfluorooctanoic acid	nd~18	tr(6)	nd~79	tr(6)	85~680	240	tr(2.0)~150	14
[]	(PFOA)	(2/3)	-(0)	(12/19)	-(*)	(2/2)		(37/37)	
Г1 <i>7</i> 1	Pentachlorobenzene	14~22	18	4~170	29	35~470	130	32~200	71
[-,]		(3/3)		(19/19)		(2/2)		(37/37)	, -
	Endosulfans			ļ		ļļ			
Г1 0 1	[18-1] α- Endosulfan (reference)								
[10]	[18-2] β - Endosulfan			}					
	(reference)								
	1,2,5,6,9,10-Hexabromo								
	cyclododecanes								
	[19-1] α -1,2,5,6,9,10-	86~430	190	tr(9)~7,800	140	50~2,200	330	nd~3.3	0.5
	Hexabromo cyclododecane	(3/3)	1 90	(19/19)		(2/2)		(36/37)	
	$[19-2] \beta$ -1,2,5,6,9,10-	nd~36	tr(9)	nd~tr(12)	nd	nd	nd	nd~0.8	tr(0.2)
[10]	Hexabromo cyclododecane	(1/3)	u(<i>9)</i>	(2/19)		(0/2)		(33/37)	
[19]	[19-3] γ-1,2,5,6,9,10-	tr(20)~200	49	nd~120	tr(16)	nd~tr(18)	tr(9)	nd~0.8	tr(0.1)
	Hexabromo cyclododecane	(3/3)		(12/19)		(1/2)		(20/37)	
	[19-4] δ -1,2,5,6,9,10-								
	Hexabromo cyclododecane								
	19-5] ε-1,2,5,6,9,10-								
	Hexabromo cyclododecane								
	Total Polychlorinated	nd~1,400	46	nd~360	32	tr(18)~460	91	7~920	110
[20]	Naphthalenes	(2/3)	40	(17/19)	32	(2/2)	91	(37/37)	110
[21]	Hexachlorobuta-1,3-diene							1,100~23,000	4,200
								(37/37)	7,200
	Pentachlorophenol and its								<u> </u>
	salts and esters	1 . (2.5)		1 110		200 11 000		0.7.22	
[22]	[22-1] Pentachlorophenol	nd~tr(35)	nd	nd~110	tr(15)	300~11,000	1,800	0.7~33	4.6
[22]		(1/3)		(14/19)		(2/2)		(37/37)	
	[22-2] Pentachloroanisole	tr(2)~36	6	tr(1)~120	7	11~47	23	6.0~210	34
		(3/3)		(19/19)		(2/2)		(37/37)	
	Short-chain chlorinated paraffins								
		nd~1,800		nd~2,100		nd~1,600		tr(70)~1,500	
	[23-1] Chlorinated decanes	(2/3)	670	(16/19)	tr(410)	(1/2)	tr(400)	(37/37)	370
		tr(300)~11,000		nd~24,000		800~31,000		$tr(90)\sim 2,300$	
[23]	[23-2] Chlorinated undecanes	(3/3)	2,200	(16/19)	1,900	(2/2)	5,000	(37/37)	500
		1,300~4,700		nd~19,000		1,200~25,000		$tr(30)\sim730$	
	[23-3] Chlorinated dodecanes	(3/3)	2,000	(18/19)	2,100	(2/2)	5,500	(37/37)	190
		tr(300)~3,100		nd~4,100		nd~8,100		nd~1,600	
	[23-4] Chlorinated tridecanes	(3/3)	870	(8/19)	tr(290)	(1/2)	900	(35/37)	150
[24]	Dicofol(reference)	(3/3)		(0/17)		(1/2)		(33/37)	
	e 1) "Av." indicates the ge		1 1 :	11 .	1 (1 1	1 1	1: '() :	1 1 10 4	1 0.1

⁽Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

(Note 2) "_____" means the medium was not monitored.

(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

(Note 4) Hexachlorobuta-1,3-diene in air was analysed with the three(3) specimen samples for each place. "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas.

(Note 5) Chlorinated paraffins with 5~9 chlorines are target chemicals in Surface water. The results of short-chain chlorinated paraffins are tentative values obtained in trials among various problems in the measurement method.

paraffins are tentative values obtained in trials among various problems in the measurement method.

Table 3-5-1 List of the quantification [detection] limits in the Environmental Monitoring in FY2017 (Part 1)

No.	Target chemicals	Surface water (pg/L)	Sediment (pg/g-dry)	Wildlife (pg/g-wet)	Air (pg/m³)
	Total PCBs*	16	14	68	7.0
[1]	Total PCBs*	[5.5]	[5.0]	[23]	[2.3]
[2]	НСВ	2.1 [0.8]	3 [1]	3.9 [1.3]	0.5 [0.2]
[3]	Aldrin (reference)				
[4]	Dieldrin (reference)				
[5]	Endrin (reference)				
	DDTs (reference)				
	[6-1] p,p'-DDT (reference)				
	[6-2] <i>p,p'</i> -DDE (reference)				
[6]	[6-3] p,p'-DDD (reference)				
	[6-4] o,p'-DDT (reference)				
	[6-5] o,p'-DDE (reference)				
	[6-6] <i>o,p'</i> -DDD (reference)				
	Chlordanes				
	[7-1] cis-chlordane	2 [1]	4.8 [1.6]		
	[7-2] trans-chlordane	3 [1]	4 [1]		
[7]	[7-3] Oxychlordane	4 [2]	3 [1]		
	[7-4] cis-Nonachlor	1.5 [0.6]	1.7 [0.7]		
	[7-5] trans-Nonachlor	3 [1]	6 [2]		
	Heptachlors				
	[8-1] Heptachlor	3 [1]	0.9 [0.3]		
[8]	[8-2] cis-heptachlor epoxide	1.6 [0.6]	1.2 [0.5]		
	[8-3] <i>trans</i> -heptachlor epoxide	2.3 [0.9]	2.0 [0.8]		
	Toxaphenes		, ,		
[9]	[9-1] Parlar-26 (reference)				
[2]	[9-2] Parlar-50 (reference)				
[10]	[9-3] Parlar-62 (reference)				
[10]	Mirex (reference) HCHs				
	[11-1] α-HCH	0.9 [0.4]	0.5 [0.2]	3[1]	0.08 [0.03]
[11]	[11-2] <i>β</i> -HCH	1.8	1.5 [0.6]	3[1]	0.11 [0.04]
]	[11-3] γ-HCH (synonym:Lindane)	1.4 [0.5]	1.0 [0.4]	3[1]	0.10 [0.04]
	[11-4] δ-HCH	1.0 [0.4]	0.6 [0.2]	2.3 [0.9]	0.08 [0.03]
[12]	Chlordecone (reference)	, d			
[13]	Hexabromobiphenyls (reference)				
(Not	e 1) Each quantification limi	t is shown above the corr	responding [detection lim	itl	

⁽Note 1) Each quantification limit is shown above the corresponding [detection limit].

⁽Note 2) "*" means the quantification [detection] limit is the sum value of congeners.
(Note 3) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical. (Note 4) "means the medium was not monitored.

Table 3-5-2 List of the quantification [detection] limits in the Environmental Monitoring in FY2017 (Part 2)

No.	Target chemicals	Surface water (pg/L)	Sediment (pg/g-dry)	Wildlife (pg/g-wet)	Air (pg/m ³)
	Polybromodiphenyl ethers(Br ₄		1,00		
	~ Br ₁₀) [14-1] Tetrabromodiphenyl		0	17	0.15
	ethers	9 [3]	9 [4]	16 [6]	0.15 [0.05]
	[14-2] Pentabromodiphenyl	3	9	12	0.10
	ethers	[1]	[4]	[5]	[0.04]
	[14-3] Hexabromodiphenyl	7	6	17	0.3
[14]	ether [14-4] Heptabromo diphenyl	[3] 14	[2]	[7] 22	[0.1]
	ethers	[5]	[6]	[8]	[0.2]
	[14-5] Octabromodiphenyl	2	5	20	0.21
	ethers	[1]	[2]	[8]	[0.07]
	[14-6] Nonabromodiphenyl ethers	7 [3]	15 [5]	50 [20]	0.6 [0.2]
	[14-7] Decabromodiphenyl	<u>[3]</u> 24	30	210	2.4
	ether	[8]	[10]	[80]	[0.8]
[15]	Perfluorooctane sulfonic acid			12	0.3
	(PFOS)			[4]	[0.1]
[16]	Perfluorooctanoic acid (PFOA)			12 [4]	3.3 [1.1]
	· · · · · ·	1.4	1.2	4	0.3
[17]	Pentachlorobenzene	[0.6]	[0.5]	[1]	[0.1]
	Endosulfans				
[18]	α-Endosulfan(reference)				
	β -Endosulfan(reference)				
	1,2,5,6,9,10-Hexabromo				
	cyclododecanes				
	[19-1] α-1,2,5,6,9,10-			24	0.3
	Hexabromo cyclododecanes		 	[9]	[0.1]
	[19-2] β-1,2,5,6,9,10- Hexabromo cyclododecanes			23 [9]	0.3 [0.1]
F101	[19-3] γ-1,2,5,6,9,10-		l	24	0.3
[19]	Hexabromo cyclododecanes			[9]	[0.1]
	[19-4] δ-1,2,5,6,9,10-				
	Hexabromo cyclododecanes (reference)				
	[19-5] ε -1,2,5,6,9,10-				
	Hexabromo cyclododecanes				
	(reference)		27	22	0.67
[20]	Total Polychlorinated Naphthalenes*		27 [9.1]	33 [12]	0.67 [0.24]
[21]	Hexachlorobuta-1,3-diene		[21-]	[]	60
[21]	Pentachlorophenol and its				[20]
	salts and esters				
[22]	[22-1] Pentachlorophenol	30	4	36	0.6
		[10] 14	[2]	[12] 4	[0.2]
	[22-2] Pentachloroanisole	[5]	[2]	[1]	[0.5]
	Short-chain chlorinated				
	paraffins	3,300	10,000	500	140
	[23-1] Chlorinated decanes	[1,100]	[4,000]	[200]	[50]
[23]	[23-2] Chlorinated undecanes	1,500	10,000	800	190
[23]	[25 2] Chromated undecades	[500]	[4,000]	[300]	[60]
	[23-3] Chlorinated dodecanes	3,300 [1,100]	11,000 [4,000]	[300]	100 [30]
	[23-4] Chlorinated tridecanes	3,600	12,000	500	120
	[20 4] Chiormatcu triuccalles	[1,200]	[5,000]	[200]	[40]
[24]	Dicofol (reference)				
(Not	e 1) Each quantification limi	t is shown above the cor	responding [detection lim	itl	

⁽Note 1) Each quantification limit is shown above the corresponding [detection limit].
(Note 2) "*" means the quantification [detection] limit is the sum value of congeners.
(Note 3) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical.
(Note 4) " means the medium was not monitored.

Table 3-6-1 Results of inter-annual trend analysis from FY2002 to FY2017 (Surface water)

		Surface water				
No	Name		River area	Lake area	Mouth area	Sea area
[1]	Total PCBs	Half-life: 7 years [5 ~ 9 years]	Half-life : 6 years [5 ~ 9 years]	Half-life : 7 years [5 ~ 12 years]	Half-life : 9 years [6~15 years]	-
[2]	НСВ	Half-life: 13 years [10~18 years]		-	Half-life : 8 years [6~11 years]	L
[3]	Aldrin (reference)					
[4]	Dieldrin (reference)					
[5]	Endrin (reference)					
	DDTs (reference)					
	[6-1] p,p'-DDT (reference)					
	[6-2] p,p'-DDE (reference)					
[6]	[6-3] p,p'-DDD (reference)					
	[6-4] o,p'-DDT (reference)					
	[6-5] o,p'-DDE (reference)					
	[6-6] o,p'-DDD (reference)					
	Chlordanes		•	y	y	·
	[7-1] cis-chlordane			-		Half-life : 7 years [5 ~ 10 years]
[7]	[7-2] trans-chlordane	-	-	-	-	-
[7]	[7-3] Oxychlordane	X	L	X	_	X
	[7-4] cis-Nonachlor	-	-	_	_	-
	[7-5] trans-Nonachlor	_	Half-life: 13 years [7 ~ 50 years]	-	-	-
	Heptachlors					
	[8-1] Heptachlor	X	X	X	X	Ä
[8]	[8-2] cis-heptachlor epoxide			-	_	_
	[8-3] trans-heptachlor epoxide	X	X	X	X	X
	Toxaphenes (reference)	I	l	1	1	i
	[9-1] Parlar-26 (reference)					
[9]	[9-2] Parlar-50 (reference)					
	[9-3] Parlar-62 (reference)					
[10]	Mirex (reference)					
	HCHs					
	[11-1] α-HCH	Half-life : 11 years [8 ~ 16 years]	-	-	_	
[11]	[11-2] β-HCH	Half-life: 13 years [10 ~ 20 years]	-	Half-life : 8 years [6 ~ 10 years]	-	Half-life : 18 years [14 ~ 27 years]
	[11-3] y-HCH (synonym:Lindane)	Half-life : 6 years [5 ~ 7 years]	Half-life : 5 years [4 ~ 8 years]	Half-life : 6 years [4 ~ 12 years]	Half-life: 7 years [6 ~ 8 years]	Half-life: 5 years [5 ~ 6 years]
	[11-4] δ-HCH	_*	-	-	_*	X

⁽Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

⁽Note 2) " \square ": An inter-annual trend of decrease was found.

[&]quot; $\ ^{\sim}$ ": Statistically significant differences between the first-half and second-half periods were found.

[&]quot; - ": An inter-annual trend was not found.

[&]quot;' \mathbf{u} ": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

[&]quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," or "less number of monitoring sites" "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

[&]quot;*": In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.

⁽Note 3) The classification of monitored sites with area are shown in Table 3-7

⁽Note 4) "T:: The inter-annual trend analysis was not analysed because not conducted the survey in FY2017.

⁽Note 5) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate that the values in the 95% confidence interval.

N	N.	Surface water				
No	Name		River area	Lake area	Mouth area	Sea area
	Polybromodiphenyl ethers(Br ₄ ~ Br ₁₀)	T		·		
	[14-1] Tetrabromodiphenyl ethers	X	X	X	-	X
	[14-2] Pentabromodiphenyl ethers	Ü	Ü	X	-	X
	[14-3] Hexabromodiphenyl ether	X	X	X	X	X
[14]	[14-4] Heptabromodiphenyl ethers	X	X	X	X	X
	[14-5] Octabromodiphenyl ethers	X	X	X	<u>-</u>	X
	[14-6] Nonabromodiphenyl ethers	_*	_*	X	-	X
	[14-7] Decabromodiphenyl ether	_*	_*	X	-	X
[15]	Perfluorooctane sulfonic acid (PFOS)					
[16]	Perfluorooctanoic acid (PFOA)					
[17]	Pentachlorobenzene	-	-	-	-	-

⁽Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " \setminus ": An inter-annual trend of decrease was found.

[&]quot; $\ ^{\sim}$ ": Statistically significant differences between the first-half and second-half periods were found.

[&]quot;-": An inter-annual trend was not found.

[&]quot;\(\frac{1}{2}\)": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

"X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," or "less number of monitoring sites" "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

[&]quot;*":In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods. (Note 3) The classification of monitored sites with area are shown in Table 3-7

⁽Note 4) Polybromodiphenyl ethers:the results of the inter-annual trend analysis from FY2009 to FY2017. Pentachlorobenzene: the results of the inter-annual trend analysis from FY2010 to FY2017.

Table 3-6-2 Results of inter-annual trend analysis from FY2002 to FY2017 (Sediment)

NI.	Nama	Sediment				
No	Name		River area	Lake area	Mouth area	Sea area
[1]	Total PCBs	Half-life : 17 years [12 ~ 30 years]	Half-life : 11 years [9 ~ 17 years]	-	-	
[2]	HCB			-	-	_
[3]	Aldrin (reference)					
[4]	Dieldrin (reference)					
[5]	Endrin (reference)					
[6]	DDTs (reference) [6-1] p,p'-DDT (reference) [6-2] p,p'-DDE (reference) [6-3] p,p'-DDD (reference) [6-4] o,p'-DDT (reference) [6-5] o,p'-DDE (reference) [6-6] o,p'-DDD (reference)					
	Chlordanes				•	•
	[7-1] cis-chlordane	Half-life: 8 years [7 ~ 12 years]	Half-life : 7 years [5 ~ 10 years]	_	Half-life : 7 years [5 ~ 12 years]	Half-life : 8 years [7 ~ 11 years]
[7]	[7-2] trans-chlordane	Half-life: 13 years [9 ~ 20 years]	Half-life : 10 years [7 ~ 15 years]	_		
[7]	[7-3] Oxychlordane	<u> </u>	-	X	_*	X
	[7-4] cis-Nonachlor		Half-life : 10 years [8 ~ 15 years]	_		Half-life : 15 years [13 ~ 20 years]
	[7-5] trans-Nonachlor	Half-life : 12 years [9 ~ 19 years]		-	Half-life : 10 years [7 ~ 15 years]	Half-life : 12 years [9 ~ 17 years]
	Heptachlors					
101	[8-1] Heptachlor	Ŀ.	<i>Ŀ</i>	X	<u> </u>	X
[8]	[8-2] cis-heptachlor epoxide		┕	_*	_	X
	[8-3] trans-heptachlor epoxide	X	X	X	X	X
	Toxaphenes (reference)					
503	[9-1] Parlar-26 (reference)					
[9]	[9-2] Parlar-50 (reference)					
	[9-3] Parlar-62 (reference)	-				
[10]	Mirex (reference)					
	HCHs					
	[11-1] α-HCH			-		_
[11]	[11-2] <i>β</i> -HCH	_	-	_	Half-life : 11 years [8 ~ 18 years]	_
			İ		Ti Ti	
	[11-3] γ-HCH (synonym:Lindane)		!	-	-	•

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " \secaption ": An inter-annual trend of decrease was found.

[&]quot; $\ ^{\sim}$ ": Statistically significant differences between the first-half and second-half periods were found.

[&]quot; - ": An inter-annual trend was not found.

[&]quot; 🖫 ": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

[&]quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," or "less number of monitoring sites" "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

[&]quot;*":In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.

⁽Note 3) The classification of monitored sites with area are shown in Table 3-7

⁽Note 4) "": The inter-annual trend analysis was not analysed because not conducted the survey in FY2017.

⁽Note 5) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate values in the 95% confidence interval..

N	N.	Sediment				
No	Name		River area	Lake area	Mouth area	Sea area
	Polybromodiphenyl ethers(Br ₄ ~ Br ₁₀)		·	·	,	
	[14-1] Tetrabromodiphenyl ethers	L	Ü	-	_*	-
	[14-2] Pentabromodiphenyl ethers	-	X	-	-	-
	[14-3] Hexabromodiphenyl ether	L	X	-	-	-
[14]	[14-4] Heptabromodiphenyl ethers	_*	X	_*	-	-
	[14-5] Octabromodiphenyl ethers	L	X	-	-	-
	[14-6] Nonabromodiphenyl ethers	-	<u> </u>	-	-	-
	[14-7] Decabromodiphenyl ether	-	-	-	-	-
[15]	Perfluorooctane sulfonic acid (PFOS)					
[16]	Perfluorooctanoic acid (PFOA)					
[17]	Pentachlorobenzene	-	-	-	-	-

⁽Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " ... An inter-annual trend of decrease was found.

[&]quot; \square ": Statistically significant differences between the first-half and second-half periods were found.

[&]quot;-": An inter-annual trend was not found.

[&]quot; Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

"X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," or "less number of monitoring sites" "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

[&]quot;*":In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.

⁽Note 3) The classification of monitored sites with area are shown in Table 3-7

⁽Note 4) Polybromodiphenyl ethers:the results of the inter-annual trend analysis from FY2009 to FY2017. Pentachlorobenzene: the results of the inter-annual trend analysis from FY2010 to FY2017.

Table 3-6-3 Results of inter-annual trend analysis from FY2002 to FY2017 (Wildlife)

No	Name	Bivalves	Fish
[1]	Total PCBs		-
[2]	НСВ	-	-
[3]	Aldrin (reference)		
[4]	Dieldrin (reference)		
[5]	Endrin (reference)		
	DDTs (reference)		
	[6-1] p,p'-DDT (reference)		
	[6-2] p,p'-DDE (reference)		
[6]	[6-3] p,p'-DDD (reference)		
	[6-4] o,p'-DDT (reference)		
	[6-5] o,p'-DDE (reference)		
	[6-6] o,p'-DDD (reference)		
	Chlordanes (reference)		
	[7-1] cis-chlordane (reference)		
[7]	[7-2] trans-chlordane (reference)		
[7]	[7-3] Oxychlordane (reference)		
	[7-4] cis-Nonachlor (reference)		
	[7-5] trans-Nonachlor (reference)		
	Heptachlors (reference)		
	[8-1] Heptachlor (reference)		
[8]	[8-2] cis-heptachlor epoxide (reference)		
	[8-3] <i>trans</i> -heptachlor epoxide (reference)		
	Toxaphenes (reference)		
[9]	[9-1] Parlar-26 (reference)		
[9]	[9-2] Parlar-50 (reference)		
	[9-3] Parlar-62 (reference)		
[10]	Mirex (reference)		
	HCHs		
[117	[11-1] α-HCH	Half-life : 10 years [7 ~ 18 years]	-
[11]	[11-2] β-HCH	_	_
	[11-3] γ-HCH (synonym:Lindane)		L
	[11-4] δ-HCH	X	<u>L</u>
(Moto	1) When the mestariori much shility from A	ICa yyaa mana than 050/ tha maaayyaamant maayit	s were deemed to be in agreement with the simple

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " \": An inter-annual trend of decrease was found.

- " \square ": Statistically significant differences between the first-half and second-half periods were found.
- "-": An inter-annual trend was not found.
- " 🖫 : Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.
- "X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," or "less number of monitoring sites" "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."
- "*":In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.
- (Note 3) ": The inter-annual trend analysis was not analysed because not conducted the survey in FY2017.
- (Note 4) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate values in the 95% confidence interval.

No	Name	Bivalves	Fish
	Polybromodiphenyl ethers(Br ₄ ~ Br ₁₀)		
	[14-1] Tetrabromodiphenyl ethers		<u>-</u>
	[14-2] Pentabromodiphenyl ethers		
	[14-3] Hexabromodiphenyl ether	X	-
[14]	[14-4] Heptabromodiphenyl ethers	X	X
	[14-5] Octabromodiphenyl ethers	X	X
	[14-6] Nonabromodiphenyl ethers	X	X
	[14-7] Decabromodiphenyl ether	X	X
[15]	Perfluorooctane sulfonic acid (PFOS)	X	-
[16]	Perfluorooctanoic acid (PFOA)	X	X
[17]	Pentachlorobenzene	X	_*

⁽Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

"*":In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.

⁽Note 2) " \setminus ": An inter-annual trend of decrease was found.

[&]quot; $\ ^{\sim}$ ": Statistically significant differences between the first-half and second-half periods were found.

[&]quot;-": An inter-annual trend was not found.

[&]quot; 🖫 ": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

[&]quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," or "less number of monitoring sites" "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

⁽Note 4) Polybromodiphenyl ethers: the results of the inter-annual trend analysis from FY2008 to FY2017. Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA): the results of the inter-annual trend analysis from FY2009 to FY2017.Pentachlorobenzene: the results of the inter-annual trend analysis from FY2010 to FY2017.

Table 3-6-4 Results of inter-annual trend analysis from FY2002 to FY2017 (Air)

N	N.	Air
No	Name	Warm season
[1]	Total PCBs	Half-life : 18 years [11 ~ 43 years]
[2]	НСВ	-
[3]	Aldrin (reference)	
[4]	Dieldrin (reference)	
[5]	Endrin (reference)	
	DDTs (reference)	
	[6-1] p,p'-DDT (reference)	
	[6-2] p,p'-DDE (reference)	
[6]	[6-3] p,p'-DDD (reference)	
	[6-4] o,p'-DDT (reference)	
	[6-5] o,p'-DDE (reference)	
	[6-6] o,p'-DDD (reference)	
	Chlordanes (reference)	
	[7-1] cis-chlordane (reference)	
	[7-2] trans-chlordane (reference)	
[7]	[7-3] Oxychlordane (reference)	
	[7-4] cis-Nonachlor (reference)	
	[7-5] trans-Nonachlor (reference)	
	Heptachlors	
[8]	[8-1] Heptachlor	
[0]	[8-2] cis-heptachlor epoxide	
	[8-3] trans-heptachlor epoxide	
	Toxaphenes (reference)	
[0]	[9-1] Parlar-26 (reference)	
[9]	[9-2] Parlar-50 (reference)	
	[9-3] Parlar-62 (reference)	
[10]	Mirex (reference)	
	HCHs	
	[11-1] α-HCH	-
[11]	[11-2] β-HCH	Half-life : 19 years [10 ∼ 100 years]
	[11-3] γ-HCH (synonym:Lindane)	Half-life : 23 years [18 ~ 33 years]
	[11-4] δ-HCH	-
O.T	1) 1771 41 4 1 1 1 1 1 4 6 4	AICs was more than 05% the measurement results were deemed to be in agreement with the simple

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " ... An inter-annual trend of decrease was found.

- " $\ ^{\sim}$ ": Statistically significant differences between the first-half and second-half periods were found.
- " ": An inter-annual trend was not found.
- " 📜 ": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency. "X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," or "less number of monitoring sites" "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."
- "*":In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.
- (Note 4) 'T: The inter-annual trend analysis was not analysed because not conducted the survey in FY2017.
- (Note 5) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate values in the 95% confidence interval.
- (Note 6) HCHs: the results of the inter-annual trend analysis from FY2009 to FY2017.

N	N.	Air
No	Name	Warm season
	Polybromodiphenyl ethers($Br_4 \sim Br_{10}$)	
	[14-1] Tetrabromodiphenyl ethers	
	[14-2] Pentabromodiphenyl ethers	X
	[14-3] Hexabromodiphenyl ether	X
[14]	[14-4] Heptabromodiphenyl ethers	X
	[14-5] Octabromodiphenyl ethers	X
	[14-6] Nonabromodiphenyl ethers	X
	[14-7] Decabromodiphenyl ether	X
[15]	Perfluorooctane sulfonic acid (PFOS)	
[16]	Perfluorooctanoic acid (PFOA)	-
[17]	Pentachlorobenzene	-

⁽Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

- (Note 2) " \setminus ": An inter-annual trend of decrease was found.
 - " $\ ^{\sim}$ ": Statistically significant differences between the first-half and second-half periods were found.
 - " ": An inter-annual trend was not found.
 - " 📜 ": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.
 - "X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," or "less number of monitoring sites" "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."
 - "*":In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.
- (Note 3) Polybromodiphenyl ethers: the results of the inter-annual trend analysis from FY2009 to FY2017. Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA): the results of the inter-annual trend analysis from FY2010 to FY2017.Pentachlorobenzene: the results of the inter-annual trend analysis from FY2007 to FY2017.

Table 3-7 The classification of monitored sites with area at inter-annual trend analysis from FY2002 to FY2017

Classification	Local	Monitored sites	Monitore	
D:	Communities Hokkaido	Onnenai-ohashi Bridge, Riv. Teshio(Bifuka Town)	Surface water	Sedimer
River area	покканао		0	0
		Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City)	0	
	T + D C	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari(Ishikari City)	0	0
	Iwate Pref.	Riv. Toyosawa(Hanamaki City)	0	0
	Sendai City	Hirose-ohashi Bridge, Riv. Hirose(Sendai City)		0
	Yamagata Pref.	Mouth of Riv. Mogami(Sakata City)	0	0
	Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone(Kamisu City)	0	0
	Tochigi Pref.	Riv. Tagawa(Utsunomiya City)	0	0
	Saitama Pref.	Akigaseshusui of Riv. Arakawa	0	
	Niigata Pref.	Lower Riv. Shinano(Niigata City)	0	0
	Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City)	0	0
	Fukui Pref.	Mishima-bashi Bridge, Riv. Shono(Tsuruga City)	0	0
	Yamanashi Pref.	Senshu-bashi Bridge, Riv. Arakawa(Kofu City)		0
	Shizuoka Pref.	Riv. Tenryu(Iwata City)	0	0
	Kyoto City	Miyamae-bashi Bridge, Riv. Katsura(Kyoto City)	0	0
	Osaka City	Osaka Port	0	0
	Osaka City		U	
	N. D. C	Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)		0
	Nara Pref.	Riv. Yamato(Oji Town)		0
	Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City)	0	0
	Kochi Pref.	Mouth of Riv. Shimanto(Shimanto City)	0	0
	Kumamoto Pref.	Hiraki-bashi Bridge, Riv. Midori(Uto City)	0	
	Miyazaki Pref.	Mouth of Riv. Oyodo(Miyazaki City)	0	0
	Kagoshima Pref.	Riv. Amori(Kirishima City)	0	0
		Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City)	0	0
Lake area	Akita Pref.	Lake Hachiro	0	0
	Nagano Pref.	Lake Suwa(center)	0	0
	Shiga Pref.	Lake Biwa(center) Lake Biwa(center, offshore of Minamihira)	- Ŭ	0
	Siliga Fiel.			
ъ.	YY 11 '1	Lake Biwa(center, offshore of Karasaki)	0	0
River	Hokkaido	Tomakomai Port		0
mouth area	Chiba City	Mouth of Riv. Hanami(Chiba City)	0	0
	Tokyo Met.	Mouth of Riv. Arakawa(Koto Ward)	0	0
		Mouth of Riv. Sumida(Minato Ward)	0	0
	Kawasaki City	Mouth of Riv. Tama(Kawasaki City)		0
	Ishikawa Pref.	Mouth of Riv. Sai(Kanazawa City)	0	0
	Aichi Pref.	Kinuura Port		0
	Mie Pref.	Toba Port		0
	Osaka Pref.	Mouth of Riv. Yamato(Sakai City)	0	0
			U	
	Osaka City	Mouth of Riv. Yodo(Osaka City)		0
	Tokushima Pref.	Mouth of Riv. Yoshino(Tokushima City)	0	0
	Kagawa Pref.	Takamatsu Port	0	0
	Kitakyushu City	Dokai Bay	0	0
	Oita Pref.	Mouth of Riv. Oita(Oita City)		0
	Okinawa Pref.	Naha Port	0	0
Sea area	Miyagi Pref.	Sendai Bay(Matsushima Bay)	0	0
	Fukushima Pref.	Onahama Port	0	0
	Chiba Pref.	Coast of Ichihara and Anegasaki		0
	Yokohama City	Yokohama Port	0	0
	Kawasaki City	Keihin Canal, Port of Kawasaki	0	0
	Shizuoka Pref.	Shimizu Port	0	
				0
	Aichi Pref.	Nagoya Port	0	0
	Mie Pref.	Yokkaichi Port	0	0
	Kyoto Pref.	Miyazu Port	0	0
	Osaka City	Outside Osaka Port		0
	Hyogo Pref.	Offshore of Himeji	0	0
	Kobe City	Kobe Port(center)	0	0
	Okayama Pref.	Offshore of Mizushima	0	0
	Hiroshima Pref.	Kure Port	0	0
		Hiroshima Bay	0	0
	Yamaguchi Pref.	Tokuyama Bay	0	0
	i amaguciii Fici.		+	
		Offshore of Ube	0	0
	TH. 7. C	Offshore of Hagi	0	0
	Ehime Pref.	Niihama Port		0
	Fukuoka City	Hakata Bay		0
	Saga Pref.	Imari Bay	0	0
	Nagasaki Pref.	Omura Bay	0	0

(Note) There are monitored sites which were classified in the area unlike these names by the situations.

In the wake of the monitoring surveys of FY2002~2017, high-sensitivity analysis of PCBs, HCB and HCHs were conducted. All these chemicals were detected.

High-sensitivity analysis of Chlordanes, Heptachlors, Polybromodiphenyl ethers (Br₄~Br₁₀), Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acid (PFOA), Pentachlorobenzene, 1,2,5,6,9,10-Hexabromocyclododecanes, Polychlorinated Naphthalenes, Hexachlorobuta-1,3-diene, Pentachlorophenol and its salts and esters and Short-chain chlorinated paraffins were also conducted in FY2017. Except for cases of undetected *trans*-Heptachlor epoxide in surfacewater and sediment, Nonabromodiphenyl ethers in wildlife (bivalves and birds), Decabromodiphenyl ether in wildlife (bivalves), β -1,2,5,6,9,10-Hexabromocyclododecane in wildlife (birds), all chemicals were detected.

The monitoring results for each chemical (group) are described below.

[1] Total PCBs

· History and state of monitoring

Polychlorinated biphenyls (PCBs) were used in industry as heat exchange fluids, etc. and were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in June 1974, since the substances are persistent, highly accumulative in living organisms, and chronically toxic. Also the substances are one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "The Follow-up Survey of the Status of Pollution by Unintentionally Formed Chemicals," sediment and wildlife (fish) were the monitored media in FY1996 and FY1997, and surface water, sediment, wildlife (fish) and air were the monitored media in FY2000 and FY2001.

Under the framework of the Environmental Monitoring, the substances in surface water, sediment, wildlife (bivalves, fish and birds) and air have been monitored since FY2002.

Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was detected at 46 of the 47 valid sites adopting the detection limit of 5.5 pg/L, and none of the detected concentrations exceeded 2,400pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendencies in specimens from river areas, lake areas and river mouth areas were identified as statistically significant and reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

Stocktaking of the detection of Total PCBs (total amount) in surface water during FY2002~2017

Total PCBs	Monitored	Geometric				Quantification	Detection 1	Frequency
(total amount)	year		Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	470	330	11,000	60	7.4 [2.5]	114/114	38/38
	2003	530	450	3,100	230	9.4 [2.5]	36/36	36/36
	2004	630	540	4,400	140	14 [5.0]	38/38	38/38
	2005	520	370	7,800	140	10 [3.2]	47/47	47/47
	2006	240	200	4,300	15	9 [3]	48/48	48/48
	2007	180	140	2,700	12	7.6 [2.9]	48/48	48/48
	2008	260	250	4,300	27	7.8 [3.0]	48/48	48/48
Surface water	2009	210	170	3,900	14	10 [4]	48/48	48/48
(pg/L)	2010	120	99	2,200	nd	73 [24]	41/49	41/49
	2011	150	130	2,100	16	4.5 [1.7]	49/49	49/49
	2012	400	280	6,500	72	44 [15]	48/48	48/48
	2013	140	110	2,600	tr(13)	25 [8]	48/48	48/48
	2014	150	120	4,800	16	8.2 [2.9]	48/48	48/48
	2015	200	160	4,200	34	21 [7.3]	48/48	48/48
	2016	140	120	3,100	tr(7.2)	8.4 [2.8]	48/48	48/48
	2017	84	79	2,400	nd	16[5.5]	46/47	46/47

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) " ** " indicates the sum value of the Quantification [Detection] limits of each congener.

<Sediment>

The presence of the substance in sediment was monitored at 62 sites, and it was detected at 61 of the 62 valid sites adopting the detection limit of 5.0 pg/g-dry, and none of the detected concentrations exceeded 610,000pg/g-dry.

As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendency in specimens from

river areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Stocktaking of the detection of Total PCBs (total amount) in sediment during FY2002~2017

Total PCBs	Monitored	Geometric				Quantification	Detection l	requency
(total amount)	year	mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	11,000	11,000	630,000	39	10 [3.5]	189/189	63/63
	2003	9,400	9,500	5,600,000	39	10 [3.2]	186/186	62/62
	2004	8,400	7,600	1,300,000	38	7.9 [2.6]	189/189	63/63
	2005	8,600	7,100	690,000	42	6.3 [2.1]	189/189	63/63
	2006	8,800	6,600	690,000	36	4 [1]	192/192	64/64
	2007	7,400	6,800	820,000	19	4.7 [1.5]	192/192	64/64
	2008	8,700	8,900	630,000	22	3.3 [1.2]	192/192	64/64
Sediment	2009	7,600	7,100	1,700,000	17	5.1 [2.1]	192/192	64/64
(pg/g-dry)	2010	6,500	7,800	710,000	nd	660 [220]	56/64	56/64
	2011	6,300	7,400	950,000	24	12 [4.5]	64/64	64/64
	2012	5,700	6,700	640,000	tr(32)	51 [18]	63/63	63/63
	2013	6,200	8,000	650,000	tr(43)	44 [13]	62/62	62/62
	2014	4,900	5,500	440,000	tr(35)	61 [21]	63/63	63/63
	2015	6,400	7,500	1,100,000	nd	62 [22]	61/62	61/62
	2016	5,300	5,300	770,000	tr(21)	53 [18]	62/62	62/62
	2017	4,600	6,200	610,000	nd	14 [5.0]	61/62	61/62

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 23pg/g-wet, and the detection range was $500\sim19,000pg/g$ -wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 23pg/g-wet, and the detection range was $860\sim160,000pg/g$ -wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 23pg/g-wet, and the detected concentration was 380,000pg/g-wet.

As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendency in specimens from bivalves was identified as statistically significant.

Stocktaking of the detection of Total PCBs (total amount) in wildlife (bivalves, fish and birds) during FY2002~2017

Total PCBs	Monitored	Geometric				Quantification	Detection I	requency
(total amount)	year	mean* Med	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	8,800	28,000	160,000	200	25 [8.4]	38/38	8/8
	2003	11,000	9,600	130,000	1,000	50 [17]	30/30	6/6
	2004	11,000	11,000	150,000	1,500	85 [29]	31/31	7/7
	2005	11,000	13,000	85,000	920	69 [23]	31/31	7/7
	2006	8,500	8,600	77,000	690	42 [14]	31/31	7/7
	2007	9,000	11,000	66,000	980	46 [18]	31/31	7/7
	2008	8,600	8,600	69,000	870	47 [17]	31/31	7/7
Bivalves	2009	8,700	11,000	62,000	780	32 [11]	31/31	7/7
(pg/g-wet)	2010	9,200	11,000	46,000	1,500	52 [20]	6/6	6/6
400	2011	8,900	17,000	65,000	820	220 [74]	4/4	4/4
	2012	6,600	12,000	34,000	680	34 [11]	5/5	5/5
	2013	5,200	7,800	44,000	730	44 [14]	5/5	5/5
	2014	2,900	2,600	15,000	600	95 [31]	3/3	3/3
	2015	2,400	2,500	9,600	580	52 [17]	3/3	3/3
	2016	2,300	2,300	12,000	420	60 [20]	3/3	3/3
	2017	2,500	1,600	19,000	500	68 [23]	3/3	3/3

⁽Note 2) " ** " indicates the sum value of the Quantification [Detection] limits of each congener.

Total PCBs	Monitored	Geometric				Quantification	Detection 1	Frequency
(total amount)	year	mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	17,000	8,100	550,000	1,500	25 [8.4]	70/70	14/14
	2003	11,000	9,600	150,000	870	50 [17]	70/70	14/14
	2004	15,000	10,000	540,000	990	85 [29]	70/70	14/14
	2005	14,000	8,600	540,000	800	69 [23]	80/80	16/16
	2006	13,000	9,000	310,000	990	42 [14]	80/80	16/16
	2007	11,000	6,200	530,000	790	46 [18]	80/80	16/16
	2008	12,000	9,100	330,000	1,200	47 [17]	85/85	17/17
Fish	2009	12,000	12,000	290,000	840	32 [11]	90/90	18/18
(pg/g-wet)	2010	13,000	10,000	260,000	880	52 [20]	18/18	18/18
400	2011	14,000	12,000	250,000	900	220 [74]	18/18	18/18
	2012	13,000	14,000	130,000	920	34 [11]	19/19	19/19
	2013	14,000	13,000	270,000	1,000	44 [14]	19/19	19/19
	2014	13,000	10,000	230,000	940	95 [31]	19/19	19/19
	2015	11,000	7,700	180,000	1,300	52 [17]	19/19	19/19
	2016	11,000	8,400	150,000	1,200	60 [20]	19/19	19/19
	2017	10,000	8,300	160,000	860	68 [23]	19/19	19/19
	2002	12,000	14,000	22,000	4,800	25 [8.4]	10/10	2/2
	2003	19,000	22,000	42,000	6,800	50 [17]	10/10	2/2
	2004	9,000	9,400	13,000	5,900	85 [29]	10/10	2/2
	2005	10,000	9,700	19,000	5,600	69 [23]	10/10	2/2
	2006	12,000	9,800	48,000	5,600	42 [14]	10/10	2/2
	2007	7,600	7,800	15,000	3,900	46 [18]	10/10	2/2
	2008	9,700	7,400	56,000	3,000	47 [17]	10/10	2/2
Birds	2009	5,900	5,700	9,500	3,900	32 [11]	10/10	2/2
(pg/g-wet)	2010	7,700		9,100	6,600	52 [20]	2/2	2/2
(188)	2011			5,400	5,400	220 [74]	1/1	1/1
	2012	5,900		6,200	5,600	34 [11]	2/2	2/2
	2013***	360,000		510,000	250,000	44 [14]	2/2	2/2
	2014***	46,000		140,000	15,000	95 [31]	2/2	2/2
	2015***			5,000	5,000	52 [17]	1/1	1/1
	2016***	31,000		100,000	9,800	60 [20]	2/2	2/2
	2017***	39,000		380,000	4,000	68 [23]	2/2	2/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009.

<Air>

The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 2.3pg/m³, and the detection range was 26~3,300pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2017, reduction tendency in specimens from warm season was identified as statistically significant.

⁽Note 2) "**" indicates the sum value of the Quantification [Detection] limits of each congener.
(Note 3) "***" indicates there is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

Stocktaking of the detection of Total PCBs (total amount) in air during FY2002~2017

Total PCBs		Geometric				Quantification	Detection I	Frequency
(total amount)	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site
	2002**	100	100	880	16	99 [33]	102/102	34/34
	2003 Warm season	260	340	2,600	36	6.6 [2.2]	35/35	35/35
	2003 Cold season	110	120	630	17	0.0 [2.2]	34/34	34/34
	2004 Warm season	240	250	3,300	25	2 0 10 091	37/37	37/37
	2004 Cold season	130	130	1,500	20	2.9 [0.98]	37/37	37/37
	2005 Warm season	190	210	1,500	23	0.29 [0.14]	37/37	37/37
	2005 Cold season	66	64	380	20	0.38 [0.14]	37/37	37/37
	2006 Warm season	170	180	1,500	21	0.8 [0.2]	37/37	37/37
	2006 Cold season	82	90	450	19	0.8 [0.3]	37/37	37/37
	2007 Warm season	250	290	980	37	0.27 [0.12]	24/24	24/24
	2007 Cold season	72	76	230	25	0.37 [0.13]	22/22	22/22
	2008 Warm season	200	170	960	52	0.8 [0.3]	22/22	22/22
A :	2008 Cold season	93	86	1,500	21		36/36	36/36
Air $(n \circ (m^3))$	2009 Warm season	200	190	1,400	43	0.75 [0.26]	34/34	34/34
(pg/m^3)	2009 Cold season	85	78	380	20		34/34	34/34
	2010 Warm season	160	150	970	36	7 2 [2 5]	35/35	35/35
	2010 Cold season	84	86	630	19	7.3 [2.5]	35/35	35/35
	2011 Warm season	150	160	660	32	18 [5.9]	35/35	35/35
	2011 Cold season	76	66	320	tr(17)	10 [3.7]	37/37	37/37
	2012 Warm season	130	130	840	27	26 [0 5]	35/35	35/35
	2012 Cold season	54	62	280	tr(16)	26 [8.5]	35/35	35/35
	2013 Warm season	140	130	1,100	24	20.16.51	35/35	35/35
	2013 Cold season	57	55	300	tr(19)	20 [6.5]	35/35	35/35
	2014 Warm season	140	150	1,300	28	4.1 [1.4]	36/36	36/36
	2015 Warm season	98	110	950	17	5.9 [2.0]	35/35	35/35
	2016 Warm season	130	140	1,300	16	7.8 [2.7]	37/37	37/37
	2017 Warm season	120	110	3,300	26	7.0 [2.3]	37/37	37/37

⁽Note 1) "*": The sum value of the Quantification [Detection] limits of each congener.
(Note 2) "**": In 2002, there was a technical problem in the measuring method for lowly chlorinated congeners, and therefore the values are shown just as reference.

[2] Hexachlorobenzene

· History and state of monitoring

Hexachlorobenzene was used as pesticidal material and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in August 1979. Also the substances is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996 and in FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, the substance in surface water, sediment, wildlife (bivalves, fish and birds) and air has been monitored since FY2002.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.8 pg/L, and the detection range was 2.9~180 pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendency in specimens from river areas and river mouth areas were identified as statistically significant, and the last 5 years period was indicated lower concentration than the period before the last 5 years in specimens from sea areas as statistically significant. And reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

Stocktaking of the detection of Hexachlorobenzene in surface water during FY2002~2017

	Monitored	Geometric) (; ·	Quantification	Detection l	Frequency
HCB	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	37	28	1,400	9.8	0.6 [0.2]	114/114	38/38
	2003	29	24	340	11	5 [2]	36/36	36/36
	2004	30	tr(29)	180	tr(11)	30 [8]	38/38	38/38
	2005	21	17	210	tr(6)	15 [5]	47/47	47/47
	2006	16	tr(12)	190	nd	16 [5]	46/48	46/48
	2007	17	14	190	tr(4)	8 [3]	48/48	48/48
	2008	16	13	480	4	3 [1]	48/48	48/48
Surface water	2009	15	17	180	2.4	0.5 [0.2]	49/49	49/49
(pg/L)	2010	tr(10)	tr(8)	120	nd	13 [4]	39/49	39/49
	2011	13	12	140	tr(3)	5 [2]	49/49	49/49
	2012	29	23	330	8.1	2.2 [0.7]	48/48	48/48
	2013	14	11	260	tr(4)	7 [2]	48/48	48/48
	2014	12	9.7	200	2.7	0.9 [0.4]	48/48	48/48
	2015	15	13	140	4.2	1.8 [0.6]	48/48	48/48
	2016	13	11	130	4.2	0.9 [0.3]	48/48	48/48
	2017	12	10	180	2.9	2.1 [0.8]	47/47	47/47

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 1 pg/g-dry, and the detection range was 3~11,000 pg/g-dry.

As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendency in specimens from river areas was identified as statistically significant and reduction tendency in specimens from the overall areas in

sediment water was also identified as statistically significant.

Stocktaking of the detection of Hexachlorobenzene in sediment during FY2002~2017

	Monitored	Geometric				Quantification	Detection l	Frequency
НСВ	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	240	200	19,000	7.6	0.9 [0.3]	189/189	63/63
	2003	160	120	42,000	5	4 [2]	186/186	62/62
	2004	140	100	25,000	tr(6)	7 [3]	189/189	63/63
	2005	170	130	22,000	13	3 [1]	189/189	63/63
	2006	180	120	19,000	10	2.9 [1.0]	192/192	64/64
	2007	140	110	65,000	nd	5 [2]	191/192	64/64
	2008	160	97	29,000	4.4	2.0 [0.8]	192/192	64/64
Sediment	2009	150	120	34,000	nd	1.8 [0.7]	190/192	64/64
(pg/g-dry)	2010	130	96	21,000	4	3 [1]	64/64	64/64
	2011	150	110	35,000	11	7 [3]	64/64	64/64
	2012	100	110	12,000	3	3 [1]	63/63	63/63
	2013	120	91	6,600	7.2	5.3 [1.8]	63/63	63/63
	2014	95	85	5,600	tr(4)	6 [2]	63/63	63/63
	2015	100	90	17,000	4	3 [1]	62/62	62/62
	2016	84	74	6,400	4	3 [1]	62/62	62/62
	2017	82	65	11,000	3	3 [1]	62/62	62/62

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1.3 pg/g-wet, and the detection range was 26~99pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 1.3 pg/g-wet, and the detection range was 33~1,100pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 1.3 pg/g-wet, and the detected concentration was 4,900pg/g-wet.

Stocktaking of the detection of Hexachlorobenzene in wildlife (bivalves, fish and birds) during FY2002~2017

	Monitored	Geometric				Quantification	Detection I	requenc
НСВ	year	mean* Medi	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	21	22	330	2.4	0.18 [0.06]	38/38	8/8
	2003	44	27	660	tr(21)	23 [7.5]	30/30	6/6
	2004	32	31	80	14	14 [4.6]	31/31	7/7
	2005	51	28	450	19	11 [3.8]	31/31	7/7
	2006	46	28	340	11	3 [1]	31/31	7/7
	2007	37	22	400	11	7 [3]	31/31	7/7
	2008	38	24	240	13	7 [3]	31/31	7/7
Bivalves	2009	34	32	200	12	4 [2]	31/31	7/7
pg/g-wet)	2010	34	48	210	tr(4)	5 [2]	6/6	6/6
	2011	45	34	920	4	4 [1]	4/4	4/4
	2012	39	38	340	10	8.4 [2.8]	5/5	5/5
	2013	32	39	250	nd	31 [10]	4/5	4/5
	2014	34	26	100	15	10 [3]	3/3	3/3
	2015	35	26	120	tr(14)	20 [6.5]	3/3	3/3
	2016	38	22	150	17	8.1 [2.7]	3/3	3/3
	2017	41	26	99	26	3.9 [1.3]	3/3	3/3

	Monitored	Geometric				Quantification	Detection 1	Frequency
HCB	year	mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	140	180	910	19	0.18 [0.06]	70/70	14/14
	2003	180	170	1,500	28	23 [7.5]	70/70	14/14
	2004	230	210	1,800	26	14 [4.6]	70/70	14/14
	2005	180	160	1,700	29	11 [3.8]	80/80	16/16
	2006	180	220	1,400	25	3 [1]	80/80	16/16
	2007	160	140	1,500	17	7 [3]	80/80	16/16
	2008	170	210	1,500	25	7 [3]	85/85	17/17
Fish	2009	210	180	30,000	29	4 [2]	90/90	18/18
(pg/g-wet)	2010	240	280	1,700	36	5 [2]	18/18	18/18
	2011	260	320	1,500	34	4 [1]	18/18	18/18
	2012	200	300	1,100	33	8.4 [2.8]	19/19	19/19
	2013	240	220	1,500	36	31 [10]	19/19	19/19
	2014	280	340	1,900	37	10 [3]	19/19	19/19
	2015	170	150	1,700	43	20 [6.5]	19/19	19/19
	2016	150	150	1,300	24	8.1 [2.7]	19/19	19/19
	2017	190	180	1,100	33	3.9 [1.3]	19/19	19/19
	2002	1,000	1,200	1,600	560	0.18 [0.06]	10/10	2/2
	2003	1,800	2,000	4,700	790	23 [7.5]	10/10	2/2
	2004	980	1,300	2,200	410	14 [4.6]	10/10	2/2
	2005	1,000	1,100	2,500	400	11 [3.8]	10/10	2/2
	2006	970	1,100	2,100	490	3 [1]	10/10	2/2
	2007	960	1,100	2,000	420	7 [3]	10/10	2/2
	2008	880	1,100	2,500	240	7 [3]	10/10	2/2
Birds	2009	850	910	1,500	400	4 [2]	10/10	2/2
(pg/g-wet)	2010	970		1,900	500	5 [2]	2/2	2/2
400	2011			460	460	4 [1]	1/1	1/1
	2012	840		1,500	470	8.4 [2.8]	2/2	2/2
	2013**	3,900		5,200	2,900	31 [10]	2/2	2/2
	2014**	420		5,600	32	10 [3]	2/2	2/2
	2015**			760	760	20 [6.5]	1/1	1/1
	2016**	1,700		5,300	550	8.1 [2.7]	2/2	2/2
	2017**	1,100		4,900	230	3.9 [1.3]	2/2	2/2

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.
(Note 2) "**" indicates there is no consistency between the results of the ornithological survey after FY2013 and those in

previous years because of the changes in the survey sites and target species.

<Air>

The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.2 pg/m^3 , and the detection range was $73\sim550\text{pg/m}^3$.

Stocktaking of the detection of Hexachlorobenzene in air during FY2002~2017

		Geometric	Quantification Detection Frequency					
НСВ	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002**	99	93	3,000	57	0.9 [0.3]	102/102	34/34
	2003 Warm season	150	130	430	81	2 2 [0 79]	35/35	35/35
	2003 Cold season	94	90	320	64	2.3 [0.78]	34/34	34/34
	2004 Warm season	130	130	430	47	1 1 [0 27]	37/37	37/37
	2004 Cold season	98	89	390	51	1.1 [0.37]	37/37	37/37
	2005 Warm season	88	90	250	27	0.14 [0.024]	37/37	37/37
	2005 Cold season	77	68	180	44	0.14 [0.034]	37/37	37/37
	2006 Warm season	83	89	210	23	0.21 [0.07]	37/37	37/37
	2006 Cold season	65	74	170	8.2	0.21 [0.07]	37/37	37/37
	2007 Warm season	110	100	230	72	0.00.00.021	24/24	24/24
	2007 Cold season	77	72	120	55	0.09 [0.03]	22/22	22/22
	2008 Warm season	120	110	260	78	0.22 [0.00]	22/22	22/22
A ·	2008 Cold season	87	83	160	58	0.22 [0.08]	36/36	36/36
Air	2009 Warm season	110	110	210	78	0 ([0 2]	34/34	34/34
(pg/m^3)	2009 Cold season	87	87	150	59	0.6 [0.2]	34/34	34/34
	2010 Warm season	120	120	160	73	1 0 [0 7]	37/37	37/37
	2010 Cold season	100	96	380	56	1.8 [0.7]	37/37	37/37
	2011 Warm season	120	110	180	87	2.2.[0.75]	35/35	35/35
	2011 Cold season	96	96	160	75	2.3 [0.75]	37/37	37/37
	2012 Warm season	120	110	150	84	4 2 51 43	36/36	36/36
	2012 Cold season	97	95	150	68	4.3 [1.4]	36/36	36/36
	2013 Warm season	110	110	180	52	2 0 [1 2]	36/36	36/36
	2013 Cold season	97	97	180	73	3.8 [1.3]	36/36	36/36
	2014 Warm season	150	160	240	84	1.4 [0.5]	36/36	36/36
	2015 Warm season	120	130	170	74	0.5 [0.2]	35/35	35/35
	2016 Warm season	130	130	220	79	0.8 [0.3]	37/37	37/37
	2017 Warm season	130	120	550	73	0.5 [0.2]	37/37	37/37

[3] Aldrin (reference)

· History and state of monitoring

Aldrin had been used as a soil insecticide until FY1971 when the application of the substance was substantially stopped. Its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substance is the initial POPs under the Stockholm Convention since 2004.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1989, FY1991 and FY1993 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, the substance had been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2009, in wildlife (bivalves, fish and birds) and air in FY2014.

No monitoring was conducted in FY2015~2017. For reference, the monitoring results up to FY2014 are given below.

· Monitoring results until FY2014

<Surface Water>

Stocktaking of the detection of Aldrin in surface water during FY2002~2009

	Monitored	Geometric				Quantification	Detection 1	Frequency
Aldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.8	0.9	18	nd	0.6 [0.2]	93/114	37/38
	2003	0.9	0.9	3.8	nd	0.6 [0.2]	34/36	34/36
	2004	tr(1.5)	tr(1.8)	13	nd	2 [0.4]	33/38	33/38
Surface Water	2005	tr(0.6)	tr(0.7)	5.7	nd	0.9 [0.3]	32/47	32/47
(pg/L)	2006	nd	nd	4.4	nd	1.7 [0.6]	18/48	18/48
	2007	tr(0.6)	tr(0.6)	9.5	nd	1.0 [0.3]	34/48	34/48
	2008	tr(0.8)	tr(0.7)	21	nd	1.4 [0.6]	26/48	26/48
	2009	0.7	0.9	22	nd	0.7 [0.3]	32/49	32/49

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of Aldrin in sediment during FY2002~2009

	Monitored	Geometric		•		Quantification	Detection Frequence	
Aldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	14	12	570	nd	6 [2]	149/189	56/63
	2003	19	18	1,000	nd	2 [0.6]	178/186	60/62
	2004	10	10	390	nd	2 [0.6]	170/189	62/63
Sediment	2005	8.4	7.1	500	nd	1.4 [0.5]	173/189	62/63
(pg/g-dry)	2006	10	9.3	330	nd	1.9 [0.6]	184/192	64/64
	2007	7.5	6.7	330	nd	1.8 [0.6]	172/192	60/64
	2008	6	6	370	nd	3 [1]	153/192	56/64
	2009	8.9	7.8	540	nd	0.5 [0.2]	180/192	64/64

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

<Wildlife>

Stocktaking of the detection of Aldrin in wildlife (bivalves, fish and birds) during FY2002~2014

	Monitored	Geometric				Quantification	Detection I	requency
Aldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(1.6)	nd	34	nd	4.2 [1.4]	12/38	4/8
	2003	tr(1.7)	tr(0.85)	51	nd	2.5 [0.84]	15/30	3/6
	2004	tr(2.5)	tr(1.6)	46	nd	4.0 [1.3]	16/31	4/7
Bivalves	2005	tr(1.8)	nd	84	nd	3.5 [1.2]	11/31	3/7
(pg/g-wet)	2006	tr(2)	nd	19	nd	4 [2]	11/31	3/7
(pg/g-wet)	2007	tr(2)	nd	26	nd	5 [2]	5/31	2/7
	2008	tr(2)	nd	20	nd	5 [2]	5/31	3/7
	2009	tr(1.6)	tr(0.8)	89	nd	2.1 [0.8]	16/31	6/7
	2014	nd	nd	nd	nd	1.8 [0.7]	0/3	0/3
	2002	nd	nd	tr(2.0)	nd	4.2 [1.4]	1/70	1/14
	2003	nd	nd	tr(1.9)	nd	2.5 [0.84]	16/70	7/14
	2004	nd	nd	tr(2.4)	nd	4.0 [1.3]	5/70	2/14
Fish	2005	nd	nd	6.4	nd	3.5 [1.2]	11/80	5/16
(pg/g-wet)	2006	nd	nd	tr(2)	nd	4 [2]	2/80	2/16
(pg/g-wet)	2007	nd	nd	tr(2)	nd	5 [2]	2/80	2/16
	2008	nd	nd	tr(2)	nd	5 [2]	1/85	1/17
	2009	nd	nd	3.1	nd	2.1 [0.8]	22/90	7/18
	2014	nd	nd	2.4	nd	1.8 [0.7]	4/19	4/19
	2002	nd	nd	nd	nd	4.2 [1.4]	0/10	0/2
	2003	nd	nd	nd	nd	2.5 [0.84]	0/10	0/2
	2004	nd	nd	nd	nd	4.0 [1.3]	0/10	0/2
Birds	2005	nd	nd	nd	nd	3.5 [1.2]	0/10	0/2
(pg/g-wet)	2006	nd	nd	nd	nd	4 [2]	0/10	0/2
(hg/g-wet)	2007	nd	nd	nd	nd	5 [2]	0/10	0/2
	2008	nd	nd	nd	nd	5 [2]	0/10	0/2
	2009	nd	nd	nd	nd	2.1 [0.8]	0/10	0/2
	2014**	nd		nd	nd	1.8 [0.7]	0/2	0/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2014 and those in

(Note 3) No monitoring was conducted during FY2010~2013.

<Air>
Stocktaking of the detection of Aldrin in air during FY2002~2014

		Geometric				Quantification	Detection l	requency
Aldrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(0.030)	nd	3.2	nd	0.060 [0.020]	41/102	19/34
	2003Warm season	1.5	1.9	28	nd	0.023 [0.0077]	34/35	34/35
	2003Cold season	0.55	0.44	6.9	0.030	0.023 [0.0077]	34/34	34/34
	2004Warm season	tr(0.12)	nd	14	nd	0.15 [0.05]	15/37	15/37
	2004Cold season	tr(0.08)	nd	13	nd	0.13 [0.03]	14/37	14/37
	2005Warm season	0.33	0.56	10	nd	0.08 [0.03]	29/37	29/37
	2005Cold season	tr(0.04)	nd	1.8	nd	0.08 [0.03]	9/37	9/37
Air	2006Warm season	0.30	0.35	8.5	nd	0.14.50.051	31/37	31/37
(pg/m^3)	2006Cold season	tr(0.05)	nd	1.1	nd	0.14 [0.05]	16/37	16/37
	2007Warm season	0.58	0.48	19	nd	0.05.[0.02]	35/36	35/36
	2007Cold season	0.14	0.15	2.1	nd	0.05 [0.02]	34/36	34/36
	2008Warm season	0.27	0.30	9.4	tr(0.02)	0.04.00.023	25/25	25/25
	2008Cold season	0.09	0.08	1.3	nd	0.04 [0.02]	22/25	22/25
	2009Warm season	0.07	nd	10	nd	0.04.50.023	10/25	10/25
	2009Cold season	tr(0.03)	nd	1.8	nd	0.04 [0.02]	8/24	8/24
	2014Warm season	nd	nd	17	nd	12 [4]	6/34	6/34

(Note) No monitoring was conducted during FY2010~2013.

⁽Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

[4] Dieldrin (reference)

· History and state of monitoring

Dieldrin was used as a pesticide and its application culminated during the period of 1955~1964. The substance had been used as termitecides as a Soil-Residue-Prone Pesticide under the Agricultural Chemicals Regulation Law in 1971, but its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It had been used for termite control and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substances is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996, FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, the substance had been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2009 and in FY2011 and in surface water, wildlife (bivalves, fish and birds) and air in FY2014.

No monitoring was conducted in FY2015~2017. For reference, the monitoring results up to FY2014 are given below.

· Monitoring results until FY2014

<Surface Water>

Stocktaking of the detection of Dieldrin in surface water during FY2002~2014

	Monitored	Geometric				Quantification	Detection l	Frequency
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	41	940	3.3	1.8 [0.6]	114/114	38/38
	2003	57	57	510	9.7	0.7 [0.3]	36/36	36/36
	2004	55	51	430	9	2 [0.5]	38/38	38/38
	2005	39	49	630	4.5	1.0 [0.34]	47/47	47/47
Surface Water	2006	36	32	800	6	3 [1]	48/48	48/48
(pg/L)	2007	38	36	750	3.1	2.1 [0.7]	48/48	48/48
	2008	36	37	450	3.6	1.5 [0.6]	48/48	48/48
	2009	36	32	650	2.7	0.6 [0.2]	49/49	49/49
	2011	33	38	300	2.1	1.6 [0.6]	49/49	49/49
	2014	28	27	200	2.7	0.5 [0.2]	48/48	48/48

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of Dieldrin in sediment during FY2002~2011

	Monitored	Geometric		<u> </u>		Quantification	Detection 1	Frequency
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	70	51	2,300	4	3 [1]	189/189	63/63
	2003	66	56	9,100	nd	4 [2]	184/186	62/62
	2004	65	62	3,700	tr(1.9)	3 [0.9]	189/189	63/63
Sediment	2005	61	55	4,200	tr(2)	3 [1]	189/189	63/63
	2006	61	54	1,500	tr(1.7)	2.9 [1.0]	192/192	64/64
(pg/g-dry)	2007	49	40	2,700	tr(1.2)	2.7 [0.9]	192/192	64/64
	2008	48	43	2,900	tr(0.7)	1.2 [0.5]	192/192	64/64
	2009	51	47	3,000	1.1	0.8 [0.3]	192/192	64/64
	2011	47	44	2,200	2	5 [2]	64/64	64/64

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

⁽Note 2) No monitoring was conducted in FY2010, FY2012 and FY2013.

⁽Note 2) No monitoring was conducted in FY2010.

<Wildlife>

Stocktaking of the detection of Dieldrin in wildlife (bivalves, fish and birds) during FY2002~2014

	Monitored	Geometric				Quantification	Detection I	Frequency
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	440	390	190,000	tr(7)	12 [4]	38/38	8/8
	2003	440	160	78,000	46	4.8 [1.6]	30/30	6/6
	2004	630	270	69,000	42	31 [10]	31/31	7/7
	2005	500	140	39,000	34	9.4 [3.4]	31/31	7/7
Bivalves	2006	450	120	47,000	30	7 [3]	31/31	7/7
(pg/g-wet)	2007	380	110	77,000	37	9 [3]	31/31	7/7
	2008	430	150	24,000	47	9 [3]	31/31	7/7
	2009	490	230	28,000	48	7 [2]	31/31	7/7
	2011	390	690	3,800	16	3 [1]	4/4	4/4
	2014	180	300	490	41	3 [1]	3/3	3/3
	2002	290	270	2,400	46	12 [4]	70/70	14/14
	2003	220	200	1,000	29	4.8 [1.6]	70/70	14/14
	2004	250	230	2,800	tr(23)	31 [10]	70/70	14/14
	2005	230	250	1,400	21	9.4 [3.4]	80/80	16/16
Fish	2006	230	220	1,400	19	7 [3]	80/80	16/16
(pg/g-wet)	2007	250	210	1,900	23	9 [3]	80/80	16/16
	2008	240	240	1,300	15	9 [3]	85/85	17/17
	2009	240	190	1,400	29	7 [2]	90/90	18/18
	2011	270	340	1,100	17	3 [1]	18/18	18/18
	2014	270	310	1,000	27	3 [1]	19/19	19/19
	2002	1,100	1,100	1,700	820	12 [4]	10/10	2/2
	2003	1,300	1,400	2,200	790	4.8 [1.6]	10/10	2/2
	2004	600	610	960	370	31 [10]	10/10	2/2
	2005	830	740	1,800	500	9.4 [3.4]	10/10	2/2
Birds	2006	700	690	1,300	440	7 [3]	10/10	2/2
(pg/g-wet)	2007	710	710	910	560	9 [3]	10/10	2/2
	2008	680	620	1,300	260	9 [3]	10/10	2/2
	2009	470	420	890	330	7 [2]	10/10	2/2
	2011			770	770	3 [1]	1/1	1/1
	2014**	320		530	190	3 [1]	2/2	2/2

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 3) No monitoring was conducted in FY2010, FY2012 and FY2013.

<Air>

Stocktaking of the detection of Dieldrin in air during FY2002~2014

	Dieldrin Monitored year	Geometric			Quantification Detect		Detection l	Frequency
Dieldrin	Monitored year	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
		1110411				limit		
	2002	5.6	5.4	110	0.73	0.60 [0.20]	102/102	34/34
	2003Warm season	19	22	260	2.1	2 1 [0 70]	35/35	35/35
	2003Cold season	5.7	5.2	110	tr(0.82)	2.1 [0.70]	34/34	34/34
	2004Warm season	17	22	280	1.1	0.22 [0.11]	37/37	37/37
	2004Cold season	5.5	6.9	76	0.81		37/37	37/37
	2005Warm season	14	12	200	1.5	0.5410.241	37/37	37/37
	2005Cold season	3.9	3.6	50	0.88	0.34 [0.24]	37/37	37/37
	2006Warm season	15	14	290	1.5	0.3 [0.1]	37/37	37/37
Air	2006Cold season	4.5	4.2	250	0.7		37/37	37/37
(pg/m^3)	2007Warm season	19	22	310	1.3	0.19 [0.07]	36/36	36/36
	2007Cold season	4.5	3.7	75	0.96	0.18 [0.07]	36/36	36/36
	2008Warm season	14	16	220	1.6	0.24 [0.09]	37/37	37/37
	2008Cold season	4.9	3.8	72	0.68	0.24 [0.09]	37/37	37/37
	2009Warm season	13	13	150	0.91	0.06 [0.02]	37/37	37/37
	2009Cold season	4.5	4.0	80	0.52	0.00 [0.02]	37/37	37/37
	2011Warm season	12	15	230	0.80	0.42.50.143	35/35	35/35
	2011Cold season	4.3	4.9	96	0.52	0.42 [0.14]	37/37	37/37
	2014Warm season	11	9.9	160	0.89	0.34 [0.11]	36/36	36/36
(NT / NT		. 1 ' EXZOCIO	TT.70010	1 5370010				

(Note) No monitoring was conducted in FY2010, FY2012 and FY2013.

⁽Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

[5] Endrin (reference)

· History and state of monitoring

Endrin was used as an insecticide and a rodenticide, but its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substances is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the periods of FY1978~1989 and FY1991~1993 under the framework of "the Wildlife Monitoring".

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2009, and in surface water, wildlife (bivalves, fish and birds) and air in FY2014.

No monitoring was conducted in FY2015~2017 For reference, the monitoring results up to FY2014 are given below.

· Monitoring results until FY2014

<Surface Water>

Stocktaking of the detection of Endrin in surface water during FY2002~2014

	Monitored	Geometric				Quantification	Detection l	Frequency
Endrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(4.8)	tr(5.5)	31	nd	6.0 [2.0]	101/114	36/38
	2003	5.7	6.0	78	0.7	0.7 [0.3]	36/36	36/36
	2004	7	7	100	tr(0.7)	2 [0.5]	38/38	38/38
	2005	4.0	4.5	120	nd	1.1 [0.4]	45/47	45/47
Surface Water	2006	3.1	3.5	26	nd	1.3 [0.4]	44/48	44/48
(pg/L)	2007	3.5	3.4	25	nd	1.9 [0.6]	46/48	46/48
	2008	3	4	20	nd	3 [1]	45/48	45/48
	2009	2.0	2.3	67	nd	0.7 [0.3]	39/49	39/49
	2011	3.8	4.6	71	nd	1.6 [0.6]	47/49	47/49
	2014	2.5	2.2	25	tr(0.4)	0.5 [0.2]	48/48	48/48

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of Endrin in sediment during FY2002~2011

Monitored	Geometric				Quantification	Detection 1	Frequency
year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
2002	10	10	19,000	nd	6 [2]	141/189	54/63
2003	12	11	29,000	nd	5 [2]	150/186	53/62
2004	15	13	6,900	nd	3 [0.9]	182/189	63/63
2005	12	11	19,000	nd	2.6 [0.9]	170/189	61/63
2006	12	10	61,000	nd	4 [1]	178/192	63/64
2007	11	9	61,000	nd	5 [2]	151/192	55/64
2008	11	11	38,000	nd	1.9 [0.7]	168/192	61/64
2009	9.6	8.4	11,000	nd	1.6 [0.6]	168/192	63/64
2011	8.8	14	1,100	nd	1.1 [0.4]	59/64	59/64
	2002 2003 2004 2005 2006 2007 2008 2009	year mean* 2002 10 2003 12 2004 15 2005 12 2006 12 2007 11 2008 11 2009 9.6 2011 8.8	year mean* Median 2002 10 10 2003 12 11 2004 15 13 2005 12 11 2006 12 10 2007 11 9 2008 11 11 2009 9.6 8.4	year mean* Median Maximum 2002 10 10 19,000 2003 12 11 29,000 2004 15 13 6,900 2005 12 11 19,000 2006 12 10 61,000 2007 11 9 61,000 2008 11 11 38,000 2009 9.6 8.4 11,000 2011 8.8 14 1,100	year mean* Median Maximum Minimum 2002 10 10 19,000 nd 2003 12 11 29,000 nd 2004 15 13 6,900 nd 2005 12 11 19,000 nd 2006 12 10 61,000 nd 2007 11 9 61,000 nd 2008 11 11 38,000 nd 2009 9.6 8.4 11,000 nd 2011 8.8 14 1,100 nd	Monitored year Geometric mean* Median Maximum Minimum [Detection] limit 2002 10 10 19,000 nd 6 [2] 2003 12 11 29,000 nd 5 [2] 2004 15 13 6,900 nd 3 [0.9] 2005 12 11 19,000 nd 2.6 [0.9] 2006 12 10 61,000 nd 4 [1] 2007 11 9 61,000 nd 5 [2] 2008 11 11 38,000 nd 1.9 [0.7] 2009 9.6 8.4 11,000 nd 1.6 [0.6] 2011 8.8 14 1,100 nd 1.1 [0.4]	Monitored year Geometric mean* Median Maximum Minimum [Detection] limit Sample 2002 10 10 19,000 nd 6 [2] 141/189 2003 12 11 29,000 nd 5 [2] 150/186 2004 15 13 6,900 nd 3 [0.9] 182/189 2005 12 11 19,000 nd 2.6 [0.9] 170/189 2006 12 10 61,000 nd 4 [1] 178/192 2007 11 9 61,000 nd 5 [2] 151/192 2008 11 11 38,000 nd 1.9 [0.7] 168/192 2009 9.6 8.4 11,000 nd 1.1 [0.4] 59/64

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

⁽Note 2) No monitoring was conducted in FY2010, FY2012 and FY2013.

⁽Note 2) No monitoring was conducted in FY2010.

<Wildlife>

Stocktaking of the detection of Endrin in wildlife (bivalves, fish and birds) during FY2002~2014

	Monitored	Geometric	`	·	,	Quantification	Detection I	Frequency
Endrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	27	12,000	nd	18 [6]	35/38	7/8
	2003	38	21	5,000	6.3	4.8 [1.6]	30/30	6/6
	2004	65	25	4,600	tr(5.7)	12 [4.2]	31/31	7/7
	2005	39	19	2,100	nd	17 [5.5]	27/31	7/7
Bivalves	2006	40	15	3,100	tr(5)	11 [4]	31/31	7/7
(pg/g-wet)	2007	28	12	3,000	tr(6)	9 [3]	31/31	7/7
	2008	30	10	1,500	tr(6)	8 [3]	31/31	7/7
	2009	38	19	1,400	tr(5)	7 [3]	31/31	7/7
	2011	33	62	110	tr(3)	4 [2]	4/4	4/4
	2014	23	17	84	8	3 [1]	3/3	3/3
	2002	20	24	180	nd	18 [6]	54/70	13/14
	2003	14	10	180	nd	4.8 [1.6]	67/70	14/14
	2004	18	24	220	nd	12 [4.2]	57/70	13/14
	2005	19	tr(16)	2,100	nd	17 [5.5]	58/80	12/16
Fish	2006	13	tr(10)	150	nd	11 [4]	66/80	16/16
(pg/g-wet)	2007	13	12	170	nd	9 [3]	69/80	15/16
	2008	11	10	200	nd	8 [3]	63/85	14/17
	2009	17	12	270	nd	7 [3]	86/90	18/18
	2011	18	19	160	nd	4 [2]	16/18	16/18
	2014	16	16	140	nd	3 [1]	18/19	18/19
	2002	28	52	99	nd	18 [6]	7/10	2/2
	2003	22	30	96	5.4	4.8 [1.6]	10/10	2/2
	2004	tr(11)	25	62	nd	12 [4.2]	5/10	1/2
	2005	18	28	64	nd	17 [5.5]	7/10	2/2
Birds	2006	16	23	57	tr(4)	11 [4]	10/10	2/2
(pg/g-wet)	2007	17	28	55	nd	9 [3]	9/10	2/2
	2008	10	26	83	nd	8 [3]	5/10	1/2
	2009	11	17	43	tr(3)	7 [3]	10/10	2/2
	2011			tr(3)	tr(3)	4 [2]	1/1	1/1
	2014**	4		5	4	3 [1]	2/2	2/2

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 3) No monitoring was conducted in FY2010, FY2012 and FY2013.

<Air>

Stocktaking of the detection of Endrin in air during FY2002~2014

	Endrin Monitored year	Geometric					Detection 1	Frequency
Endrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.22	0.28	2.5	nd	0.090 [0.030]	90/102	32/34
	2003Warm season	0.74	0.95	6.2	0.081	0.042 [0.014]	35/35	35/35
	2003Cold season	0.23	0.20	2.1	0.042	0.042 [0.014]	34/34	34/34
	2004Warm season	0.64	0.68	6.5	tr(0.054)	0.14 [0.049]	37/37	37/37
	2004Cold season	0.23	0.26	1.9	nd	0.14 [0.048]	36/37	36/37
	2005Warm season	tr(0.4)	tr(0.3)	2.9	nd	0.5 [0.2]	27/37	27/37
	2005Cold season	nd	nd	0.7	nd		8/37	8/37
	2006Warm season	0.31	0.32	5.4	nd	0.30 [0.10]	32/37	32/37
Air	2006Cold season	nd	nd	5.0	nd		7/37	7/37
(pg/m^3)	2007Warm season	0.69	0.73	6.3	tr(0.06)	0.09 [0.04]	36/36	36/36
	2007Cold season	0.16	0.13	1.5	nd	0.09 [0.04]	33/36	33/36
	2008Warm season	0.53	0.68	4.6	tr(0.06)	0.10 [0.04]	37/37	37/37
	2008Cold season	0.18	0.18	1.8	nd	0.10 [0.04]	35/37	35/37
	2009Warm season	0.49	0.51	3.4	nd	0.00.00.041	36/37	36/37
	2009Cold season	0.17	0.15	1.8	nd	0.09 [0.04]	36/37	36/37
	2011Warm season	0.46	0.62	5.1	nd	0.00.50.041	34/35	34/35
	2011Cold season	0.16	0.16	1.8	nd	0.09 [0.04]	33/37	33/37
	2014Warm season	0.39	0.48	2.9	nd	0.20 [0.07]	32/36	32/36
(NT / NT		. 1 ' EXZOCIO	TT.70010	1 5370010				

(Note) No monitoring was conducted in FY2010, FY2012 and FY2013.

⁽Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

[6] DDTs (reference)

· History and state of monitoring

DDT, along with hexachlorocyclohexanes (HCHs) and drins, was used as insecticides in high volume. Its registration under the Agricultural Chemicals Regulation Law was expired in FY1971. *p,p'*-DDT was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substances are one of the original twelve POPs covered by the Stockholm Convention.

Among several DDT isomers with chlorine at various positions on the aromatic ring, not only p,p'-DDT and o,p'-DDT as active substances but also p,p'-DDE, o,p'-DDE, p,p'-DDD and o,p'-DDD as the environmentally degraded products of DDTs have been the target chemicals in monitoring series since FY1978.

In previous monitoring series, *p,p'*-DDT, *p,p'*-DDE and *p,p'*-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," surface water and sediment had been the monitored media during the period of FY1986~1998 and FY1986~2001, respectively. Similarly, *o,p'*-DDT, *o,p'*-DDE and *o,p'*-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996 and in FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, *p,p'*-DDT, *p,p'*-DDE, *p,p'*-DDD, *o,p'*-DDT, *o,p'*-DDE and *o,p'*-DDD have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2010, wildlife (bivalves, fish and birds) and air in FY2013, surface water and sediment in FY2014 and air in FY2015.

No monitoring was conducted in FY2016 and FY2017. For reference, the monitoring results up to FY2015 are given below.

Monitoring results until FY2015

 \circ *p,p'*-DDT, *p,p'*-DDE and *p,p'*-DDD

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in surface water during FY2002~2014

-	Monitored	Geometric				Quantification	Detection 1	Frequency
p,p'-DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	13	11	440	0.25	0.6 [0.2]	114/114	38/38
	2003	14	12	740	tr(2.8)	3 [0.9]	36/36	36/36
	2004	15	14	310	nd	6 [2]	36/38	36/38
	2005	8	9	110	1	4 [1]	47/47	47/47
Surface Water	2006	9.1	9.2	170	tr(1.6)	1.9 [0.6]	48/48	48/48
(pg/L)	2007	7.3	9.1	670	nd	1.7 [0.6]	46/48	46/48
	2008	11	11	1,200	nd	1.2 [0.5]	47/48	47/48
	2009	9.2	8.4	440	0.81	0.15 [0.06]	49/49	49/49
	2010	8.5	7.6	7,500	tr(1.0)	2.4 [0.8]	49/49	49/49
	2014	4.4	3.9	380	nd	0.4 [0.1]	47/48	47/48
	Monitored	Geometric				Quantification	Detection 1	Frequency
p,p'-DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	25	26	760	1.3	0.6 [0.2]	114/114	38/38
	2003	26	22	380	5	4 [2]	36/36	36/36
	2004	36	34	680	tr(6)	8 [3]	38/38	38/38
	2005	26	24	410	4	6 [2]	47/47	47/47
Surface Water	2006	24	24	170	tr(4)	7 [2]	48/48	48/48
(pg/L)	2007	22	23	440	tr(2)	4 [2]	48/48	48/48
	2008	27	28	350	2.5	1.1 [0.4]	48/48	48/48
				2.40		1 1 50 47	10/10	40/40
	2009	23	23	240	3.4	1.1 [0.4]	49/49	49/49
	2009 2010	23 14	23 12	240 1,600	3.4 2.4	1.1 [0.4] 2.3 [0.8]	49/49 49/49	49/49 49/49

<Surface Water>

	Monitored	Geometric				Quantification	Detection l	requency
p,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	16	18	190	0.57	0.24 [0.08]	114/114	38/38
	2003	19	18	410	4	2 [0.5]	36/36	36/36
	2004	19	18	740	tr(2.4)	3 [0.8]	38/38	38/38
	2005	17	16	130	tr(1.8)	1.9 [0.64]	47/47	47/47
Surface Water	2006	16	17	99	2.0	1.6 [0.5]	48/48	48/48
(pg/L)	2007	15	12	150	tr(1.5)	1.7 [0.6]	48/48	48/48
	2008	22	20	850	2.0	0.6 [0.2]	48/48	48/48
	2009	14	13	140	1.4	0.4 [0.2]	49/49	49/49
	2010	12	10	970	1.6	0.20 [0.08]	49/49	49/49
	2014	9.0	8.7	87	1.0	1.0 [0.4]	48/48	48/48

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in sediment during FY2002~2014

Stocktaking of the	•		<i>ρ</i> -DDL απ	<u>α ρ,ρ -υυυ 1</u>	in scannent	Quantification	Detection 1	Frequency
p,p'-DDT	Monitored	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	380	240	97,000	tr(5)	6 [2]	189/189	63/63
	2003	290	220	55,000	3	2 [0.4]	186/186	62/62
	2004	460	230	98,000	7	2 [0.5]	189/189	63/63
	2005	360	230	1,700,000	5.1	1.0 [0.34]	189/189	63/63
Sediment	2006	310	240	130,000	4.5	1.4 [0.5]	192/192	64/64
(pg/g-dry)	2007	210	150	130,000	3	1.3 [0.5]	192/192	64/64
	2008	270	180	1,400,000	4.8	1.2 [0.5]	192/192	64/64
	2009	250	170	2,100,000	1.9	1.0 [0.4]	192/192	64/64
	2010	230	200	220,000	9.3	2.8 [0.9]	64/64	64/64
	2014	140	140	12,000	tr(0.2)	0.4 [0.2]	63/63	63/63
	M:41	C t : -			•	Quantification	Detection 1	Frequency
p,p'-DDE	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	780	630	23,000	8.4	2.7 [0.9]	189/189	63/63
	2003	790	780	80,000	9.5	0.9 [0.3]	186/186	62/62
	2004	720	700	39,000	8	3 [0.8]	189/189	63/63
	2005	710	730	64,000	8.4	2.7 [0.94]	189/189	63/63
Sediment	2006	710	820	49,000	5.8	1.0 [0.3]	192/192	64/64
(pg/g-dry)	2007	670	900	61,000	3.2	1.1 [0.4]	192/192	64/64
	2008	920	940	96,000	9.0	1.7 [0.7]	192/192	64/64
	2009	700	660	50,000	6.7	0.8 [0.3]	192/192	64/64
	2010	680	790	40,000	11	5 [2]	64/64	64/64
	2014	530	610	64,000	11	1.8 [0.6]	63/63	63/63
	Manitanad	Geometric				Quantification	Detection 1	Frequency
p,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	year	mean				limit	Sample	
	2002	640	690	51,000	tr(2.2)	2.4 [0.8]	189/189	63/63
	2003	670	580	32,000	3.7	0.9 [0.3]	186/186	62/62
	2004	650	550	75,000	4	2 [0.7]	189/189	63/63
	2005	600	570	210,000	5.2	1.7 [0.64]	189/189	63/63
Sediment	2006	560	540	53,000	2.2	0.7 [0.2]	192/192	64/64
(pg/g-dry)	2007	520	550	80,000	3.5	1.0 [0.4]	192/192	64/64
	2008	740	660	300,000	2.8	1.0 [0.4]	192/192	64/64
	2009	540	560	300,000	3.9	0.4 [0.2]	192/192	64/64
	2010	510	510	78,000	4.4	1.4 [0.5]	64/64	64/64
	2014	330	410	21,000	4.9	4.2 [1.4]	63/63	63/63

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

⁽Note 2) No monitoring was conducted during FY2011~2013.

⁽Note 2) No monitoring was conducted during FY2011~2013.

<Wildlife> Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in wildlife (bivalves, fish and birds) during FY2002~2013

p,p'-DDT	Monitored		Median	Maximum	Minimum	Quantification [Detection]	Detection 1	-
р,р -DD1	year	mean*	Median		William	limit	Sample	Site
	2002	200	200	1,200	38	4.2 [1.4]	38/38	8/8
	2003	290	290	1,800	49	11 [3.5]	30/30	6/6
	2004 2005	360 240	340 170	2,600	48	3.2 [1.1]	31/31 31/31	7/7 7/7
Bivalves	2005	250	220	1,300 1,100	66 56	5.1 [1.7]	31/31	7/7
(pg/g-wet)	2006	240	150	1,100	49	6 [2] 5 [2]	31/31	7/7
(pg/g-wet)	2007	160	100	1,400	12	5 [2]	31/31	7/7
	2009	240	170	9,600	46	3 [1]	31/31	7/7
	2010	180	280	470	43	3 [1]	6/6	6/6
	2013	190	210	890	46	3.3 [1.1]	5/5	5/5
	2002	430	450	24,000	6.8	4.2 [1.4]	70/70	14/14
	2003	220	400	1,900	tr(3.7)	11 [3.5]	70/70	14/14
	2004	410	330	53,000	5.5	3.2 [1.1]	70/70	14/14
	2005	280	330	8,400	tr(3.8)	5.1 [1.7]	80/80	16/16
Fish	2006	300	340	3,000	tr(5)	6 [2]	80/80	16/16
(pg/g-wet)	2007	260	320	1,800	9	5 [2]	80/80	16/16
	2008	280	310	2,900	7	5 [2]	85/85	17/17
	2009	250	300	2,000	4	3 [1]	90/90	18/18
	2010	240	280	2,100	7	3 [1]	18/18	18/18
	2013 2002	280 440	250 510	3,300 1,300	5.2 76	3.3 [1.1] 4.2 [1.4]	<u>19/19</u> 10/10	19/19 2/2
	2002	610	620	1,300	180	11 [3.5]	10/10	2/2
	2003	340	320	700	160	3.2 [1.1]	10/10	2/2
	2005	430	550	900	180	5.1 [1.7]	10/10	2/2
Birds	2006	580	490	1,800	110	6 [2]	10/10	2/2
(pg/g-wet)	2007	480	350	1,900	160	5 [2]	10/10	2/2
(188)	2008	160	170	270	56	5 [2]	10/10	2/2
	2009	300	190	2,900	85	3 [1]	10/10	2/2
	2010	3		15	nd	3 [1]	1/2	1/2
	2013**	14		46	4.3	3.3 [1.1]	2/2	2/2
	Monitored	Geometric				Quantification	Detection l	Frequenc
p,p'-DDE	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	ycai	mean				limit	Sample	Site
	2002	1,000	1,700	6,000	140	1imit 2.4 [0.8]	38/38	8/8
			1,700 1,000	6,000 6,500	140 190			
	2002 2003 2004	1,000			190 220	2.4 [0.8]	38/38	8/8 6/6 7/7
	2002 2003 2004 2005	1,000 1,200 1,300 1,200	1,000 1,400 1,600	6,500 8,400 6,600	190 220 230	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8]	38/38 30/30 31/31 31/31	8/8 6/6 7/7 7/7
Bivalves	2002 2003 2004 2005 2006	1,000 1,200 1,300 1,200 1,000	1,000 1,400 1,600 1,200	6,500 8,400 6,600 6,000	190 220 230 160	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7]	38/38 30/30 31/31 31/31 31/31	8/8 6/6 7/7 7/7 7/7
Bivalves (pg/g-wet)	2002 2003 2004 2005 2006 2007	1,000 1,200 1,300 1,200 1,000 1,100	1,000 1,400 1,600 1,200 1,200	6,500 8,400 6,600 6,000 5,600	190 220 230 160 180	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1]	38/38 30/30 31/31 31/31 31/31 31/31	8/8 6/6 7/7 7/7 7/7 7/7
	2002 2003 2004 2005 2006 2007 2008	1,000 1,200 1,300 1,200 1,000 1,100 900	1,000 1,400 1,600 1,200 1,200 1,100	6,500 8,400 6,600 6,000 5,600 5,800	190 220 230 160 180 120	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1]	38/38 30/30 31/31 31/31 31/31 31/31 31/31	8/8 6/6 7/7 7/7 7/7 7/7 7/7
	2002 2003 2004 2005 2006 2007 2008 2009	1,000 1,200 1,300 1,200 1,000 1,100 900 940	1,000 1,400 1,600 1,200 1,200 1,100 1,100	6,500 8,400 6,600 6,000 5,600 5,800 6,400	190 220 230 160 180 120 150	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1]	38/38 30/30 31/31 31/31 31/31 31/31 31/31	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7
	2002 2003 2004 2005 2006 2007 2008 2009 2010	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100	1,000 1,400 1,600 1,200 1,200 1,100 1,100 1,300	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300	190 220 230 160 180 120 150 230	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790	1,000 1,400 1,600 1,200 1,200 1,100 1,100 1,300 1,600	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000	190 220 230 160 180 120 150 230 170	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 5/5	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 2,900	1,000 1,400 1,600 1,200 1,200 1,100 1,100 1,300 1,600	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000	190 220 230 160 180 120 150 230 170	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 2,900 2,000	1,000 1,400 1,600 1,200 1,200 1,100 1,100 1,300 1,600 2,200 2,200	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 98,000 12,000	190 220 230 160 180 120 150 230 170 510 180	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70	8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000	1,000 1,400 1,600 1,200 1,200 1,100 1,100 1,300 1,600 2,200 2,200 2,100	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 98,000 12,000 52,000	190 220 230 160 180 120 150 230 170 510 180 390	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70	8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14
(pg/g-wet)	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000 2,400	1,000 1,400 1,600 1,200 1,200 1,100 1,100 1,300 1,600 2,200 2,200 2,100 2,400	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 98,000 12,000 52,000 73,000	190 220 230 160 180 120 150 230 170 510 180 390 230	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70 80/80	8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16
(pg/g-wet) Fish	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000 2,400 2,200	1,000 1,400 1,600 1,200 1,200 1,100 1,100 1,300 1,600 2,200 2,200 2,100 2,400 2,600	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 98,000 12,000 52,000 73,000 28,000	190 220 230 160 180 120 150 230 170 510 180 390 230 280	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70 80/80 80/80	8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16 16/16
(pg/g-wet)	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000 2,400 2,200 2,200	1,000 1,400 1,600 1,200 1,200 1,100 1,100 1,300 1,600 2,200 2,100 2,400 2,600 2,000	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 98,000 12,000 52,000 73,000 28,000 22,000	190 220 230 160 180 120 150 230 170 510 180 390 230 280 160	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16 16/16
(pg/g-wet) Fish	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000 2,400 2,200 2,200 2,500	1,000 1,400 1,600 1,200 1,200 1,100 1,100 1,300 1,600 2,200 2,100 2,400 2,600 2,000 2,000	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 98,000 12,000 52,000 73,000 28,000 22,000 53,000	190 220 230 160 180 120 150 230 170 510 180 390 230 280 160 320	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85	8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16 16/16 16/16
(pg/g-wet) Fish	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000 2,400 2,200 2,200	1,000 1,400 1,600 1,200 1,200 1,100 1,100 1,300 1,600 2,200 2,100 2,400 2,600 2,000	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 98,000 12,000 52,000 73,000 28,000 22,000	190 220 230 160 180 120 150 230 170 510 180 390 230 280 160	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80	8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16 16/16
(pg/g-wet) Fish	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2010 2013	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000 2,400 2,200 2,200 2,500 2,300 2,300 2,900	1,000 1,400 1,600 1,200 1,200 1,100 1,100 1,300 2,200 2,200 2,100 2,400 2,600 2,000 2,100 2,100 2,100 2,100 2,800	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 12,000 52,000 73,000 28,000 22,000 53,000 20,000 13,000 16,000	190 220 230 160 180 120 150 230 170 510 180 390 230 280 160 320 260	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18
(pg/g-wet) Fish	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000 2,400 2,200 2,200 2,500 2,300 2,300 2,900 36,000	1,000 1,400 1,600 1,200 1,200 1,100 1,100 1,300 1,600 2,200 2,100 2,400 2,600 2,000 2,100 2,100 2,100 2,100 2,800 60,000	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 12,000 52,000 73,000 28,000 22,000 53,000 20,000 13,000 16,000	190 220 230 160 180 120 150 230 170 510 180 390 230 280 160 320 260 260 430 8,100	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 19/19	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 19/19
(pg/g-wet) Fish	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2010 2010 2010 2010 2010 2010	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000 2,400 2,200 2,200 2,500 2,300 2,300 2,300 2,900 36,000 66,000	1,000 1,400 1,600 1,200 1,100 1,100 1,100 1,300 1,600 2,200 2,100 2,400 2,600 2,000 2,100 2,100 2,100 2,100 2,100 2,800 60,000 76,000	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 12,000 52,000 73,000 28,000 22,000 53,000 20,000 13,000 16,000 170,000 240,000	190 220 230 160 180 120 150 230 170 510 180 390 230 280 160 320 260 260 430 8,100 18,000	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 5 [1.4] 2.4 [0.8] 5.7 [1.9]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 19/19	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 19/19 2/2 2/2
(pg/g-wet) Fish	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2009 2010 2010 2010 2010 2010 2010 2010	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000 2,400 2,200 2,200 2,500 2,300 2,300 2,300 2,900 36,000 66,000 34,000	1,000 1,400 1,600 1,200 1,100 1,100 1,100 1,300 1,600 2,200 2,100 2,400 2,600 2,000 2,100 2,100 2,100 2,100 2,100 2,100 2,800 60,000 76,000 65,000	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 12,000 52,000 73,000 28,000 22,000 13,000 16,000 170,000 240,000 200,000	190 220 230 160 180 120 150 230 170 510 180 390 230 280 160 320 260 260 430 8,100 18,000 6,800	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 5 [1.4] 2.4 [0.8] 5.7 [1.9] 8.8 [2.7]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 19/19 10/10 10/10	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 19/19 2/2 2/2 2/2
Fish (pg/g-wet)	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2009 2010 2010 2010 2010 2010 2010 2010	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000 2,400 2,200 2,200 2,500 2,300 2,300 2,300 2,900 36,000 66,000 34,000 44,000	1,000 1,400 1,600 1,200 1,100 1,100 1,100 1,300 1,600 2,200 2,100 2,400 2,600 2,000 2,100 2,100 2,100 2,100 2,100 2,800 60,000 76,000 65,000 86,000	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 12,000 52,000 73,000 28,000 22,000 13,000 16,000 170,000 240,000 200,000 300,000	190 220 230 160 180 120 150 230 170 510 180 390 230 280 160 320 260 260 430 8,100 18,000 6,800 7,100	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 5.7 [1.9] 8.5 [2.8] 1.9 [0.7] 8.5 [2.8] 1.9 [0.7] 8.5 [2.8] 1.9 [0.7] 8.5 [2.8] 1.9 [0.7] 8.5 [2.8] 1.9 [0.7] 8.5 [2.8] 1.9 [0.7] 8.5 [2.8]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 19/19 10/10 10/10 10/10	8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 19/19 2/2 2/2 2/2
Fish (pg/g-wet) Birds	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2009 2010 2010 2010 2010 2010 2010 2010	1,000 1,200 1,300 1,200 1,000 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000 2,400 2,200 2,200 2,500 2,300 2,300 2,300 2,300 2,900 36,000 66,000 34,000 44,000 38,000	1,000 1,400 1,600 1,200 1,100 1,100 1,100 1,300 1,600 2,200 2,100 2,400 2,400 2,000 2,100 2,100 2,100 2,100 2,100 2,100 60,000 76,000 65,000 86,000 57,000	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 12,000 52,000 73,000 28,000 22,000 13,000 16,000 170,000 240,000 200,000 300,000 160,000	190 220 230 160 180 120 150 230 170 510 180 390 230 280 160 320 260 260 430 8,100 18,000 6,800 7,100 5,900	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 8.5 [2.8] 1.9 [0.7] 8.5 [2.8] 1.9 [0.7]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 19/19 10/10 10/10 10/10	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 19/19 2/2 2/2 2/2 2/2 2/2
Fish (pg/g-wet)	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2009 2010 2010 2010 2010 2010 2010 2010	1,000 1,200 1,300 1,200 1,000 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000 2,400 2,200 2,200 2,500 2,300 2,300 2,300 2,300 2,300 36,000 66,000 34,000 44,000 38,000 40,000	1,000 1,400 1,600 1,200 1,100 1,100 1,100 1,300 1,600 2,200 2,100 2,400 2,000 2,000 2,100 2,100 2,100 2,100 2,800 60,000 76,000 65,000 86,000 57,000 56,000	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 12,000 52,000 73,000 28,000 22,000 13,000 16,000 170,000 240,000 200,000 300,000 160,000 320,000	190 220 230 160 180 120 150 230 170 510 180 390 230 280 160 320 260 260 430 8,100 18,000 6,800 7,100 5,900 6,700	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 5.7 [1.9] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 6 [1] 7 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 19/19 10/10 10/10 10/10 10/10 10/10	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 19/19 2/2 2/2 2/2 2/2 2/2 2/2
Fish (pg/g-wet) Birds	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2009 2010 2010 2013	1,000 1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000 2,400 2,200 2,200 2,500 2,300 2,300 2,300 2,300 2,300 36,000 66,000 34,000 44,000 38,000 40,000 51,000	1,000 1,400 1,600 1,200 1,200 1,100 1,100 1,100 1,300 2,200 2,100 2,400 2,600 2,000 2,100 2,100 2,100 2,100 2,800 60,000 76,000 65,000 86,000 57,000 56,000 79,000	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 12,000 52,000 73,000 28,000 22,000 13,000 16,000 170,000 240,000 200,000 300,000 160,000	190 220 230 160 180 120 150 230 170 510 180 390 230 280 160 320 260 260 430 8,100 18,000 6,800 7,100 5,900 6,700 7,500	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 3 [1] 3 [1]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 19/19 10/10 10/10 10/10 10/10 10/10 10/10	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 19/19 2/2 2/2 2/2 2/2 2/2 2/2 2/2
Fish (pg/g-wet) Birds	2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2009 2010 2010 2010 2010 2010 2010 2010	1,000 1,200 1,300 1,200 1,000 1,000 1,100 900 940 1,100 790 2,900 2,000 3,000 2,400 2,200 2,200 2,500 2,300 2,300 2,300 2,300 2,300 36,000 66,000 34,000 44,000 38,000 40,000	1,000 1,400 1,600 1,200 1,100 1,100 1,100 1,300 1,600 2,200 2,100 2,400 2,000 2,000 2,100 2,100 2,100 2,100 2,800 60,000 76,000 65,000 86,000 57,000 56,000	6,500 8,400 6,600 6,000 5,600 5,800 6,400 6,300 3,000 12,000 52,000 73,000 28,000 22,000 13,000 16,000 170,000 240,000 200,000 300,000 160,000 320,000	190 220 230 160 180 120 150 230 170 510 180 390 230 280 160 320 260 260 430 8,100 18,000 6,800 7,100 5,900 6,700	2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 5.7 [1.9] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 4 [1] 3 [1] 6 [1] 7 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1] 8 [1]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 19/19 10/10 10/10 10/10 10/10 10/10	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 19/19 2/2 2/2 2/2 2/2 2/2 2/2

	Monitored	Geometric				Quantification	Detection	Frequency
p,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	340	710	3,200	11	5.4 [1.8]	38/38	8/8
	2003	390	640	2,600	tr(7.5)	9.9 [3.3]	30/30	6/6
	2004	440	240	8,900	7.8	2.2 [0.70]	31/31	7/7
	2005	370	800	1,700	13	2.9 [0.97]	31/31	7/7
Bivalves	2006	300	480	1,400	7.3	2.4 [0.9]	31/31	7/7
(pg/g-wet)	2007	310	360	1,500	7	3 [1]	31/31	7/7
	2008	280	280	1,300	6	3 [1]	31/31	7/7
	2009	220	170	2,400	5.8	2.4 [0.9]	31/31	7/7
	2010	180	330	960	11	1.3 [0.5]	6/6	6/6
	2013	270	520	1,300	19	1.9 [0.7]	5/5	5/5
	2002	750	680	14,000	80	5.4 [1.8]	70/70	14/14
	2003	510	520	3,700	43	9.9 [3.3]	70/70	14/14
	2004	770	510	9,700	56	2.2 [0.70]	70/70	14/14
	2005	510	650	6,700	29	2.9 [0.97]	80/80	16/16
Fish	2006	520	580	4,300	60	2.4 [0.9]	80/80	16/16
(pg/g-wet)	2007	470	490	4,100	36	3 [1]	80/80	16/16
	2008	460	440	4,100	33	3 [1]	85/85	17/17
	2009	440	460	2,500	57	2.4 [0.9]	90/90	18/18
	2010	560	610	2,900	57	1.3 [0.5]	18/18	18/18
	2013	500	500	4,700	68	1.9 [0.7]	19/19	19/19
	2002	580	740	3,900	140	5.4 [1.8]	10/10	2/2
	2003	640	860	3,900	110	9.9 [3.3]	10/10	2/2
	2004	330	520	1,400	52	2.2 [0.70]	10/10	2/2
	2005	310	540	1,400	45	2.9 [0.97]	10/10	2/2
Birds	2006	410	740	1,800	55	2.4 [0.9]	10/10	2/2
(pg/g-wet)	2007	440	780	2,300	70	3 [1]	10/10	2/2
-	2008	240	490	1,100	35	3 [1]	10/10	2/2
	2009	280	430	3,400	31	2.4 [0.9]	10/10	2/2
	2010	440		1,600	120	1.3 [0.5]	2/2	2/2
	2013**	140		270	70	1.9 [0.7]	2/2	2/2

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) "**" There is no consistency between the results of the ornithological survey in FY2013 and those in previous years

<Air> Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in air during FY2002~2015

		Geometric				Quantification	Detection I	requency
p,p'-DDT	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	1.9	1.8	22	0.25	0.24 [0.08]	102/102	34/34
	2003Warm season	5.8	6.6	24	0.75	0.14 [0.046]	35/35	35/35
	2003Cold season	1.7	1.6	11	0.31	0.14 [0.046]	34/34	34/34
	2004Warm season	4.7	5.1	37	0.41	0.22 [0.074]	37/37	37/37
	2004Cold season	1.8	1.7	13	0.29	0.22 [0.074]	37/37	37/37
	2005Warm season	4.1	4.2	31	0.44	0.16 [0.054]	37/37	37/37
	2005Cold season	1.1	0.99	4.8	0.25	0.16 [0.054]	37/37	37/37
	2006Warm season	4.2	3.8	51	0.35	0.17 [0.06]	37/37	37/37
	2006Cold season	1.4	1.2	7.3	0.29		37/37	37/37
Air	2007Warm season	4.9	5.2	30	0.6	0.07 [0.03]	36/36	36/36
(pg/m^3)	2007Cold season	1.2	1.2	8.8	0.23		36/36	36/36
	2008Warm season	3.6	3.0	27	0.76	0.07 [0.03]	37/37	37/37
	2008Cold season	1.2	1.0	15	0.22		37/37	37/37
	2009Warm season	3.6	3.6	28	0.44	0.07 [0.03]	37/37	37/37
	2009Cold season	1.1	1.0	8.0	0.20	0.07 [0.03]	37/37	37/37
	2010Warm season	3.5	3.1	56	0.28	0.10 [0.03]	37/37	37/37
	2010Cold season	1.3	0.89	16	0.30	0.10 [0.03]	37/37	37/37
	2013Warm season	2.8	3.6	17	0.20	0.11 [0.04]	36/36	36/36
	2013Cold season	0.65	0.53	4.5	0.18		36/36	36/36
	2015Warm season	1.5	1.8	13	0.18	0.15 [0.05]	35/35	35/35

because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2011 and FY2012.

		Geometric				Quantification	Detection l	requenc
p,p'-DDE	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.8	2.7	28	0.56	0.09 [0.03]	102/102	34/34
	2003Warm season	7.2	7.0	51	1.2	0.40 [0.13]	35/35	35/35
	2003Cold season	2.8	2.4	22	1.1	0.40 [0.13]	34/34	34/34
	2004Warm season	6.1	6.3	95	0.62	0.12 [0.020]	37/37	37/37
	2004Cold season	2.9	2.6	43	0.85	0.12 [0.039]	37/37	37/37
	2005Warm season	5.0	5.7	42	1.2	0.14.50.0241	37/37	37/37
	2005Cold season	1.7	1.5	9.9	0.76	0.14 [0.034]	37/37	37/37
	2006Warm season	5.0	4.7	49	1.7	0.10.50.023	37/37	37/37
	2006Cold season	1.9	1.7	9.5	0.52	0.10 [0.03]	37/37	37/37
Air	2007Warm season	6.4	6.1	120	0.54	0.04.50.023	36/36	36/36
(pg/m^3)	2007Cold season	2.1	1.9	39	0.73	0.04 [0.02]	36/36	36/36
40 /	2008Warm season	4.8	4.4	96	0.98	0.04.50.003	37/37	37/37
	2008Cold season	2.2	2.0	22	0.89	0.04 [0.02]	37/37	37/37
	2009Warm season	4.9	4.8	130	0.87		37/37	37/37
	2009Cold season	2.1	1.9	100	0.60	0.08 [0.03]	37/37	37/37
	2010Warm season	4.9	4.1	200	tr(0.41)		37/37	37/37
	2010Cold season	2.2	1.8	28	tr(0.47)	0.62 [0.21]	37/37	37/37
	2013Warm season	4.1	4.3	37	0.2		36/36	36/36
	2013Cold season	1.6	1.5	11	0.6	0.10 [0.03]	36/36	36/36
	2015Warm season	2.4	2.6	34	0.31	0.12 [0.04]	35/35	35/35
	2013 Warm Scason		2.0		0.51	Quantification	Detection l	
p,p'-DDD	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection]	Sample	Site
	2002	0.12	0.13	0.76	nd	0.018 [0.006]	101/102	34/34
	2003Warm season	0.30	0.35	1.4	0.063		35/35	35/35
	2003Cold season	0.13	0.14	0.52	tr(0.037)	0.054 [0.018]	34/34	34/34
	2004Warm season	0.24	0.27	1.4	tr(0.036)		37/37	37/37
	2004Cold season	0.12	0.12	0.91	tr(0.025)	0.053 [0.018]	37/37	37/37
	2005Warm season	0.24	0.26	1.3	tr(0.07)		37/37	37/3
	2005Cold season	tr(0.06)	tr(0.07)	0.29	nd	0.16 [0.05]	28/37	28/37
	2006Warm season	0.28	0.32	1.3	nd		36/37	36/37
	2006Cold season	0.14	tr(0.12)	0.99	nd	0.13 [0.04]	36/37	36/37
Air	2007Warm season	0.26	0.27	1.4	0.046		36/36	36/36
(pg/m^3)	2007 Warm season	0.093	0.087	0.5	0.026	0.011 [0.004]	36/36	36/36
(P5, 111)	2008Warm season	0.17	0.17	1.1	0.037		37/37	37/37
	2008 Cold season	0.091	0.081	0.31	0.037	0.025 [0.009]	37/37	37/37
	2009Warm season	0.17	0.18	0.82	0.03		37/37	37/37
	2009 Cold season	0.17	0.18	0.35	tr(0.02)	0.03 [0.01]	37/37	37/37
	2010Warm season	0.08	0.08	1.7	0.04		37/37	37/37
	2010 Warm season 2010 Cold season	0.20	0.17	0.41	0.04	0.02 [0.01]	37/37	37/37
	2010Cold season	0.16	0.09	0.80	0.027		36/36	36/36
	2013 Warm season 2013Cold season	0.16	0.18	0.80	tr(0.015)	0.018 [0.007]	36/36	36/36
	2015Cold season 2015Warm season			tr(0.31)		0.22 [0.11]	17/35	17/35
	∠UIJ w arm season	nd	nd	น(ป.31)	nd	0.33 [0.11]	1//33	1//33

(Note) No monitoring was conducted in FY2011, FY2012 and FY2014.

 \circ o,p'-DDT, o,p'-DDE and o,p'-DDD

<Surface Water>

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in surface water during FY2002~2014

	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.4	4.6	77	0.19	1.2 [0.4]	114/114	38/38
	2003	6	5	100	tr(1.5)	3 [0.7]	36/36	36/36
	2004	tr(4.5)	5	85	nd	5 [2]	29/38	29/38
	2005	3	3	39	nd	3 [1]	42/47	42/47
Surface Water	2006	2.8	2.4	52	0.51	2.3 [0.8]	48/48	48/48
(pg/L)	2007	tr(2.1)	tr(2.2)	86	nd	2.5 [0.8]	38/48	38/48
	2008	3.1	3.0	230	nd	1.4 [0.5]	44/48	44/48
	2009	2.4	2.4	100	0.43	0.16 [0.06]	49/49	49/49
	2010	1.5	tr(1.2)	700	nd	1.5 [0.5]	43/49	43/49
	2014	1.0	1.0	63	nd	0.4 [0.2]	42/48	42/48

	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.4	2.1	680	nd	0.9 [0.3]	113/114	38/38
	2003	2.2	2.0	170	tr(0.42)	0.8 [0.3]	36/36	36/36
	2004	3	2	170	tr(0.6)	2 [0.5]	38/38	38/38
	2005	2.5	2.1	410	0.4	1.2 [0.4]	47/47	47/47
Surface Water	2006	tr(1.6)	tr(1.4)	210	nd	2.6 [0.9]	28/48	28/48
(pg/L)	2007	tr(1.5)	tr(1.1)	210	nd	2.3 [0.8]	29/48	29/48
	2008	1.5	1.8	260	nd	0.7 [0.3]	39/48	39/48
	2009	1.3	1.1	140	nd	0.22 [0.09]	47/49	47/49
	2010	0.97	0.65	180	tr(0.13)	0.24 [0.09]	49/49	49/49
	2014	0.6	0.6	560	nd	0.3 [0.1]	36/48	36/48
	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.6	6.0	110	nd	0.60 [0.20]	113/114	38/38
	2003	7.1	5.0	160	1.1	0.8 [0.3]	36/36	36/36
	2004	6	5	81	tr(0.7)	2 [0.5]	38/38	38/38
	2005	5.2	5.4	51	tr(0.5)	1.2 [0.4]	47/47	47/47
Surface Water	2006	2.5	3.3	39	nd	0.8 [0.3]	40/48	40/48
(pg/L)	2007	4.6	3.9	41	tr(0.3)	0.8 [0.3]	48/48	48/48
	2008	6.7	7.2	170	nd	0.8 [0.3]	47/48	47/48
	2009	4.4	3.8	41	0.44	0.22 [0.09]	49/49	49/49
	2010	4.6	3.8	170	tr(0.5)	0.6 [0.2]	49/49	49/49
	2014	3.7	3.2	38	0.33	0.20 [0.08]	48/48	48/48

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in sediment during FY2002~2014

New Paragraphics Sample Site		Monitored	Geometric				Quantification	Detection 1	Frequency
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o,p'-DDT			Median	Maximum	Minimum		Sample	Site
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2002	76	47	27,000	nd	6 [2]	183/189	62/63
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2003	50	43	3,200	nd	0.8 [0.3]	185/186	62/62
Sediment (pg/g-dry) 2006 57 52 18,000 tr(0.8) 1.2 [0.4] 192/192 64/64 (pg/g-dry) 2007 38 31 27,000 nd 1.8 [0.6] 186/192 63/64 2008 51 40 140,000 tr(0.7) 1.5 [0.6] 192/192 64/64 2009 44 30 100,000 nd 1.2 [0.5] 190/192 64/64 2010 40 33 13,000 nd 1.4 1.1 [0.4] 64/64 64/64 64/64 2014 26 24 2,400 nd 0.4 [0.2] 62/63 62/63 Monitored year Geometric year Median Maximum Minimum Quantification [Detection] limit Detection Frequency 2002 54 37 16,000 nd 3 [1] 188/189 63/63 2003 48 39 24,000 tr(0.5) 0.6 [0.2] 186/186 62/62 2004 40 34 28,000 nd 3 [0.8] 184/189 63/63 2005 40 32 31,000 nd 2.6 [0.9] 181/189 62/63		2004	69	50	17,000	tr(1.1)	2 [0.6]	189/189	63/63
(pg/g-dry) 2007 38 31 27,000 nd 1.8 [0.6] 186/192 63/64 2008 51 40 140,000 tr(0.7) 1.5 [0.6] 192/192 64/64 2009 44 30 100,000 nd 1.2 [0.5] 190/192 64/64 2010 40 33 13,000 1.4 1.1 [0.4] 64/64 64/64 2014 26 24 2,400 nd 0.4 [0.2] 62/63 62/63 o,p'-DDE Monitored year Geometric year Median Maximum Minimum Quantification [Detection] Detection Frequency 2002 54 37 16,000 nd 3 [1] 188/189 63/63 2003 48 39 24,000 tr(0.5) 0.6 [0.2] 186/186 62/62 2004 40 34 28,000 nd 3 [0.8] 184/189 63/63 2005 40 32		2005	58	46	160,000	0.8	0.8 [0.3]	189/189	63/63
2008 51 40 140,000 tr(0.7) 1.5 [0.6] 192/192 64/64 2009 44 30 100,000 nd 1.2 [0.5] 190/192 64/64 2010 40 33 13,000 1.4 1.1 [0.4] 64/64 64/64 2014 26 24 2,400 nd 0.4 [0.2] 62/63 62/63 2015 54 37 16,000 nd 3 [1] 188/189 63/63 2004 40 34 28,000 nd 3 [0.8] 184/189 63/63 2005 40 32 31,000 nd 2.6 [0.9] 181/189 62/63 2008 51 40 40 34 28,000 nd 3 [0.8] 184/189 63/63 2009 20/63 20/63 20/63 2009 20/63 20/63 20/63 2009 2009 2009 20/63 2009 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 20/63 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009	Sediment	2006	57	52	18,000	tr(0.8)	1.2 [0.4]	192/192	64/64
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(pg/g-dry)	2007	38	31	27,000	nd	1.8 [0.6]	186/192	63/64
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2008	51	40	140,000	tr(0.7)	1.5 [0.6]	192/192	64/64
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2009	44	30	100,000	nd	1.2 [0.5]	190/192	64/64
o.p'-DDE Monitored year Geometric mean* Median Maximum Minimum Quantification [Detection] limit Detection Frequency 2002 54 37 16,000 nd 3 [1] 188/189 63/63 2003 48 39 24,000 tr(0.5) 0.6 [0.2] 186/186 62/62 2004 40 34 28,000 nd 3 [0.8] 184/189 63/63 2005 40 32 31,000 nd 2.6 [0.9] 181/189 62/63		2010	40	33	13,000	1.4	1.1 [0.4]	64/64	64/64
o.p'-DDE Monitored year Geometric mean* Median Maximum Minimum [Detection] limit Sample Site 2002 54 37 16,000 nd 3 [1] 188/189 63/63 2003 48 39 24,000 tr(0.5) 0.6 [0.2] 186/186 62/62 2004 40 34 28,000 nd 3 [0.8] 184/189 63/63 2005 40 32 31,000 nd 2.6 [0.9] 181/189 62/63		2014	26	24	2,400	nd	0.4 [0.2]	62/63	62/63
O.P'-DDE year mean* Median Maximum Minimum Detection limit Sample Site 2002 54 37 16,000 nd 3 [1] 188/189 63/63 2003 48 39 24,000 tr(0.5) 0.6 [0.2] 186/186 62/62 2004 40 34 28,000 nd 3 [0.8] 184/189 63/63 2005 40 32 31,000 nd 2.6 [0.9] 181/189 62/63		Monitored	Geometric				Quantification	Detection 1	Frequency
2002 54 37 16,000 nd 3 [1] 188/189 63/63 2003 48 39 24,000 tr(0.5) 0.6 [0.2] 186/186 62/62 2004 40 34 28,000 nd 3 [0.8] 184/189 63/63 2005 40 32 31,000 nd 2.6 [0.9] 181/189 62/63	o,p'-DDE			Median	Maximum	Minimum		Sample	Site
2003 48 39 24,000 tr(0.5) 0.6 [0.2] 186/186 62/62 2004 40 34 28,000 nd 3 [0.8] 184/189 63/63 2005 40 32 31,000 nd 2.6 [0.9] 181/189 62/63									
2004 40 34 28,000 nd 3 [0.8] 184/189 63/63 2005 40 32 31,000 nd 2.6 [0.9] 181/189 62/63						nd	3 [1]	188/189	
2005 40 32 31,000 nd 2.6 [0.9] 181/189 62/63		2003		39	24,000	tr(0.5)		186/186	62/62
		2004	40	34	28,000	nd	3 [0.8]	184/189	63/63
Sediment 2006 42 40 27,000 tr(0.4) 1.1 [0.4] 192/192 64/64		2005	40	32	31,000	nd	2.6 [0.9]	181/189	62/63
, , , , , , , , , , , , , , , , , , ,	Sediment	2006	42	40	27,000	tr(0.4)	1.1 [0.4]	192/192	64/64
(pg/g-dry) 2007 37 41 25,000 nd 1.2 [0.4] 186/192 63/64	(pg/g-dry)	2007	37	41	25,000	nd	1.2 [0.4]	186/192	63/64
2008 50 48 37,000 nd 1.4 [0.6] 186/192 63/64		2008	50	48	37,000	nd	1.4 [0.6]	186/192	63/64
2009 37 31 33,000 nd 0.6 [0.2] 191/192 64/64		2009	37	31	33,000	nd	0.6 [0.2]	191/192	64/64
2010 37 32 25,000 tr(0.7) 1.2 [0.5] 64/64 64/64		2010	37	32	25,000	tr(0.7)	1.2 [0.5]	64/64	64/64
2014 30 32 41,000 tr(0.5) 0.8 [0.3] 63/63 63/63									

⁽Note 2) No monitoring was conducted during FY2011~2013.

	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	160	150	14,000	nd	6 [2]	184/189	62/63
	2003	160	130	8,800	tr(1.0)	2 [0.5]	186/186	62/62
	2004	140	120	16,000	tr(0.7)	2 [0.5]	189/189	63/63
	2005	130	110	32,000	tr(0.8)	1.0 [0.3]	189/189	63/63
Sediment	2006	120	110	13,000	tr(0.3)	0.5 [0.2]	192/192	64/64
(pg/g-dry)	2007	110	130	21,000	tr(0.5)	1.0 [0.4]	192/192	64/64
	2008	170	150	50,000	0.5	0.3 [0.1]	192/192	64/64
	2009	120	120	24,000	0.5	0.5 [0.2]	192/192	64/64
	2010	130	130	6,900	tr(0.8)	0.9 [0.4]	64/64	64/64
	2014	74	85	3,200	tr(0.7)	1.2 [0.5]	63/63	63/63

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted during FY2011~2013.

<Wildlife>

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in wildlife (bivalves, fish and birds) during FY2002~2013

	Monitored	Geometric				Quantification	Detection 1	requency
o,p'-DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	110	83	480	22	12 [4]	38/38	8/8
	2003	130	120	480	35	2.9 [0.97]	30/30	6/6
	2004	160	140	910	20	1.8 [0.61]	31/31	7/7
	2005	98	57	440	29	2.6 [0.86]	31/31	7/7
Bivalves	2006	92	79	380	24	3 [1]	31/31	7/7
(pg/g-wet)	2007	79	52	350	20	3 [1]	31/31	7/7
	2008	58	37	330	5	3 [1]	31/31	7/7
	2009	74	48	2,500	17	2.2 [0.8]	31/31	7/7
	2010	51	67	160	15	3 [1]	6/6	6/6
	2013	49	51	180	12	3 [1]	5/5	5/5
	2002	130	130	2,300	tr(6)	12 [4]	70/70	14/14
	2003	85	120	520	2.9	2.9 [0.97]	70/70	14/14
	2004	160	140	1,800	3.7	1.8 [0.61]	70/70	14/14
	2005	100	110	1,500	5.8	2.6 [0.86]	80/80	16/16
Fish	2006	100	110	700	6	3 [1]	80/80	16/16
(pg/g-wet)	2007	69	90	430	3	3 [1]	80/80	16/16
	2008	72	92	720	3	3 [1]	85/85	17/17
	2009	61	73	470	2.4	2.2 [0.8]	90/90	18/18
	2010	58	71	550	5	3 [1]	18/18	18/18
	2013	58	76	310	4	3 [1]	19/19	19/19
	2002	12	tr(10)	58	nd	12 [4]	8/10	2/2
	2003	24	16	66	8.3	2.9 [0.97]	10/10	2/2
	2004	8.5	13	43	tr(0.87)	1.8 [0.61]	10/10	2/2
	2005	11	14	24	3.4	2.6 [0.86]	10/10	2/2
Birds	2006	14	10	120	3	3 [1]	10/10	2/2
(pg/g-wet)	2007	9	9	26	tr(2)	3 [1]	10/10	2/2
	2008	4	6	16	nd	3 [1]	8/10	2/2
	2009	6.3	7.6	12	tr(1.4)	2.2 [0.8]	10/10	2/2
	2010	nd		nd	nd	3 [1]	0/2	0/2
	2013**	nd		tr(1)	nd	3 [1]	1/2	1/2

o,p'-DDE	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Samp	Frequency Site
	2002	83	66	1,100	13	3.6 [1.2]	38/38	8/8
	2002	85	100	460	17	3.6 [1.2]	30/30	6/6
	2003	86	69	360	19	2.1 [0.69]	31/31	7/7
	2005	70	89	470	12	3.4 [1.1]	31/31	7/7
Bivalves	2006	62	81	340	12	3 [1]	31/31	7/7
(pg/g-wet)	2007	56	69	410	8.9	2.3 [0.9]	31/31	7/7
(pg/g-wet)	2007	49	52	390	8.9	3 [1]	31/31	7/7
	2009	46	58	310	8	3 [1]	31/31	7/7
	2010	46	58	160	7.8	1.5 [0.6]	6/6	6/6
	2010	28	31	260	7.8 4	4 [1]	5/5	5/5
	2002	91	50	13,000	3.6	3.6 [1.2]	70/70	14/14
	2002	51	54	2,500	nd	3.6 [1.2]	67/70	14/14
	2003	76	48	5,800	tr(0.89)	2.1 [0.69]	70/70	14/14
	2004	54	45	12,000			80/80	16/16
Fish	2005	56	43	4,800	tr(1.4)	3.4 [1.1] 3 [1]	80/80	16/16
	2007	45	29		tr(1)			
(pg/g-wet)	2007	50	37	4,400	nd +=(1)	2.3 [0.9]	79/80 85/85	16/16
	2008			13,000	tr(1)	3 [1]		17/17
		46	33	4,300	$\operatorname{tr}(1)$	3 [1]	90/90	18/18
	2010	47	37	2,800	tr(1.2)	1.5 [0.6]	18/18	18/18
	2013	51	40	3,000	tr(1)	4[1]	19/19	19/19
	2002	28	26	49	20	3.6 [1.2]	10/10	2/2
	2003	tr(2.3)	tr(2.0)	4.2	nd	3.6 [1.2]	9/10	2/2
	2004	tr(1.0)	tr(1.1)	3.7	nd	2.1 [0.69]	5/10	1/2
D. 1	2005	tr(1.2)	tr(1.9)	tr(2.9)	nd	3.4 [1.1]	7/10	2/2
Birds	2006	tr(1)	tr(2)	3	tr(1)	3 [1]	10/10	2/2
(pg/g-wet)	2007	tr(1.0)	tr(1.4)	2.8	nd	2.3 [0.9]	6/10	2/2
	2008	tr(1)	nd	3	nd	3 [1]	5/10	1/2
	2009	nd	tr(1)	tr(2)	nd	3 [1]	6/10	2/2
	2010	tr(1.1)		3.7	nd	1.5 [0.6]	1/2	1/2
	2013**	nd		tr(1)	nd	4[1]	1/2	1/2
(DDD	Monitored	Geometric	3.6.11	3.6 .	3.61	Quantification	Detection	Frequency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
			100	2.000	4 (0)	limit		
	2002 2003	120	190	2,900	tr(9)	12 [4]	38/38	8/8
	2003	200	220	1,900 2,800	6.5	6.0 [2.0]	30/30	6/6
					()		21/21	
	2004	220	130		6.0	5.7 [1.9]	31/31	7/7
D' 1	2004 2005	170	280	1,800	10	3.3 [1.1]	31/31	7/7
Bivalves	2004 2005 2006	170 150	280 200	1,800 1,000	10 7	3.3 [1.1] 4 [1]	31/31 31/31	7/7 7/7
Bivalves (pg/g-wet)	2004 2005 2006 2007	170 150 150	280 200 200	1,800 1,000 1,200	10 7 6	3.3 [1.1] 4 [1] 3 [1]	31/31 31/31 31/31	7/7 7/7 7/7
	2004 2005 2006 2007 2008	170 150 150 130	280 200 200 140	1,800 1,000 1,200 1,100	10 7 6 5	3.3 [1.1] 4 [1] 3 [1] 4 [2]	31/31 31/31 31/31 31/31	7/7 7/7 7/7 7/7
	2004 2005 2006 2007 2008 2009	170 150 150 130 95	280 200 200 140 51	1,800 1,000 1,200 1,100 1,000	10 7 6 5 5	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1]	31/31 31/31 31/31 31/31 31/31	7/7 7/7 7/7 7/7 7/7
	2004 2005 2006 2007 2008 2009 2010	170 150 150 130 95 57	280 200 200 140 51 50	1,800 1,000 1,200 1,100 1,000 400	10 7 6 5 5 5	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2]	31/31 31/31 31/31 31/31 31/31 6/6	7/7 7/7 7/7 7/7 7/7 6/6
	2004 2005 2006 2007 2008 2009 2010 2013	170 150 150 130 95 57 100	280 200 200 140 51 50 74	1,800 1,000 1,200 1,100 1,000 400 1,800	10 7 6 5 5 5 5.8 7.8	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7]	31/31 31/31 31/31 31/31 31/31 6/6 5/5	7/7 7/7 7/7 7/7 7/7 6/6 5/5
	2004 2005 2006 2007 2008 2009 2010 2013	170 150 150 130 95 57 100	280 200 200 140 51 50 74	1,800 1,000 1,200 1,100 1,000 400 1,800	10 7 6 5 5 5.8 7.8 nd	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4]	31/31 31/31 31/31 31/31 31/31 6/6 5/5	7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5
	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003	170 150 150 130 95 57 100 95 75	280 200 200 140 51 50 74 90 96	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920	10 7 6 5 5 5 5.8 7.8 nd nd	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14
	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004	170 150 150 130 95 57 100 95 75 120	280 200 200 140 51 50 74 90 96	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700	10 7 6 5 5 5.8 7.8 nd nd nd	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14
(pg/g-wet)	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005	170 150 150 130 95 57 100 95 75 120 83	280 200 200 140 51 50 74 90 96 96 81	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400	10 7 6 5 5 5.8 7.8 nd nd nd nd	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14
(pg/g-wet) Fish	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006	170 150 150 130 95 57 100 95 75 120 83 80	280 200 200 140 51 50 74 90 96 96 81 86	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100	10 7 6 5 5 5.8 7.8 nd nd nd nd tr(1)	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80	7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16
(pg/g-wet)	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007	170 150 150 130 95 57 100 95 75 120 83 80 66	280 200 200 140 51 50 74 90 96 96 81 86 62	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300	10 7 6 5 5 5.8 7.8 nd nd nd nd tr(1) nd	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16
(pg/g-wet) Fish	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008	170 150 150 130 95 57 100 95 75 120 83 80 66	280 200 200 140 51 50 74 90 96 96 81 86 62 74	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300 1,000	10 7 6 5 5 5.8 7.8 nd nd nd nd tr(1) nd nd	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80 80/85	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16 16/16
(pg/g-wet) Fish	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009	170 150 150 130 95 57 100 95 75 120 83 80 66 65 63	280 200 200 140 51 50 74 90 96 96 81 86 62 74 64	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300 1,000 760	10 7 6 5 5 5.8 7.8 nd nd nd rd rd rd nd rd nd	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16 16/17 18/18
(pg/g-wet) Fish	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010	170 150 150 130 95 57 100 95 75 120 83 80 66 65 63 75	280 200 200 140 51 50 74 90 96 96 81 86 62 74 64 99	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700	10 7 6 5 5 5.8 7.8 nd nd nd nd tr(1) nd nd	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16 16/17 18/18 18/18
(pg/g-wet) Fish	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013	170 150 150 130 95 57 100 95 75 120 83 80 66 65 63 75 70	280 200 200 140 51 50 74 90 96 96 81 86 62 74 64 99 85	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700 940	10 7 6 5 5 5.8 7.8 nd nd nd tr(1) nd nd nd tr(1)	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18 18/19	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16 16/17 18/18 18/18
(pg/g-wet) Fish	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013	170 150 150 130 95 57 100 95 75 120 83 80 66 65 63 75 70	280 200 200 140 51 50 74 90 96 96 81 86 62 74 64 99 85	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700 940	10 7 6 5 5 5.8 7.8 nd nd nd tr(1) nd nd tr(1) nd nd tr(2)	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18 18/19	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16 16/17 18/18 18/18 18/19
(pg/g-wet) Fish	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003	170 150 150 130 95 57 100 95 75 120 83 80 66 65 63 75 70	280 200 200 140 51 50 74 90 96 96 81 86 62 74 64 99 85 15	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700 940 23 36	10 7 6 5 5 5.8 7.8 nd nd nd tr(1) nd nd nd tr(1)	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18 18/19	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16 16/17 18/18 18/18 18/19 2/2 2/2
(pg/g-wet) Fish	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013	170 150 150 130 95 57 100 95 75 120 83 80 66 65 63 75 70	280 200 200 140 51 50 74 90 96 96 81 86 62 74 64 99 85	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700 940	10 7 6 5 5 5.8 7.8 nd nd nd tr(1) nd nd tr(1) nd nd tr(2)	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18 18/19	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16 16/17 18/18 18/18 18/19
(pg/g-wet) Fish	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003	170 150 150 130 95 57 100 95 75 120 83 80 66 65 63 75 70	280 200 200 140 51 50 74 90 96 96 81 86 62 74 64 99 85 15	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700 940 23 36	10 7 6 5 5 5.8 7.8 nd nd nd tr(1) nd nd tr(1) nd nd tr(8) tr(8)	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18 18/19	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16 16/17 18/18 18/18 18/19 2/2 2/2
(pg/g-wet) Fish (pg/g-wet)	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004	170 150 150 130 95 57 100 95 75 120 83 80 66 65 63 75 70 15 15 6.1 7.3	280 200 200 140 51 50 74 90 96 96 81 86 62 74 64 99 85 15 14 5.7 7.5	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700 940 23 36 25	10 7 6 5 5 5.8 7.8 nd nd nd tr(1) nd nd tr(1) nd nd tr(2) nd tr(3) tr(8) tr(5.0) nd	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18 18/19 10/10 9/10	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16 16/17 18/18 18/18 18/19 2/2 2/2 2/2
(pg/g-wet) Fish (pg/g-wet) Birds	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007	170 150 150 130 95 57 100 95 75 120 83 80 66 65 63 75 70 15 15 6.1 7.3 8	280 200 200 140 51 50 74 90 96 96 81 86 62 74 64 99 85 15 14 5.7	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700 940 23 36 25 9.7	10 7 6 5 5 5.8 7.8 nd nd nd tr(1) nd nd tr(1) nd nd tr(8) tr(5.0) nd 4.7	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [2] 3 [1] 4 [2] 5 [1.9] 3.3 [1.1] 4 [1] 4 [1]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18 18/19 10/10 10/10 10/10 10/10	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16 16/17 18/18 18/18 18/19 2/2 2/2 2/2 2/2 2/2
(pg/g-wet) Fish (pg/g-wet)	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010	170 150 150 130 95 57 100 95 75 120 83 80 66 65 63 75 70 15 15 6.1 7.3 8	280 200 200 140 51 50 74 90 96 96 81 86 62 74 64 99 85 15 14 5.7 7.5 8 7	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700 940 23 36 25 9.7 19 10	10 7 6 5 5 5.8 7.8 nd nd nd tr(1) nd nd tr(1) nd nd tr(8) tr(5.0) nd 4.7 5	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 5.7 [1.9] 3.3 [1.1] 4 [1] 5.7 [1.9] 3.3 [1.1] 4 [1] 5 [1]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18 18/19 10/10 10/10 10/10 10/10	7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16 16/17 18/18 18/18 18/19 2/2 2/2 2/2 2/2 2/2 2/2 2/2
(pg/g-wet) Fish (pg/g-wet) Birds	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2010 2010 2010 2010 2010 2010 2010	170 150 150 130 95 57 100 95 75 120 83 80 66 65 63 75 70 15 15 6.1 7.3 8	280 200 200 140 51 50 74 90 96 96 81 86 62 74 64 99 85 15 14 5.7 7.5 8 7 tr(3)	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700 940 23 36 25 9.7 19 10 14	10 7 6 5 5 5.8 7.8 nd nd nd tr(1) nd nd tr(1) nd nd tr(8) tr(5.0) nd 4.7	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 5.7 [1.9] 3.3 [1.1] 4 [1] 4 [1] 5 [1] 4 [1] 7 [1] 8 [1] 9 [1]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18 18/19 10/10 10/10 10/10 10/10 10/10	7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16 16/17 18/18 18/18 18/19 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2
(pg/g-wet) Fish (pg/g-wet) Birds	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010	170 150 150 130 95 57 100 95 75 120 83 80 66 65 63 75 70 15 15 6.1 7.3 8	280 200 200 140 51 50 74 90 96 96 81 86 62 74 64 99 85 15 14 5.7 7.5 8 7	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700 940 23 36 25 9.7 19 10 14 13	10 7 6 5 5 5 5.8 7.8 nd nd nd tr(1) nd nd tr(1) nd nd tr(2) nd tr(8) tr(5.0) nd 4.7 5 tr(2) 3	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18 18/19 10/10 10/10 10/10 10/10 10/10 10/10	7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 16/16 16/16 16/17 18/18 18/18 18/19 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/
(pg/g-wet) Fish (pg/g-wet) Birds	2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2002 2003 2004 2005 2006 2007 2010 2010 2010 2010 2010 2010 2010	170 150 150 130 95 57 100 95 75 120 83 80 66 65 63 75 70 15 15 6.1 7.3 8	280 200 200 140 51 50 74 90 96 96 81 86 62 74 64 99 85 15 14 5.7 7.5 8 7 tr(3) 5	1,800 1,000 1,200 1,100 1,000 400 1,800 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700 940 23 36 25 9.7 19 10 14	10 7 6 5 5 5.8 7.8 nd nd nd tr(1) nd nd tr(8) tr(5.0) nd 4.7 5 tr(2)	3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 5.7 [1.9] 3.3 [1.1] 4 [1] 4 [1] 5 [1] 4 [1] 7 [1] 8 [1] 9 [1]	31/31 31/31 31/31 31/31 31/31 6/6 5/5 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18 18/19 10/10 10/10 10/10 10/10 10/10	7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 14/14 14/14 14/14 16/16 16/16 16/17 18/18 18/18 18/19 2/2 2/2 2/2 2/2 2/2 2/2 2/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

⁽Note2)"**" There is no consistency between the results of the ornithological survey in FY2013 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2011 and FY2012.

<Air>
Stocktaking of the detection of *o,p'*-DDT, *o,p'*-DDE and *o,p'*-DDD in air during FY2002~2015

		Geometric				Quantification	Detection 1	Frequency
o,p'-DDT	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.2	2.0	40	0.41	0.15 [0.05]	102/102	34/34
	2003Warm season	6.9	7.7	38	0.61	0.12 [0.040]	35/35	35/35
	2003Cold season	1.6	1.4	6.4	0.43	0.12 [0.040]	34/34	34/34
	2004Warm season	5.1	5.4	22	0.54	0.093 [0.031]	37/37	37/37
	2004Cold season	1.5	1.4	9.4	0.35	0.093 [0.031]	37/37	37/37
	2005Warm season	3.0	3.1	14	0.67	0.10 [0.034]	37/37	37/37
	2005Cold season	0.76	0.67	3.0	0.32		37/37	37/37
	2006Warm season	2.5	2.4	20	0.55	0.09 [0.03]	37/37	37/37
	2006Cold season	0.90	0.79	3.9	0.37	0.09 [0.03]	37/37	37/37
Air	2007Warm season	2.9	2.6	19	0.24	0.03 [0.01]	36/36	36/36
(pg/m^3)	2007Cold season	0.77	0.63	3.4	0.31		36/36	36/36
	2008Warm season	2.3	2.1	18	0.33	0.03 [0.01]	37/37	37/37
	2008Cold season	0.80	0.62	6.5	0.32		37/37	37/37
	2009Warm season	2.3	2.2	14	0.33	0.019 [0.008]	37/37	37/37
	2009Cold season	0.80	0.71	3.7	0.20		37/37	37/37
	2010Warm season	2.2	1.9	26	0.19	0.14 [0.05]	37/37	37/37
	2010Cold season	0.81	0.69	5.5	0.22	0.14 [0.03]	37/37	37/37
	2013Warm season	1.7	1.7	12	0.15	0.054 [0.018]	36/36	36/36
	2013Cold season	0.47	0.44	2.4	0.20		36/36	36/36
	2015Warm season	0.99	1.2	6.8	0.14	0.12 [0.04]	35/35	35/35
		Geometric				Quantification	Detection 1	Frequency
o,p'-DDE	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.60	0.56	8.5	0.11	0.03 [0.01]	102/102	34/34
	2003Warm season	1.4	1.5	7.5	0.17	0.020.00.00.00	35/35	35/35
	2003Cold season	0.50	0.47	1.7	0.18	0.020 [0.0068]	34/34	34/34
	2004Warm season	1.1	1.2	8.9	0.14	0.027 [0.012]	37/37	37/37
	2004Cold season	0.53	0.49	3.9	0.14	0.037 [0.012]	37/37	37/37
	2005Warm season	1.6	1.5	7.9	0.33	0.074 [0.024]	37/37	37/37
	2005Cold season	0.62	0.59	2.0	0.24	0.074 [0.024]	37/37	37/37
	2006Warm season	1.1	1.1	7.4	nd	0.09 [0.03]	36/37	36/37
	2006Cold season	0.65				0.09 [0.03]	37/37	37/37
Air	2000Cold season	0.65	0.56	2.6	0.19		31/31	
	2007Warm season	0.65	0.56	2.6 7	0.19	0.017.[0.007]	36/36	36/36
(pg/m^3)	2007Warm season 2007Cold season	0.66 0.3	0.67 0.29	7 3.7	0.096 0.12	0.017 [0.007]	36/36 36/36	36/36
	2007Warm season	0.66	0.67	7	0.096		36/36	
	2007Warm season 2007Cold season	0.66 0.3	0.67 0.29	7 3.7	0.096 0.12	0.017 [0.007]	36/36 36/36	36/36
	2007Warm season 2007Cold season 2008Warm season	0.66 0.3 0.48 0.30 0.51	0.67 0.29 0.52 0.24 0.46	7 3.7 5.0 1.1 6.7	0.096 0.12 0.11 0.15 0.098	0.025 [0.009]	36/36 36/36 37/37	36/36 37/37
	2007Warm season 2007Cold season 2008Warm season 2008Cold season	0.66 0.3 0.48 0.30 0.51 0.27	0.67 0.29 0.52 0.24 0.46 0.24	7 3.7 5.0 1.1	0.096 0.12 0.11 0.15 0.098 0.072		36/36 36/36 37/37 37/37 37/37 37/37	36/36 37/37 37/37 37/37 37/37
	2007Warm season 2007Cold season 2008Warm season 2008Cold season 2009Warm season	0.66 0.3 0.48 0.30 0.51 0.27	0.67 0.29 0.52 0.24 0.46 0.24 0.41	7 3.7 5.0 1.1 6.7 23 9.0	0.096 0.12 0.11 0.15 0.098 0.072 0.09	0.025 [0.009]	36/36 36/36 37/37 37/37 37/37	36/36 37/37 37/37 37/37 37/37 37/37
	2007Warm season 2007Cold season 2008Warm season 2008Cold season 2009Warm season 2009Cold season	0.66 0.3 0.48 0.30 0.51 0.27	0.67 0.29 0.52 0.24 0.46 0.24	7 3.7 5.0 1.1 6.7 23	0.096 0.12 0.11 0.15 0.098 0.072	0.025 [0.009]	36/36 36/36 37/37 37/37 37/37 37/37	36/36 37/37 37/37 37/37 37/37
	2007Warm season 2007Cold season 2008Warm season 2008Cold season 2009Warm season 2009Cold season 2010Warm season	0.66 0.3 0.48 0.30 0.51 0.27	0.67 0.29 0.52 0.24 0.46 0.24 0.41	7 3.7 5.0 1.1 6.7 23 9.0	0.096 0.12 0.11 0.15 0.098 0.072 0.09	0.025 [0.009] 0.016 [0.006] 0.04 [0.01]	36/36 36/36 37/37 37/37 37/37 37/37 37/37	36/36 37/37 37/37 37/37 37/37 37/37
	2007Warm season 2007Cold season 2008Warm season 2008Cold season 2009Warm season 2009Cold season 2010Warm season 2010Cold season	0.66 0.3 0.48 0.30 0.51 0.27 0.49 0.27	0.67 0.29 0.52 0.24 0.46 0.24 0.41 0.23	7 3.7 5.0 1.1 6.7 23 9.0 2.3	0.096 0.12 0.11 0.15 0.098 0.072 0.09 0.08	0.025 [0.009]	36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	36/36 37/37 37/37 37/37 37/37 37/37 37/37

		Geometric				Quantification	Detection l	Frequency
o,p'-DDD	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.14	0.18	0.85	nd	0.021 [0.007]	97/102	33/34
	2003Warm season	0.37	0.42	1.3	0.059	0.042 [0.014]	35/35	35/35
	2003Cold season	0.15	0.14	0.42	0.062	0.042 [0.014]	34/34	34/34
	2004Warm season	0.31	0.33	2.6	tr(0.052)	0 14 [0 049]	37/37	37/37
	2004Cold season	0.14	tr(0.13)	0.86	nd	0.14 [0.048]	35/37	35/37
	2005Warm season	0.22	0.19	0.90	tr(0.07)	0.10.00.021	37/37	37/37
	2005Cold season	tr(0.07)	tr(0.07)	0.21	nd	0.10 [0.03]	35/37	35/37
	2006Warm season	0.28	0.28	1.4	tr(0.05)	0.10 [0.02]	37/37	37/37
	2006Cold season	0.12	0.11	0.79	nd	0.10 [0.03]	34/37	34/37
Air	2007Warm season	0.28	0.29	1.9	0.05	0.05 [0.02]	36/36	36/36
(pg/m^3)	2007Cold season	0.095	0.09	0.33	tr(0.03)	0.05 [0.02]	36/36	36/36
	2008Warm season	0.19	0.16	1.6	0.05	0.04.00.013	37/37	37/37
	2008Cold season	0.10	0.09	0.26	0.04	0.04 [0.01]	37/37	37/37
	2009Warm season	0.20	0.19	0.90	0.04	0.02 [0.01]	37/37	37/37
	2009Cold season	0.08	0.08	0.28	tr(0.02)	0.03 [0.01]	37/37	37/37
	2010Warm season	0.21	0.19	1.8	0.04	0.02 [0.01]	37/37	37/37
	2010Cold season	0.10	0.09	0.48	tr(0.02)	0.03 [0.01]	37/37	37/37
	2013Warm season	0.17	0.18	1.2	tr(0.03)	0.05 [0.02]	36/36	36/36
	2013Cold season	0.06	0.06	0.17	nd	0.05 [0.02]	35/36	35/36
	2015Warm season	tr(0.09)	tr(0.10)	0.37	nd	0.20 [0.07]	25/35	25/35

(Note) No monitoring was conducted in FY2011, FY2012 and FY2014.

[7] Chlordanes

· History and state of monitoring

Chlordane was used as insecticides on a range of agricultural crops, but the registration of Chlordanes under the Agricultural Chemicals Regulation Law was expired in FY1968. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986 because of its properties such as persistency, since it had been used as termitecides for wood products such as primary processed timber, plywood and house. Also *cis*-Chlordane and *trans*-Chlordane are one of the original twelve POPs covered by the Stockholm Convention.

Although manufactured Chlordanes have complicated compositions, Heptachlor, γ-Chlordane, Heptachlor epoxide, *cis*-Chlordane, *trans*-Chlordane, Oxychlordane (as a chlordane metabolite), *cis*-Nonachlor (not registrated as an Agricultural Chemical) and *trans*-Nonachlor (not registrated as an Agricultural Chemical) were the original target chemicals in monitoring series. Since FY1983, 5 of those 8 chemicals (*cis*-Chlordane, *trans*-Chlordane, Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor) have been the target chemicals owning to their high detection frequency in the FY1982 High-Precision Environmental Survey.

In previous monitoring series, Chlordanes had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring", *cis*-Chlordane, *trans*-Chlordane, *cis*-Nonachlor and *trans*-Nonachlor in surface water and sediment have been the monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, *cis*-Chlordane, *trans*-Chlordane, Oxychlordane (as a Chlordane metabolite), *cis*-Nonachlor (not registrated as an Agricultural Chemical) and *trans*-Nonachlor have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002~2013, FY2016 and FY2017.

- Monitoring results in surface water and sediment
- o cis-Chlordane and trans-Chlordane
- <Surface Water>

cis-Chlordane: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 1 pg/L, and the detection range was $2 \sim 210$ pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendencies in specimens from river areas, river mouth areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

trans-Chlordane: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 1 pg/L, and the detection range was tr(2)~150 pg/L.

Stocktaking of the detection of cis-Chlordane and trans-Chlordane in surface water FY2002~2017

	Monitored	Geometric				Quantification	Detection 1	Frequency
cis-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	32	880	2.5	0.9 [0.3]	114/114	38/38
	2003	69	51	920	12	3 [0.9]	36/36	36/36
	2004	92	87	1,900	10	6 [2]	38/38	38/38
	2005	53	54	510	6	4 [1]	47/47	47/47
	2006	31	26	440	5	5 [2]	48/48	48/48
Surface Water	2007	23	22	680	nd	4 [2]	47/48	47/48
	2008	29	29	480	2.9	1.6 [0.6]	48/48	48/48
(pg/L)	2009	29	26	710	4.4	1.1 [0.4]	49/49	49/49
	2010	19	14	170	nd	11 [4]	47/49	47/49
	2011	20	16	500	3.8	1.4 [0.6]	49/49	49/49
	2012	43	37	350	10	1.6 [0.6]	48/48	48/48
	2013	18	16	260	2.9	2.7 [0.9]	48/48	48/48
	2017	19	19	210	2	2 [1]	47/47	47/47
	Manitanad	Coomotnio				Quantification	Detection 1	Frequency
trans-Chlordane	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	33	24	780	3.1	1.5 [0.5]	114/114	38/38
	2003	34	30	410	6	5 [2]	36/36	36/36
	2004	32	26	1,200	5	5 [2]	38/38	38/38
	2005	25	21	200	3	4[1]	47/47	47/47
	2006	24	16	330	tr(4)	7 [2]	48/48	48/48
a 0 ***	2007	16	20	580	nd	2.4 [0.8]	47/48	47/48
Surface Water	2008	23	22	420	3	3 [1]	48/48	48/48
(pg/L)	2009	23	18	690	3.0	0.8 [0.3]	49/49	49/49
	2010	15	tr(11)	310	nd	13 [4]	44/49	44/49
	2011	16	13	470	3.2	1.0 [0.4]	49/49	49/49
	2012	41	33	300	12	2.5 [0.8]	48/48	48/48
	2012 2013	41 15	33 13	300 200	12 3	2.5 [0.8] 3 [1]	48/48 48/48	48/48 48/48

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted during FY2014~2016.

<Sediment>

cis-Chlordane: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 61 of the 62 valid sites adopting the detection limit of 1.6 pg/g-dry, and none of the detected concentrations exceeded 2,800 pg/g-dry. As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendencies in specimens from river areas, river mouth areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

trans-Chlordane: The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 1 pg/g-dry, and the detection range was tr(1)~3,000 pg/g-dry. As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendencies in specimens from river areas, river mouth areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Stocktaking of the detection of cis-Chlordane and trans-Chlordane in sediment FY2002~2017

	Monitored	Geometric				Quantification	Detection I	requency
cis-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	140	98	18,000	1.8	0.9 [0.3]	189/189	63/63
	2003	190	140	19,000	tr(3.6)	4 [2]	186/186	62/62
	2004	160	97	36,000	4	4 [2]	189/189	63/63
	2005	150	100	44,000	3.3	1.9 [0.64]	189/189	63/63
	2006	100	70	13,000	tr(0.9)	2.4 [0.8]	192/192	64/64
C - 1'	2007	82	55	7,500	nd	5 [2]	191/192	64/64
Sediment (pg/g-dry)	2008	100	63	11,000	tr(2.3)	2.4 [0.9]	192/192	64/64
(pg/g-ury)	2009	84	61	8,600	2.0	0.7 [0.3]	192/192	64/64
	2010	82	62	7,200	tr(4)	6 [2]	64/64	64/64
	2011	70	58	4,500	1.7	1.1 [0.4]	64/64	64/64
	2012	69	61	11,000	tr(2.6)	2.9 [1.0]	63/63	63/63
	2013	65	55	5,400	tr(1.9)	2.0 [0.8]	63/63	63/63
	2017	47	36	2,800	nd	4.8 [1.6]	61/62	61/62
	Monitored	Geometric				Quantification	Detection I	requency
trans-Chlordane			Median	Maximum	Minimum	[Detection]		G *.
	year	mean*				limit	Sample	Site
	2002	150	110	16,000	2.1		Sample 189/189	63/63
	•			16,000 13,000	2.1 tr(2.4)	limit		
	2002	150	110			limit 1.8 [0.6]	189/189	63/63
	2002 2003	150 130	110 100	13,000	tr(2.4)	limit 1.8 [0.6] 4 [2]	189/189 186/186	63/63 62/62
	2002 2003 2004	150 130 110	110 100 80	13,000 26,000	tr(2.4)	limit 1.8 [0.6] 4 [2] 3 [0.9]	189/189 186/186 189/189	63/63 62/62 63/63
S. Harran	2002 2003 2004 2005	150 130 110 110	110 100 80 81	13,000 26,000 32,000	tr(2.4) 3 3.4	limit 1.8 [0.6] 4 [2] 3 [0.9] 2.3 [0.84]	189/189 186/186 189/189 189/189	63/63 62/62 63/63 63/63
Sediment	2002 2003 2004 2005 2006	150 130 110 110 110	110 100 80 81 76	13,000 26,000 32,000 12,000	tr(2.4) 3 3.4 2.2	limit 1.8 [0.6] 4 [2] 3 [0.9] 2.3 [0.84] 1.1 [0.4]	189/189 186/186 189/189 189/189 192/192	63/63 62/62 63/63 63/63 64/64
Sediment (pg/g-dry)	2002 2003 2004 2005 2006 2007	150 130 110 110 110 82	110 100 80 81 76 58	13,000 26,000 32,000 12,000 7,500	tr(2.4) 3 3.4 2.2 nd	limit 1.8 [0.6] 4 [2] 3 [0.9] 2.3 [0.84] 1.1 [0.4] 2.2 [0.8]	189/189 186/186 189/189 189/189 192/192 191/192	63/63 62/62 63/63 63/63 64/64 64/64
	2002 2003 2004 2005 2006 2007 2008	150 130 110 110 110 82 110	110 100 80 81 76 58 66	13,000 26,000 32,000 12,000 7,500 10,000	tr(2.4) 3 3.4 2.2 nd 2.4	limit 1.8 [0.6] 4 [2] 3 [0.9] 2.3 [0.84] 1.1 [0.4] 2.2 [0.8] 2.0 [0.8]	189/189 186/186 189/189 189/189 192/192 191/192 192/192	63/63 62/62 63/63 63/63 64/64 64/64
	2002 2003 2004 2005 2006 2007 2008 2009	150 130 110 110 110 82 110 91	110 100 80 81 76 58 66 68	13,000 26,000 32,000 12,000 7,500 10,000 8,300	tr(2.4) 3 3.4 2.2 nd 2.4 2.1	limit 1.8 [0.6] 4 [2] 3 [0.9] 2.3 [0.84] 1.1 [0.4] 2.2 [0.8] 2.0 [0.8] 1.7 [0.7]	189/189 186/186 189/189 189/189 192/192 191/192 192/192 192/192	63/63 62/62 63/63 63/63 64/64 64/64 64/64
	2002 2003 2004 2005 2006 2007 2008 2009 2010	150 130 110 110 110 82 110 91	110 100 80 81 76 58 66 68	13,000 26,000 32,000 12,000 7,500 10,000 8,300 8,000	tr(2.4) 3 3.4 2.2 nd 2.4 2.1 tr(4)	limit 1.8 [0.6] 4 [2] 3 [0.9] 2.3 [0.84] 1.1 [0.4] 2.2 [0.8] 2.0 [0.8] 1.7 [0.7] 11 [4]	189/189 186/186 189/189 189/189 192/192 191/192 192/192 192/192 64/64	63/63 62/62 63/63 63/63 64/64 64/64 64/64 64/64
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011	150 130 110 110 110 82 110 91 95 73	110 100 80 81 76 58 66 68 69 64	13,000 26,000 32,000 12,000 7,500 10,000 8,300 8,000 4,300	tr(2.4) 3 3.4 2.2 nd 2.4 2.1 tr(4) 3.2	limit 1.8 [0.6] 4 [2] 3 [0.9] 2.3 [0.84] 1.1 [0.4] 2.2 [0.8] 2.0 [0.8] 1.7 [0.7] 11 [4] 1.3 [0.5]	189/189 186/186 189/189 189/189 192/192 191/192 192/192 192/192 64/64 64/64	63/63 62/62 63/63 63/63 64/64 64/64 64/64 64/64 64/64

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted during FY2014~2016.

Oxychlordane, cis-Nonachlor and trans-Nonachlor

<Surface Water>

Oxychlordane: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 19 of the 47 valid sites adopting the detection limit of 2 pg/L, and none of the detected concentrations exceeded 12 pg/L. As results of the inter-annual trend analysis from FY2002 to FY2017, the last 5 years period was indicated lower concentration than the period before the last 5 years in specimens from river areas as statistically significant.

cis-Nonachlor: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.6 pg/L, and the detection range was tr(0.6)~36 pg/L.

trans-Nonachlor: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 1 pg/L, and the detection range was tr(2)~120 pg/L. As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendency in specimens from river areas was identified as statistically significant.

	Monitored	Geometric				Quantification	Detection	Frequenc
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.7	3.5	41	nd	1.2 [0.4]	96/114	35/38
	2003	3	2	39	tr(0.6)	2 [0.5]	36/36	36/36
	2004	3.2	2.9	47	tr(0.7)	2 [0.5]	38/38	38/38
	2005	2.6	2.1	19	nd	1.1 [0.4]	46/47	46/47
	2006	tr(2.5)	tr(2.4)	18	nd	2.8 [0.9]	43/48	43/48
C	2007	tr(2)	nd	41	nd	6 [2]	25/48	25/48
Surface Water	2008	1.9	1.9	14	nd	1.9 [0.7]	40/48	40/48
(pg/L)	2009	2.0	1.9	19	nd	1.1 [0.4]	45/49	45/49
	2010	1.5	1.3	45	nd	0.7 [0.3]	47/49	47/49
	2011	1.9	1.8	34	nd	1.3 [0.5]	44/49	44/49
	2012	2.2	2.3	17	nd	0.9 [0.4]	44/48	44/48
	2013	1.8	1.8	12	nd	0.9 [0.4]	41/48	41/48
	2017	nd	nd	12	nd	4 [2]	19/47	19/47
	Monitored	Geometric				Quantification	Detection	Frequenc
cis-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	7.9	6.7	250	0.23	1.8 [0.6]	114/114	38/38
	2003	8.0	7.0	130	1.3	0.3 [0.1]	36/36	36/36
	2004	7.5	6.3	340	0.8	0.6 [0.2]	38/38	38/38
	2005	6.0	5.9	43	0.9	0.5 [0.2]	47/47	47/47
	2006	6.6	5.6	83	1.0	0.8 [0.3]	48/48	48/48
C C W	2007	5.9	6.1	210	nd	2.4 [0.8]	43/48	43/48
Surface Water	2008	6.5	5.9	130	0.9	0.9 [0.3]	48/48	48/48
(pg/L)	2009	7.1	5.5	210	1.4	0.3 [0.1]	49/49	49/49
	2010	5.4	3.9	40	tr(0.9)	1.3 [0.4]	49/49	49/49
	2011	5.0	4.3	130	0.8	0.6 [0.2]	49/49	49/49
	2012	6.4	5.9	58	1.1	0.8 [0.3]	48/48	48/48
	2013	5.1	4.6	74	tr(0.7)	0.8 [0.3]	48/48	48/48
	2017	4.6	4.6	36	tr(0.6)	1.5 [0.6]	47/47	47/47

	Monitored	Geometric				Quantification	Detection l	Frequency
trans-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	30	24	780	1.8	1.2 [0.4]	114/114	38/38
	2003	26	20	450	4	2 [0.5]	36/36	36/36
	2004	25	19	1,100	tr(3)	4 [2]	38/38	38/38
	2005	20	17	150	2.6	2.5 [0.84]	47/47	47/47
	2006	21	16	310	3.2	3.0 [1.0]	48/48	48/48
Surface Water	2007	17	17	540	tr(2)	5 [2]	48/48	48/48
	2008	18	17	340	1.9	1.6 [0.6]	48/48	48/48
(pg/L)	2009	20	17	530	2.7	1.0 [0.4]	49/49	49/49
	2010	12	11	93	nd	8 [3]	45/49	45/49
	2011	15	12	480	2.6	1.3 [0.5]	49/49	49/49
	2012	30	26	210	7.9	1.5 [0.6]	48/48	48/48
	2013	14	11	170	2.3	1.5 [0.6]	48/48	48/48
	2017	13	14	120	tr(2)	3 [1]	47/47	47/47

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted during FY2014~2016.

<Sediment>

Oxychlordane: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 41 of the 62 valid sites adopting the detection limit of 1 pg/g-dry, and none of the detected concentrations exceeded 78 pg/g-dry. As results of the inter-annual trend analysis from FY2002 to FY2017, the last 5 years period was indicated lower concentration than the period before the last 5 years in specimens from the overall areas in sediment as statistically significant.

cis-Nonachlor: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 61 of the 62 valid sites adopting the detection limit of 0.7 pg/g-dry, and none of the detected concentrations exceeded 1,500 pg/g-dry. As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendencies in specimens from river areas, river mouth areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

trans-Nonachlor: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 61 of the 62 valid sites adopting the detection limit of 2 pg/g-dry, and none of the detected concentrations exceeded 2,600 pg/g-dry. As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendencies in specimens from river areas, river mouth areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in sediment FY2002~2017

	Monitored	Geometric				Quantification	Detection 1	Frequency
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	year	mean				limit	Sample	Site
	2002	2.7	1.7	120	nd	1.5 [0.5]	153/189	59/63
	2003	2	2	85	nd	1 [0.4 <u>]</u>	158/186	57/62
	2004	tr(2.1)	tr(1.3)	140	nd	3 [0.8]	129/189	54/63
	2005	2.3	tr(1.9)	160	nd	2.0 [0.7]	133/189	51/63
	2006	tr(2.5)	tr(1.7)	280	nd	2.9 [1.0]	141/192	54/64
G 1' 4	2007	tr(2.1)	tr(1.5)	76	nd	2.5 [0.9]	117/192	46/64
Sediment	2008	tr(2)	tr(1)	340	nd	3 [1]	110/192	48/64
(pg/g-dry)	2009	2	tr(1)	150	nd	2 [1]	97/192	45/64
	2010	1.7	1.2	60	nd	1.0 [0.4]	56/64	56/64
	2011	tr(1.6)	tr(1.2)	83	nd	2.2 [0.9]	36/64	36/64
	2012	tr(1.4)	tr(1.0)	75	nd	1.7 [0.7]	38/63	38/63
	2013	1.5	1.3	54	nd	1.3 [0.5]	50/63	50/63
	2017	tr(1)	tr(1)	78	nd	3 [1]	41/62	41/62

	Monitored	Geometric				Quantification	Detection 1	Frequency
cis-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	76	66	7,800	nd	2.1 [0.7]	188/189	63/63
	2003	66	50	6,500	nd	3 [0.9]	184/186	62/62
	2004	53	34	9,400	tr(0.8)	2 [0.6]	189/189	63/63
	2005	56	42	9,900	tr(1.1)	1.9 [0.64]	189/189	63/63
	2006	58	48	5,800	tr(0.6)	1.2 [0.4]	192/192	64/64
Sediment	2007	48	35	4,200	nd	1.6 [0.6]	191/192	64/64
	2008	57	42	5,100	1.1	0.6 [0.2]	192/192	64/64
(pg/g-dry)	2009	53	38	4,700	1.4	1.0 [0.4]	192/192	64/64
	2010	53	45	3,600	2.3	0.9 [0.3]	64/64	64/64
	2011	41	38	2,900	nd	1.1 [0.4]	63/64	63/64
	2012	44	35	4,900	tr(1)	3 [1]	63/63	63/63
	2013	41	31	3,100	tr(0.6)	0.7 [0.3]	63/63	63/63
	2017	31	25	1,500	nd	1.7 [0.7]	61/62	61/62
	Monitored	Geometric				Quantification	Detection 1	Frequency
trans-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
						limit		
	2002	130	83	13,000	3.1	1.5 [0.5]	189/189	63/63
	2003	110	78	11,000	2	2 [0.6]	186/186	62/62
	2004	94	63	23,000	3	2 [0.6]	189/189	63/63
	2005	99	72	24,000	2.4	1.5 [0.54]	189/189	63/63
	2006	100	65	10,000	3.4	1.2 [0.4]	192/192	64/64
Sediment	2007	78	55	8,400	tr(1.6)	1.7 [0.6]	192/192	64/64
(pg/g-dry)	2008	91	53	8,400	tr(1.6)	2.2 [0.8]	192/192	64/64
(PB/B dif)	2009	85	58	7,800	2.0	0.9 [0.3]	192/192	64/64
	2010	80	65	6,200	tr(3)	6 [2]	64/64	64/64
	2011	68	52	4,500	1.7	0.8 [0.3]	64/64	64/64
	2012	69	62	10,000	2.5	2.4 [0.8]	63/63	63/63
	2013	67	54	4,700	2.2	1.2 [0.4]	63/63	63/63
	2017	47	39	2,600	nd	6 [2]	61/62	61/62

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted during FY2014~2016.

• Monitoring results in wildlife (bivalves, fish and birds) and air until FY2016 (reference)

\circ cis- Chlordane and trans- Chlordane

<Wildlife>

Stocktaking of the detection of cis-Chlordane and trans-Chlordane in wildlife (bivalves, fish and birds) FY2002~2016

cis-Chlordane		Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	Frequency
cis-Cinordane	year	mean*	Median	Maximum	Millimum	limit	Sample	Site
	2002	730	1,200	26,000	24	2.4 [0.8]	38/38	8/8
	2003	1,100	1,400	14,000	110	3.9 [1.3]	30/30	6/6
	2004	1,300	1,600	14,000	91	18 [5.8]	31/31	7/7
	2005	1,000	960	13,000	78	12 [3.9]	31/31	7/7
	2006	970	1,100	18,000	67	4[1]	31/31	7/7
D' 1	2007	870	590	19,000	59	5 [2]	31/31	7/7
Bivalves	2008	750	560	11,000	85	5 [2]	31/31	7/7
(pg/g-wet)	2009	1,200	1,100	16,000	83	4 [2]	31/31	7/7
	2010	1,600	2,300	15,000	67	4 [2]	6/6	6/6
	2011	790	880	3,400	160	3 [1]	4/4	4/4
	2012	710	500	3,500	180	5 [2]	5/5	5/5
	2013	410	410	2,000	75	13 [4]	5/5	5/5
	2016	220	260	500	80	3 [1]	3/3	3/3
	2002	610	550	6,900	57	2.4 [0.8]	70/70	14/14
	2002	510	400	4,400	43	3.9 [1.3]	70/70	14/14
	2003	620	490	9,800	68	18 [5.8]	70/70	14/14
	2005	520	600	8,000	42	12 [3.9]	80/80	16/16
	2006	520	420	4,900	56	4[1]	80/80	16/16
	2007	430	360	5,200	30	5 [2]	80/80	16/16
Fish	2007	430	340	3,500	36	5 [2]	85/85	17/17
(pg/g-wet)	2009	430	450	3,200	41	4 [2]	90/90	18/18
400	2010	450	630	3,400	51	4 [2]	18/18	18/18
	2010	580	660		79		18/18	18/18
	2011	580	550	3,800	79 98	3 [1]	19/19	19/19
				3,100	98 65	5 [2]		
	2013	540	450	5,700		13 [4]	19/19	19/19
	2016 2002	340 67	440 180	2,200	67	3 [1]	19/19	19/19 2/2
	2002	67 47	120	450 370	10 6.8	2.4 [0.8] 3.9 [1.3]	10/10 10/10	2/2
	2003	39	110	240	tr(5.8)			2/2
	2004	53	120	340		18 [5.8]	10/10 10/10	2/2
					tr(5.8)	12 [3.9]		
	2006	32	83	250	5	4 [1]	10/10	2/2 2/2
Birds	2007	29	83	230	tr(4)	5 [2]	10/10	
(pg/g-wet)	2008	24	87	280	tr(3)	5 [2]	10/10	2/2
	2009	21	48	130	4	4 [2]	10/10	2/2
	2010	27		180	4	4 [2]	2/2	2/2
	2011			6	6	3 [1]	1/1	1/1
	2012	23		110	55	5 [2]	2/2	2/2
	2013**	37		140	tr(10)	13 [4]	2/2	2/2
	2016**	38		110	13	3 [1]	2/2	2/2
(CL1 1	Monitored	Geometric	M 1'			Quantification	Detection I	requency
trans-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	2002	200	940	2.200	22	limit	20/20	0/0
	2002	390	840	2,300	33	2.4 [0.8]	38/38	8/8
	2003	550	840	2,800	69 53	7.2 [2.4]	30/30	6/6
	2004	560	770	2,800	53	48 [16]	31/31	7/7
	2005	470	660	2,400	40	10 [3.5]	31/31	7/7
	2006	470	580	2,800	41	4 [2]	31/31	7/7
Bivalves	2007	440	460	1,500	34	6 [2]	31/31	7/7
(pg/g-wet)	2008	360	410	1,300	52	7 [3]	31/31	7/7
(100)	2009	540	560	16,000	48	4 [1]	31/31	7/7
	2010	520	640	5,500	31	3 [1]	6/6	6/6
	2011	490	470	2,900	150	4 [1]	4/4	4/4
	2012	390	310	1,300	140	7 [2]	5/5	5/5
	2013	280	230	1,700	58	16 [5.2]	5/5	5/5
	2016	120	99	330	56	6 [2]	3/3	3/3

	Monitored	Coomotnio				Quantification	Detection 1	Frequenc
rans-Chlordane	year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	190	160	2,700	20	2.4 [0.8]	70/70	14/14
	2003	160	120	1,800	9.6	7.2 [2.4]	70/70	14/14
	2004	200	130	5,200	tr(17)	48 [16]	70/70	14/14
	2005	160	180	3,100	tr(9.8)	10 [3.5]	76/80	16/16
Fish (pg/g-wet)	2006	150	120	2,000	14	4 [2]	80/80	16/16
	2007	130	100	2,100	8	6 [2]	80/80	16/16
	2008	120	71	1,300	14	7 [3]	85/85	17/17
	2009	130	140	1,300	10	4 [1]	90/90	18/18
	2010	120	170	1,100	9	3 [1]	18/18	18/18
	2011	180	240	1,300	20	4 [1]	18/18	18/18
	2012	170	140	1,100	19	7 [2]	19/19	19/19
	2013	160	170	2,700	tr(14)	16 [5.2]	19/19	19/19
	2016	100	110	800	12	6 [2]	19/19	19/19
	2002	14	14	26	8.9	2.4 [0.8]	10/10	2/2
	2003	11	12	27	tr(5.9)	7.2 [2.4]	10/10	2/2
	2004	nd	nd	tr(26)	nd	48 [16]	5/10	1/2
	2005	11	12	30	tr(4.5)	10 [3.5]	10/10	2/2
	2006	7	8	17	tr(3)	4[2]	10/10	2/2
D' 1	2007	7	8	19	tr(3)	6 [2]	10/10	2/2
Birds	2008	tr(5)	9	27	nd	7 [3]	7/10	2/2
(pg/g-wet)	2009	6	7	13	tr(3)	4[1]	10/10	2/2
	2010	4		10	tr(2)	3 [1]	2/2	2/2
	2011			5	5	4[1]	1/1	1/1
	2012	tr(6)		10	tr(4)	7 [2]	2/2	2/2
	2013**	26		68	tr(10)	16 [5.2]	2/2	2/2
	2016**	18		46	` <i>ź</i>	6 [2]	2/2	2/2

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) "**": There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted during FY2014~2015.

<Air>

Stocktaking of the detection of cis-Chlordane and trans-Chlordane in air FY2002~2016

aia Ch11	Manita 1	Geometric	Madi	Mari	Mini	Quantification	Detection I	requen
cis-Chlordane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	31	40	670	0.86	0.60 [0.20]	102/102	34/34
	2003Warm season	110	120	1,600	6.4	0.51 [0.17]	35/35	35/35
	2003Cold season	30	38	220	2.5		34/34	34/34
	2004Warm season	92	160	1,000	2.3	0.57 [0.19]	37/37	37/37
	2004Cold season	29	49	290	1.2	0.57 [0.19]	37/37	37/37
	2005Warm season	92	120	1,000	3.4	0 16 [0 054]	37/37	37/37
	2005Cold season	16	19	260	1.4	0.16 [0.054]	37/37	37/37
	2006Warm season	82	110	760	2.9	0.12.50.043	37/37	37/37
	2006Cold season	19	19	280	2.0	0.13 [0.04]	37/37	37/37
	2007Warm season	90	120	1,100	3.3	0.10.50.041	36/36	36/36
	2007Cold season	17	20	230	1.4	0.10 [0.04]	36/36	36/36
Air	2008Warm season	75	120	790	1.9	0.4450.053	37/37	37/37
(pg/m^3)	2008Cold season	21	34	200	1.5	0.14 [0.05]	37/37	37/37
(18)	2009Warm season	67	110	790	2.7		37/37	37/37
	2009Cold season	19	22	180	0.65	0.16 [0.06]	37/37	37/37
	2010Warm season	68	100	700	1.8		37/37	37/37
	2010Cold season	20	27	130	0.84	0.17 [0.06]	37/37	37/37
	2011Warm season	66	95	700	1.5		35/35	35/35
	2011Cold season	20	31	240	tr(0.88)	1.3 [0.42]	37/37	37/37
	2012Warm season	61	98	650	2.9		36/36	36/36
	2012 Wallin season	10	14	74	nd	1.5 [0.51]	35/36	35/36
	2012Cold season 2013Warm season	58	97	580	1.5		36/36	36/36
						0.7 [0.2]		
	2013Cold season	11	15	86	tr(0.5)	0.0.50.21	36/36	36/36
	2016Warm season	53	86	810	0.9	0.9 [0.3]	37/37	37/37
<i>trans</i> -Chlordane	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	requen Site
	2002	36	48	820	0.62	0.60 [0.20]	102/102	34/34
	2003Warm season	130	150	2,000	6.5		35/35	35/35
	2003Cold season	37	44	290	2.5	0.86 [0.29]	34/34	34/34
								27/2-
								37/37
	2004Warm season	110	190	1,300	2.2	0.69 [0.23]	37/37	
	2004Warm season 2004Cold season	110 35	190 60	1,300 360	2.2 1.5	0.69 [0.23]	37/37 37/37	37/37
	2004Warm season 2004Cold season 2005Warm season	110 35 100	190 60 130	1,300 360 1,300	2.2 1.5 3.2	0.69 [0.23]	37/37 37/37 37/37	37/37 37/37
	2004Warm season 2004Cold season 2005Warm season 2005Cold season	110 35 100 19	190 60 130 23	1,300 360 1,300 310	2.2 1.5 3.2 1.9		37/37 37/37 37/37 37/37	37/37 37/37 37/37
	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season	110 35 100 19 96	190 60 130 23 140	1,300 360 1,300 310 1,200	2.2 1.5 3.2 1.9 3.4		37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37
	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season	110 35 100 19 96 22	190 60 130 23 140 21	1,300 360 1,300 310 1,200 350	2.2 1.5 3.2 1.9 3.4 2.0	0.34 [0.14]	37/37 37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37
	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season	110 35 100 19 96 22 100	190 60 130 23 140 21 140	1,300 360 1,300 310 1,200 350 1,300	2.2 1.5 3.2 1.9 3.4 2.0 3.8	0.34 [0.14]	37/37 37/37 37/37 37/37 37/37 37/37 36/36	37/37 37/37 37/37 37/37 36/36
	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season	110 35 100 19 96 22 100 20	190 60 130 23 140 21 140 24	1,300 360 1,300 310 1,200 350 1,300 300	2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5	0.34 [0.14]	37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36	37/37 37/37 37/37 37/37 36/36 36/36
Air	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season	110 35 100 19 96 22 100 20 87	190 60 130 23 140 21 140 24 130	1,300 360 1,300 310 1,200 350 1,300 300 990	2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5	0.34 [0.14]	37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37	37/37 37/37 37/37 37/37 36/36 36/36 37/37
Air (pg/m³)	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Cold season	110 35 100 19 96 22 100 20 87 25	190 60 130 23 140 21 140 24 130 41	1,300 360 1,300 310 1,200 350 1,300 300 990 250	2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8	0.34 [0.14] 0.17 [0.06] 0.12 [0.05]	37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37	37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37
	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Warm season 2008Cold season 2009Warm season	110 35 100 19 96 22 100 20 87 25 79	190 60 130 23 140 21 140 24 130 41	1,300 360 1,300 310 1,200 350 1,300 300 990 250 960	2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6	0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06]	37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37	37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37
	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Cold season 2009Warm season 2009Warm season 2009Warm season	110 35 100 19 96 22 100 20 87 25 79 23	190 60 130 23 140 21 140 24 130 41 120 30	1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210	2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68	0.34 [0.14] 0.17 [0.06] 0.12 [0.05]	37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37
	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Cold season 2009Warm season 2009Cold season 2009Cold season 2010Warm season	110 35 100 19 96 22 100 20 87 25 79 23	190 60 130 23 140 21 140 24 130 41 120 30 120	1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210 820	2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0	0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05]	37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37
	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2009Warm season 2009Warm season 2009Cold season 2010Warm season 2010Warm season	110 35 100 19 96 22 100 20 87 25 79 23 79 24	190 60 130 23 140 21 140 24 130 41 120 30 120 34	1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210 820 150	2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0)	0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06]	37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37
	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Cold season 2009Warm season 2009Cold season 2009Cold season 2010Warm season	110 35 100 19 96 22 100 20 87 25 79 23 79 24	190 60 130 23 140 21 140 24 130 41 120 30 120	1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210 820	2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0)	0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05] 1.2 [0.4]	37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35	37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35
	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2009Warm season 2009Warm season 2009Cold season 2010Warm season 2010Warm season	110 35 100 19 96 22 100 20 87 25 79 23 79 24 76 24	190 60 130 23 140 21 140 24 130 41 120 30 120 34 110 37	1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210 820 150	2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0)	0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05]	37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35
	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2009Warm season 2009Warm season 2009Cold season 2010Warm season 2010Cold season 2011Warm season	110 35 100 19 96 22 100 20 87 25 79 23 79 24	190 60 130 23 140 21 140 24 130 41 120 30 120 34	1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210 820 150 810	2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0)	0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05] 1.2 [0.4] 1.6 [0.53]	37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35	37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 37/37
	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2009Warm season 2009Warm season 2010Warm season 2010Warm season 2011Warm season 2011Cold season	110 35 100 19 96 22 100 20 87 25 79 23 79 24 76 24	190 60 130 23 140 21 140 24 130 41 120 30 120 34 110 37	1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210 820 150 810 290	2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4)	0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05] 1.2 [0.4]	37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 37/37	37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 35/35 35/36 35/36
	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2009Warm season 2009Warm season 2010Warm season 2010Cold season 2011Warm season 2011Cold season 2011Cold season	110 35 100 19 96 22 100 20 87 25 79 23 79 24 76 24 70	190 60 130 23 140 21 140 24 130 41 120 30 120 34 110 37 120	1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210 820 150 810 290 780	2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4) tr(0.70) 2.8	0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05] 1.2 [0.4] 1.6 [0.53] 2.1 [0.7]	37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 37/37 35/35	37/37 37/37 37/37 37/37 37/37 36/36 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36
	2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2009Warm season 2009Warm season 2010Warm season 2010Cold season 2011Warm season 2011Cold season 2011Cold season 2012Warm season 2012Warm season	110 35 100 19 96 22 100 20 87 25 79 23 79 24 76 24 70 12	190 60 130 23 140 21 140 24 130 41 120 30 120 34 110 37 120 18	1,300 360 1,300 310 1,200 350 1,300 990 250 960 210 820 150 810 290 780 95	2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4) tr(0.70) 2.8 nd	0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05] 1.2 [0.4] 1.6 [0.53]	37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 37/37 35/35 37/37	37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 35/36 35/36

(Note) No monitoring was conducted in FY2014 and FY2015.

o Oxychlordane, cis-Nonachlor and trans-Nonachlor

<Wildlife>

Stocktaking of the detection of Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor in wildlife (bivalves, fish and birds) FY2002~2016

Oxychlordane	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	requen
Oxycniordane	year	mean*				limit	Sample	Site
	2002	71	83	5,600	nd	3.6 [1.2]	37/38	8/8
	2003	93	62	1,900	11	8.4 [2.8]	30/30	6/6
	2004	110	100	1,700	14	9.2 [3.1]	31/31	7/7
	2005	99	79	1,400	12	9.3 [3.1]	31/31	7/7
	2006	91	90	2,400	7	7 [3]	31/31	7/7
Bivalves	2007	70	43	2,200	8	6 [2]	31/31	7/7
(pg/g-wet)	2008	64	55	1,100	7	7 [2]	31/31	7/7
(pg/g-wei)	2009	100	89	820	10	4 [1]	31/31	7/7
	2010	240	390	3,300	11	8 [3]	6/6	6/6
	2011	68	100	260	8	3 [1]	4/4	4/4
	2012	66	80	450	12	3 [1]	5/5	5/5
	2013	42	44	210	8	3 [1]	5/5	5/5
	2016	27	40	43	11	3 [1]	3/3	3/3
	2002	170	140	3,900	16	3.6 [1.2]	70/70	14/1
	2003	150	160	820	30	8.4 [2.8]	70/70	14/1
	2004	160	140	1,500	25	9.2 [3.1]	70/70	14/1
	2005	150	150	1,900	20	9.3 [3.1]	80/80	16/1
	2006	150	120	3,000	28	7 [3]	80/80	16/1
E' 1	2007	120	100	1,900	17	6 [2]	80/80	16/1
Fish	2008	130	130	2,200	15	7 [2]	85/85	17/1
(pg/g-wet)	2009	120	99	2,400	23	4 [1]	90/90	18/1
	2010	120	140	1,000	33	8 [3]	18/18	18/1
	2011	140	130	2,300	33	3 [1]	18/18	18/1
	2012	140	180	390	28	3 [1]	19/19	19/1
	2013	130	130	560	31	3 [1]	19/19	19/1
	2016	96	80	950	31	3 [1]	19/19	19/1
	2002	640	630	890	470	3.6 [1.2]	10/10	2/2
	2003	760	700	1,300	610	8.4 [2.8]	10/10	2/2
	2004	460	450	730	320	9.2 [3.1]	10/10	2/2
	2005	610	660	860	390	9.3 [3.1]	10/10	2/2
	2006	510	560	720	270	7 [3]	10/10	2/2
D: 1	2007	440	400	740	290	6 [2]	10/10	2/2
Birds	2008	560	530	960	290	7 [2]	10/10	2/2
(pg/g-wet)	2009	300	290	540	190	4 [1]	10/10	2/2
	2010	400		510	320	8 [3]	2/2	2/2
	2011			590	590	3 [1]	1/1	1/1
	2012	250		360	170	3 [1]	2/2	2/2
	2013**	2,500		3,400	1,900	3 [1]	2/2	2/2
	2016**	580		1,400	240	3 [1]	2/2	2/2

	Monitored	Geometric				Quantification	Detection l	Frequency
cis-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	170	300	870	8.6	1.2 [0.4]	38/38	8/8
	2003	290	260	1,800	48	4.8 [1.6]	30/30	6/6
	2004	320	380	1,800	43	3.4 [1.1]	31/31	7/7
	2005	270	220	1,300	27	4.5 [1.5]	31/31	7/7
	2006	270	180	1,500	31	3 [1]	31/31	7/7
Bivalves	2007	250	250	1,000	26	3 [1]	31/31	7/7
	2008	210	210	780	33	4 [1]	31/31	7/7
(pg/g-wet)	2009	300	310	10,000	31	3 [1]	31/31	7/7
	2010	280	310	1,300	35	3 [1]	6/6	6/6
	2011	250	280	1,300	77	1.8 [0.7]	4/4	4/4
	2012	200	190	670	52	2 [1]	5/5	5/5
	2013	150	140	900	38	2.2 [0.7]	5/5	5/5
	2016	72	46	220	37	1.4 [0.6]	3/3	3/3
	2002	460	420	5,100	46	1.2 [0.4]	70/70	14/14
	2003	360	360	2,600	19	4.8 [1.6]	70/70	14/14
	2004	430	310	10,000	48	3.4 [1.1]	70/70	14/14
	2005	380	360	6,200	27	4.5 [1.5]	80/80	16/16
	2006	370	330	3,300	33	3 [1]	80/80	16/16
E' 1	2007	320	280	3,700	16	3 [1]	80/80	16/16
Fish	2008	350	300	3,200	46	4 [1]	85/85	17/17
(pg/g-wet)	2009	340	340	2,600	27	3 [1]	90/90	18/18
	2010	320	370	2,200	23	3 [1]	18/18	18/18
	2011	440	450	2,900	45	1.8 [0.7]	18/18	18/18
	2012	420	450	2,200	33	2 [1]	19/19	19/19
	2013	430	420	3,000	34	2.2 [0.7]	19/19	19/19
	2016	300	170	1,900	53	1.4 [0.6]	19/19	19/19
	2002	200	240	450	68	1.2 [0.4]	10/10	2/2
	2003	200	260	660	68	4.8 [1.6]	10/10	2/2
	2004	140	150	240	73	3.4 [1.1]	10/10	2/2
	2005	160	180	370	86	4.5 [1.5]	10/10	2/2
	2006	120	130	270	60	3 [1]	10/10	2/2
D' 1	2007	130	140	300	42	3 [1]	10/10	2/2
Birds	2008	140	150	410	37	4[1]	10/10	2/2
(pg/g-wet)	2009	81	85	160	44	3 [1]	10/10	2/2
	2010	100		190	57	3 [1]	2/2	2/2
	2011			76	76	1.8 [0.7]	1/1	1/1
	2012	75		100	56	2 [1]	2/2	2/2
	2013**	270		970	74	2.2 [0.7]	2/2	2/2
	2016**	240		770	74	1.4 [0.6]	2/2	2/2

	Monitored	Geometric				Quantification	Detection l	requen
trans-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	450	1,100	1,800	21	2.4 [0.8]	38/38	8/8
	2003	800	700	3,800	140	3.6 [1.2]	30/30	6/6
	2004	780	870	3,400	110	13 [4.2]	31/31	7/7
	2005	700	650	3,400	72	6.2 [2.1]	31/31	7/7
	2006	660	610	3,200	85	3 [1]	31/31	7/7
Bivalves	2007	640	610	2,400	71	7 [3]	31/31	7/7
	2008	510	510	2,000	94	6 [2]	31/31	7/7
(pg/g-wet)	2009	780	680	33,000	79	3 [1]	31/31	7/7
	2010	790	870	6,000	84	4 [2]	6/6	6/6
	2011	640	680	3,000	200	3 [1]	4/4	4/4
	2012	530	400	1,800	190	4 [1]	5/5	5/5
	2013	380	370	2,000	98	10 [3.4]	5/5	5/5
	2016	200	150	520	97	3 [1]	3/3	3/3
,	2002	1,000	900	8,300	98	2.4 [0.8]	70/70	14/14
	2003	920	840	5,800	85	3.6 [1.2]	70/70	14/14
	2004	1,100	760	21,000	140	13 [4.2]	70/70	14/14
	2005	970	750	13,000	80	6.2 [2.1]	80/80	16/16
	2006	940	680	6,900	120	3 [1]	80/80	16/16
	2007	800	680	7,900	71	7 [3]	80/80	16/16
Fish	2008	860	750	6,900	87	6 [2]	85/85	17/17
(pg/g-wet)	2009	810	720	7,400	68	3 [1]	90/90	18/18
	2010	800	1,000	4,700	110	4 [2]	18/18	18/18
	2011	1,100	1,000	5,000	190	3 [1]	18/18	18/18
	2012	1,100	1,300	4,200	140	4[1]	19/19	19/19
	2013	1,100	1,100	7,800	150	10 [3.4]	19/19	19/19
	2016	690	410	3,400	170	3 [1]	19/19	19/19
	2002	890	980	1,900	350	2.4 [0.8]	10/10	2/2
	2003	1,100	1,400	3,700	350	3.6 [1.2]	10/10	2/2
	2004	690	780	1,200	390	13 [4.2]	10/10	2/2
	2005	870	880	2,000	440	6.2 [2.1]	10/10	2/2
	2006	650	620	1,500	310	3 [1]	10/10	2/2
	2007	590	680	1,400	200	7 [3]	10/10	2/2
Birds	2008	740	850	2,600	180	6 [2]	10/10	2/2
(pg/g-wet)	2009	400	430	730	220	3 [1]	10/10	2/2
	2010	510		880	290	4 [2]	2/2	2/2
	2011			400	400	3 [1]	1/1	1/1
	2012	360		480	270	4[1]	2/2	2/2
	2013**	55		170	18	10 [3.4]	2/2	2/2
	2016**	60		130	28	3 [1]	2/2	2/2

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) "**": There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted during FY2014~2015.

<Air>

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in air FY2002~2016

	Monitored year	Geometric				Quantification	Detection l	Frequency
Oxychlordane	Womtored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.96	0.98	8.3	nd	0.024 [0.008]	101/102	34/34
	2003Warm season	2.5	2.7	12	0.41		35/35	35/35
	2003Cold season	0.87	0.88	3.2	0.41	0.045 [0.015]	34/34	34/34
	2004Warm season	1.9	2.0	7.8	0.41	0.12.50.0423	37/37	37/37
	2004Cold season	0.80	0.76	3.9	0.27	0.13 [0.042]	37/37	37/37
	2005Warm season	1.9	2.0	8.8	0.65	0.1650.0543	37/37	37/37
	2005Cold season	0.55	0.50	2.2	0.27	0.16 [0.054]	37/37	37/37
	2006Warm season	1.8	1.9	5.7	0.47	0.22.50.003	37/37	37/37
	2006Cold season	0.54	0.56	5.1	tr(0.13)	0.23 [0.08]	37/37	37/37
	2007Warm season	1.9	1.8	8.6	0.56	0.05.50.003	36/36	36/36
	2007Cold season	0.61	0.63	2.4	0.26	0.05 [0.02]	36/36	36/36
Air	2008Warm season	1.7	1.7	7.1	0.50		37/37	37/37
(pg/m^3)	2008Cold season	0.61	0.63	1.8	0.27	0.04 [0.01]	37/37	37/37
(18)	2009Warm season	1.7	1.8	6.5	0.38		37/37	37/37
	2009Cold season	0.65	0.61	2.7	0.24	0.04 [0.02]	37/37	37/37
	2010Warm season	1.5	1.5	6.2	0.44		37/37	37/37
	2010Cold season	0.56	0.55	2.3	0.26	0.03 [0.01]	37/37	37/37
	2011Warm season	1.5	1.5	5.2	0.28		35/35	35/35
	2011Cold season	0.61	0.57	2.6	0.21	0.07 [0.03]	37/37	37/37
	2012Warm season	1.4	1.6	6.7	0.34		36/36	36/36
	2012Cold season	0.41	0.38	1.0	0.22	0.08 [0.03]	36/36	36/36
	2013Warm season	1.4	1.5	4.7	0.36		36/36	36/36
	2013Cold season	0.43	0.41	1.0	0.20	0.03 [0.01]	36/36	36/36
	2016Warm season	1.4	1.4	8.9	0.19	0.16 [0.06]	37/37	37/37
						Quantification	Detection 1	Frequency
cis-Nonachlor	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection l Sample	Frequency Site
cis-Nonachlor	Monitored year		Median 4.0	Maximum 62	Minimum			
cis-Nonachlor		mean				[Detection]	Sample	Site
cis-Nonachlor	2002	mean 3.1	4.0	62	0.071	[Detection] limit	Sample 102/102	Site 34/34
cis-Nonachlor	$\frac{2002}{2003 \text{Warm season}}$	3.1 12	4.0	62 220	0.071 0.81	[Detection] limit 0.030 [0.010] 0.026 [0.0088]	Sample 102/102 35/35	Site 34/34 35/35
cis-Nonachlor	2002 2003Warm season 2003Cold season	3.1 12 2.7	4.0 15 3.5	62 220 23	0.071 0.81 0.18	[Detection]	Sample 102/102 35/35 34/34	Site 34/34 35/35 34/34
cis-Nonachlor	2002 2003Warm season 2003Cold season 2004Warm season	3.1 12 2.7 10	4.0 15 3.5 15	62 220 23 130	0.071 0.81 0.18 0.36	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024]	Sample 102/102 35/35 34/34 37/37	Site 34/34 35/35 34/34 37/37
cis-Nonachlor	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season	mean 3.1 12 2.7 10 2.7	4.0 15 3.5 15 4.4	62 220 23 130 28	0.071 0.81 0.18 0.36 0.087	[Detection] limit 0.030 [0.010] 0.026 [0.0088]	Sample 102/102 35/35 34/34 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37
cis-Nonachlor	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season	3.1 12 2.7 10 2.7 10	4.0 15 3.5 15 4.4 14	62 220 23 130 28 160	0.071 0.81 0.18 0.36 0.087 0.30	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03]	Sample 102/102 35/35 34/34 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37
cis-Nonachlor	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season	mean 3.1 12 2.7 10 2.7 10 1.6	4.0 15 3.5 15 4.4 14 1.6	62 220 23 130 28 160 34	0.071 0.81 0.18 0.36 0.087 0.30 0.08	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024]	Sample 102/102 35/35 34/34 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37
cis-Nonachlor	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11	4.0 15 3.5 15 4.4 14 1.6	62 220 23 130 28 160 34 170 41	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14)	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37
cis-Nonachlor	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10	4.0 15 3.5 15 4.4 14 1.6 12 2.0	62 220 23 130 28 160 34 170 41	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14)	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36
	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6	4.0 15 3.5 15 4.4 14 1.6 12 2.0 14 1.7	62 220 23 130 28 160 34 170 41 150 22	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36
Air	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2007Cold season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9	4.0 15 3.5 15 4.4 14 1.6 12 2.0 14 1.7	62 220 23 130 28 160 34 170 41 150 22	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09 0.18	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37
	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2007Cold season 2008Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0	4.0 15 3.5 15 4.4 14 1.6 12 2.0 14 1.7 12 2.7	62 220 23 130 28 160 34 170 41 150 22 87 19	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09 0.18 0.16	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.03 [0.01]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37
Air	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Cold season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2007Cold season 2008Warm season 2008Warm season 2008Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5	4.0 15 3.5 15 4.4 14 1.6 12 2.0 14 1.7 12 2.7	62 220 23 130 28 160 34 170 41 150 22 87 19	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37
Air	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Warm season 2008Warm season 2008Worm season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9	4.0 15 3.5 15 4.4 14 1.6 12 2.0 14 1.7 12 2.7 10 2.1	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.04 [0.02]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37
Air	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Cold season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Warm season 2008Warm season 2009Worm season 2009Warm season 2009Warm season 2009Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9 7.5	4.0 15 3.5 15 4.4 14 1.6 12 2.0 14 1.7 12 2.7 10 2.1	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18 68	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.03 [0.01]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37
Air	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Cold season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2007Cold season 2008Warm season 2008Warm season 2009Warm season 2019Warm season 2019Warm season 2010Cold season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8	4.0 15 3.5 15 4.4 14 1.6 12 2.0 14 1.7 12 2.7 10 2.1 10 2.1	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18 68 13	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06)	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37
Air	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2007Warm season 2008Warm season 2008Warm season 2009Warm season 2010Warm season 2010Warm season 2010Warm season 2011Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4	4.0 15 3.5 15 4.4 14 1.6 12 2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18 68 13 89	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06)	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.04 [0.02]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37
Air	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2007Cold season 2008Warm season 2008Warm season 2008Cold season 2009Warm season 2010Warm season 2010Warm season 2011Warm season 2011Cold season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9	4.0 15 3.5 15 4.4 14 1.6 12 2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8 2.9	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18 68 13 89 28	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24 nd	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04] 0.15 [0.051]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 36/36	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 36/37
Air	2002 2003Warm season 2003Cold season 2004Warm season 2004Worm season 2005Warm season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2007Cold season 2008Warm season 2008Warm season 2008Cold season 2010Warm season 2010Warm season 2011Warm season 2011Cold season 2011Cold season 2011Cold season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9 6.9	4.0 15 3.5 15 4.4 14 1.6 12 2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8 2.9 11	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18 68 13 89 28 89	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24 nd 0.29	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 36/36	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36
Air	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2007Cold season 2008Warm season 2008Warm season 2008Cold season 2010Warm season 2010Warm season 2011Warm season 2011Cold season 2011Cold season 2011Warm season 2011Cold season 2012Warm season 2012Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9 6.9 0.98	4.0 15 3.5 15 4.4 14 1.6 12 2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8 2.9 11 1.1	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18 68 13 89 28 89 10	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24 nd 0.29 tr(0.05)	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04] 0.15 [0.051] 0.12 [0.05]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 36/36 36/36 36/36	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36
Air	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Warm season 2010Warm season 2010Warm season 2010Warm season 2010Warm season 2011Warm season 2011Warm season 2011Cold season 2011Warm season 2011Cold season 2012Warm season 2012Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9 6.9 0.98 6.4	4.0 15 3.5 15 4.4 14 1.6 12 2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8 2.9 11 1.1	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18 68 13 89 28 89 10 72	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24 nd 0.29 tr(0.05) 0.15	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04] 0.15 [0.051]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 36/36 36/36 36/36 36/36	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36
Air	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2007Cold season 2008Warm season 2008Warm season 2008Cold season 2010Warm season 2010Warm season 2011Warm season 2011Cold season 2011Cold season 2011Warm season 2011Cold season 2012Warm season 2012Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9 6.9 0.98	4.0 15 3.5 15 4.4 14 1.6 12 2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8 2.9 11 1.1	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18 68 13 89 28 89 10	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24 nd 0.29 tr(0.05)	[Detection] limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04] 0.15 [0.051] 0.12 [0.05]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 36/36 36/36 36/36	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36

trans-		Geometric				Quantification	Detection I	Frequency
Nonachlor	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	24	30	550	0.64	0.30 [0.10]	102/102	34/34
	2003Warm season	87	100	1,200	5.1	0.25 [0.12]	35/35	35/35
	2003Cold season	24	28	180	2.1	0.35 [0.12]	34/34	34/34
	2004Warm season	72	120	870	1.9	0.49 [0.16]	37/37	37/37
	2004Cold season	23	39	240	0.95	0.48 [0.16]	37/37	37/37
	2005Warm season	75	95	870	3.1	0.12 [0.044]	37/37	37/37
	2005Cold season	13	16	210	1.2	0.13 [0.044]	37/37	37/37
	2006Warm season	68	91	800	3.0	0.10.50.023	37/37	37/37
	2006Cold season	16	15	240	1.4	0.10 [0.03]	37/37	37/37
	2007Warm season	72	96	940	2.5	0.09 [0.03]	36/36	36/36
	2007Cold season	13	15	190	1.1		36/36	36/36
Air	2008Warm season	59	91	650	1.5	0.00.00.021	37/37	37/37
(pg/m^3)	2008Cold season	17	25	170	1.3	0.09 [0.03]	37/37	37/37
	2009Warm season	54	81	630	2.2	0.07.[0.02]	37/37	37/37
	2009Cold season	16	19	140	0.75	0.07 [0.03]	37/37	37/37
	2010Warm season	52	78	520	1.7	0.8.10.21	37/37	37/37
	2010Cold season	15	17	89	tr(0.7)	0.8 [0.3]	37/37	37/37
	2011Warm season	53	72	550	1.2	1 1 [0 25]	35/35	35/35
	2011Cold season	16	24	210	tr(0.70)	1.1 [0.35]	37/37	37/37
	2012Warm season	49	79	510	2.5	1.2.50.413	36/36	36/36
	2012Cold season	8.1	10	61	tr(0.50)	1.2 [0.41]	36/36	36/36
	2013Warm season	46	78	470	1.2	0.5.[0.2]	36/36	36/36
	2013Cold season	8.5	12	75	0.5	0.5 [0.2]	36/36	36/36
	2016Warm season	42	69	650	0.8	0.7 [0.2]	37/37	37/37

(Note) No monitoring was conducted in FY2014 and FY2015.

[8] Heptachlors

· History and state of monitoring

Heptachlor and its metabolite, heptachlor epoxide, used to kill soil insects and termites, heptachlor has also been used more widely to kill cotton insects, grasshoppers, other crop pests, and malaria-carrying mosquitoes. The substances were not registrated under the Agricultural Chemicals Regulation Law in FY1975. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986, since it includes the technical chlordane used as a termitecide. Also Heptachlors is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series before FY2001, heptachlor and heptachlor epoxide were measured in FY1982 (in surface water, sediment and fish) and in FY1986 (in air) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Heptachlor in surface water, sediment, wildlife (bibalves, fish and birds) and air had been monitored since FY2002, and *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide had also been monitored since FY2003. After FY2012, the substances has been monitored in sediment, wildlife (bivalves, fish and birds) and air in FY2012, FY2013, FY2015 and FY2016 and in surface water and sediment in FY2014 and FY2017.

· Monitoring results in surface water and sediment

<Surface Water>

Heptachlor: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 2 of the 47 valid sites adopting the detection limit of 1 pg/L, and none of the detected concentrations exceeded 6 pg/L.As results of the inter-annual trend analysis from FY2002 to FY2017, although the number of detections was small, the detection rate of the sea areas was decreased, it suggested a reduction tendency of the concentrations.

cis-Heptachlor epoxide: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 46 of the 47 valid sites adopting the detection limit of 0.6 pg/L, and none of the detected concentrations exceeded 83 pg/L.As results of the inter-annual trend analysis from FY2003 to FY2017, reduction tendency in specimens from river areas was identified as statistically significant and reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

trans-Heptachlor epoxide: The presence of the substance in surface water was monitored at 47 sites, and it was not detected at all 47 valid sites adopting the detection limit of 0.9 pg/L.

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in surface water during FY2002~2017

Heptachlor	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection 1	
	year	mean*				limit	Sample	Site
	2002	tr(1.2)	tr(1.0)	25	nd	1.5 [0.5]	97/114	38/38
	2003	tr(1.8)	tr(1.6)	7	tr(1.0)	2 [0.5]	36/36	36/36
	2004	nd	nd	29	nd	5 [2]	9/38	9/38
	2005	nd	tr(1)	54	nd	3 [1]	25/47	25/47
	2006	nd	nd	6	nd	5 [2]	5/48	5/48
Surface Water	2007	nd	nd	5.2	nd	2.4 [0.8]	12/48	12/48
(pg/L)	2008	nd	nd	4.6	nd	2.1 [0.8]	19/48	19/48
	2009	tr(0.5)	nd	17	nd	0.8 [0.3]	20/49	20/49
	2010	nd	nd	43	nd	2.2 [0.7]	4/49	4/49
	2011	nd	nd	22	nd	1.3 [0.5]	6/49	6/49
	2014	tr(0.2)	tr(0.2)	1.5	nd	0.5 [0.2]	28/48	28/48
	2017	nd	nd	6	nd	3 [1]	2/47	2/47
cis-Heptachlor	Monitored	Geometric				Quantification	Detection	Frequency
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	9.8	11	170	1.2	0.7 [0.2]	36/36	36/36
	2004	10	10	77	2	2 [0.4]	38/38	38/38
	2005	7.1	6.6	59	1.0	0.7 [0.2]	47/47	47/47
	2006	7.6	6.6	47	1.1	2.0 [0.7]	48/48	48/48
C C W	2007	6.1	5.8	120	tr(0.9)	1.3 [0.4]	48/48	48/48
Surface Water	2008	4.7	5.0	37	nd	0.6[0.2]	46/48	46/48
(pg/L)	2009	5.5	4.2	72	0.8	0.5 [0.2]	49/49	49/49
	2010	5.9	3.9	710	0.7	0.4 [0.2]	49/49	49/49
	2011	5.8	5.8	160	0.7	0.7 [0.3]	49/49	49/49
	2014	4.9	3.4	56	0.7	0.5 [0.2]	48/48	48/48
	2017	4.7	3.5	83	nd	1.6 [0.6]	46/47	46/47
trans-Heptachlor	Monitored	Geometric				Quantification	Detection	Frequency
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	2	nd	2 [0.4]	4/36	4/36
	2004	nd	nd	nd	nd	0.9 [0.3]	0/38	0/38
	2005	nd	nd	nd	nd	0.7 [0.2]	0/47	0/47
	2006	nd	nd	nd	nd	1.8 [0.6]	0/48	0/48
Surface Water	2007	nd	nd	tr(0.9)	nd	2.0 [0.7]	2/48	2/48
	2008	nd	nd	nd	nd	1.9 [0.7]	0/48	0/48
(pg/L)	2009	nd	nd	nd	nd	0.7 [0.3]	0/49	0/49
	2010	nd	nd	8.0	nd	1.3 [0.5]	2/49	2/49
	2011	nd	nd	2.8	nd	0.8 [0.3]	3/49	3/49
	2014	nd	nd	nd	nd	0.8[0.3]	0/48	0/48
	2017	nd	nd	nd	nd	2.3 [0.9]	0/47	0/47

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2012~2013 and FY2015~2016.

<Sediment>

Heptachlor: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 53 of the 62 valid sites adopting the detection limit of 0.3 pg/g-dry, and none of the detected concentrations exceeded 40 pg/g-dry. As results of the inter-annual trend analysis from FY2002 to FY2017, the last 5 years period was indicated lower concentration than the period before the last 5 years in specimens from river mouth areas as statistically significant, although the number of detections was small, the detection rate of the river areas in sediment was decreased, it suggested a reduction tendency of the concentrations. And the number of detections was small, the detection rate of the overall areas in sediment was also decreased, it suggested a reduction tendency of the concentrations.

cis-Heptachlor epoxide: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 51 of the 62 valid sites adopting the detection limit of 0.5 pg/g-dry, and none of the detected concentrations

exceeded 150 pg/g-dry. As results of the inter-annual trend analysis from FY2009 to FY2017, reduction tendency in specimens from river areas was identified as statistically significant, and the last 5 years period was indicated lower concentration than the period before the last 5 years in specimens from sea areas in sediment as statistically significant. And the last 5 years period was indicated lower concentration than the period before the last 5 years in specimens from the overall areas in sediment as statistically significant.

trans-Heptachlor epoxide: The presence of the substance in sediment was monitored at 62 sites, and it was not detected at all 62 valid sites adopting the detection limit of 0.8 pg/g-dry.

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in sediment during FY2002~2017

during FY200	2~2017							
	Monitored	Geometric				Quantification	Detection 1	Frequency
Heptachlor			Median	Maximum	Minimum	[Detection]		
-	year	mean*				limit	Sample	Site
	2002	4.1	3.2	120	nd	1.8 [0.6]	167/189	60/63
	2003	tr(2.7)	tr(2.2)	160	nd	3 [1.0]	138/186	53/62
	2004	tr(2.8)	tr(2.3)	170	nd	3 [0.9]	134/189	53/63
	2005	3.1	2.8	200	nd	2.5 [0.8]	120/189	48/63
	2006	5.2	3.9	230	nd	1.9 [0.6]	190/192	64/64
Sediment	2007	tr(1.8)	tr(1.5)	110	nd	3.0 [0.7]	143/192	57/64
(pg/g-dry)	2008	tr(1)	nd	85	nd	4 [1]	59/192	27/64
(188 1)	2009	1.6	1.3	65	nd	1.1 [0.4]	144/192	59/64
	2010	1.2	tr(0.8)	35	nd	1.1 [0.4]	51/64	51/64
	2011	tr(1.3)	tr(1.2)	48	nd	1.8 [0.7]	40/64	40/64
	2014	tr(1.0)	tr(0.9)	49	nd	1.5 [0.5]	38/63	38/63
	2017	1.2	1.1	40	nd	0.9 [0.3]	53/62	53/62
	2017	1.2	1.1	10	na	Quantification	Detection 1	
cis-Heptachlor	Monitored	Geometric	Median	Maximum	Minimum	[Detection]	Detection	requency
epoxide	year	mean*	Median	Maximum	Millillium		Sample	Site
•			2	1.00		limit		
	2003	4	3	160	nd	3 [1]	153/186	55/62
	2004	tr(5)	tr(3)	230	nd	6 [2]	136/189	52/63
	2005	tr(4)	tr(3)	140	nd	7 [2]	119/189	49/63
	2006	4.0	3.2	210	nd	3.0 [1.0]	157/192	58/64
Sediment	2007	3	tr(2)	270	nd	3 [1]	141/192	53/64
(pg/g-dry)	2008	3	2	180	nd	2 [1]	130/192	51/64
(188 1)	2009	2.7	1.9	290	nd	0.7 [0.3]	176/192	63/64
	2010	3.1	2.4	300	nd	0.8 [0.3]	62/64	62/64
	2011	2.8	2.5	160	nd	0.6 [0.2]	63/64	63/64
	2014	2.1	1.7	310	nd	0.5 [0.2]	59/63	59/63
	2017	1.9	1.6	150	nd	1.2 [0.5]	51/62	51/62
tuana Uantaahlar	Monitored	Geometric				Quantification	Detection 1	Frequency
trans-Heptachlor			Median	Maximum	Minimum	[Detection]	G 1	a.
epoxide	year	mean*				limit	Sample	Site
	2003	nd	nd	nd	nd	9 [3]	0/186	0/62
	2004	nd	nd	tr(2.5)	nd	4 [2]	1/189	1/63
	2005	nd	nd	nd	nd	5 [2]	0/189	0/63
	2006	nd	nd	19	nd	7 [2]	2/192	2/64
G 1'	2007	nd	nd	31	nd	10 [4]	2/192	2/64
Sediment	2008	nd	nd	nd	nd	1.7 [0.7]	0/192	0/64
(pg/g-dry)	2009	nd	nd	nd	nd	1.4 [0.6]	0/192	0/64
	2010	nd	nd	4	nd	3 [1]	1/64	1/64
	2011	nd	nd	2.4	nd	2.3 [0.9]	2/64	2/64
	2014	nd	nd	3.6	nd	0.7 [0.3]	1/63	1/63
	2017	nd	nd	nd	nd	2.0 [0.8]	0/62	0/62
							U. U.	U. U.

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted in FY2012~2013 and FY2015~2016.

• Monitoring results in wildlife (bivalves, fish and birds) and air until FY2016 (reference)

<Wildlife>

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in wildlife (bivalves, fish and birds) during FY2002~2016

varves, fish and	Monitored	Geometric		Movimum	Μ	Quantification	Detection Freque	
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(3.5)	4.6	15	nd	4.2 [1.4]	28/38	6/8
	2003	tr(2.8)	tr(2.4)	14	nd	6.6 [2.2]	16/30	4/6
	2004	tr(3.4)	5.2	16	nd	4.1 [1.4]	23/31	6/7
	2005	tr(2.9)	tr(2.9)	24	nd	6.1 [2.0]	18/31	6/7
	2006	tr(4)	tr(4)	20	nd	6 [2]	23/31	6/7
	2007	tr(3)	tr(3)	12	nd	6 [2]	20/31	6/7
Bivalves	2008	tr(2)	nd	9	nd	6 [2]	13/31	5/7
(pg/g-wet)	2009	tr(4)	nd	120	nd	5 [2]	14/31	4/7
	2010	3	tr(2)	78	nd	3 [1]	5/6	5/6
	2011	4	4	51	nd	3 [1]	3/4	3/4
	2012	tr(3)	tr(3)	13	nd	4 [1]	4/5	4/5
	2013	3	tr(2)	19	nd	3 [1]	4/5	4/5
	2015	nd	nd	tr(1.7)	nd	3.0 [1.0]	1/3	1/3
	2016	nd	nd	tr(1.4)	nd	2.4 [0.9]	1/3	1/3
	2002	4.2	4.8	20	nd	4.2 [1.4]	57/70	12/14
	2003	nd	nd	11	nd	6.6 [2.2]	29/70	8/14
	2004	tr(2.3)	tr(2.1)	460	nd	4.1 [1.4]	50/70	11/14
	2005	nd	nd	7.6	nd	6.1 [2.0]	32/80	8/16
	2006	tr(2)	nd	8	nd	6 [2]	36/80	8/16
	2007	tr(2)	nd	7	nd	6 [2]	28/80	6/16
Fish	2008	nd	nd	9	nd	6 [2]	25/85	7/17
(pg/g-wet)	2009	tr(2)	nd	8	nd	5 [2]	30/90	11/18
400	2010	tr(2)	tr(2)	5	nd	3 [1]	12/18	12/18
	2011	tr(1)	tr(1)	7	nd	3 [1]	13/18	13/18
	2012	nd	tr(1)	5	nd	4 [1]	10/19	10/19
	2013	nd	nd	12	nd	3 [1]	9/19	9/19
	2015	nd	nd	9.2	nd	3.0 [1.0]	9/19	9/19
	2016	nd	nd	5.5	nd	2.4 [0.9]	8/19	8/19
	2002	tr(1.7)	tr(2.8)	5.2	nd	4.2 [1.4]	7/10	2/2
	2003	nd	nd	nd	nd	6.6 [2.2]	0/10	0/2
	2004	nd	nd	tr(1.5)	nd	4.1 [1.4]	1/10	1/2
	2005	nd	nd	nd	nd	6.1 [2.0]	0/10	0/2
	2006	nd	nd	nd	nd	6 [2]	0/10	0/2
	2007	nd	nd	nd	nd	6 [2]	0/10	0/2
Birds	2008	nd	nd	nd	nd	6 [2]	0/10	0/2
(pg/g-wet)	2009	nd	nd	nd	nd	5 [2]	0/10	0/2
400	2010	nd		tr(1)	nd	3 [1]	1/2	1/2
	2011			nd	nd	3 [1]	0/1	0/1
	2012	nd		nd	nd	4 [1]	0/2	0/2
	2013**	nd		nd	nd	3 [1]	0/2	0/2
	2015**			nd	nd	3.0 [1.0]	0/1	0/1
	2016**	nd		nd	nd	2.4 [0.9]	0/2	0/2
						Quantification	Detection 1	
cis-Heptachlor	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
epoxide	year	mean*				limit	Sample	Site
	2003	44	29	880	9.7	6.9 [2.3]	30/30	6/6
	2004	64	34	840	tr(9.8)	9.9 [3.3]	31/31	7/7
	2005	49	20	590	7.4	3.5 [1.2]	31/31	7/7
	2006	56	23	1,100	8	4[1]	31/31	7/7
	2007	37	20	1,100	8	4 [1]	31/31	7/7
	2008	37	19	510	8	5 [2]	31/31	7/7
Bivalves	2009	59	33	380	10	3 [1]	31/31	7/7
(pg/g-wet)	2010	170	260	1,800	9.0	2.4 [0.9]	6/6	6/6
	2010	55	110	320	3.9	2.0 [0.8]	4/4	4/4
	2011	48	120	180	6.2	1.5 [0.6]	5/5	5/5
	2012		29					5/5
	2013	28 21		110 91	4.4 7.2	2.1 [0.8]	5/5 3/3	
			14		7.2	2.1 [0.8]	3/3	3/3
	2016	23	18	75	9.4	1.9 [0.7]	3/3	3/3

cis-Heptachlor	Monitored	Geometric) (° '	Quantification	Detection Frequenc	
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	43	43	320	7.0	6.9 [2.3]	70/70	14/14
	2004	51	49	620	tr(3.3)	9.9 [3.3]	70/70	14/14
	2005	41	45	390	4.9	3.5 [1.2]	80/80	16/16
	2006	42	48	270	4	4 [1]	80/80	16/16
	2007	43	49	390	4	4 [1]	80/80	16/16
T. 1	2008	39	46	350	tr(3)	5 [2]	85/85	17/17
Fish	2009	41	50	310	4	3 [1]	90/90	18/18
(pg/g-wet)	2010	39	49	230	5.0	2.4 [0.9]	18/18	18/18
	2011	50	62	540	3.2	2.0 [0.8]	18/18	18/18
	2012	41	62	120	6.9	1.5 [0.6]	19/19	19/19
	2013	42	46	190	7.3	2.1 [0.8]	19/19	19/19
	2015	33	43	190	3.2	2.1 [0.8]	19/19	19/19
	2016	29	28	130	3.6	1.9 [0.7]	19/19	19/19
	2003	540	510	770	370	6.9 [2.3]	10/10	2/2
	2004	270	270	350	190	9.9 [3.3]	10/10	2/2
	2005	370	340	690	250	3.5 [1.2]	10/10	2/2
	2006	330	310	650	240	4 [1]	10/10	2/2
	2007	280	270	350	250	4[1]	10/10	2/2
	2007	370	370	560	180	5 [2]	10/10	2/2
Birds	2009	220	210	390	160	3 [1]	10/10	2/2
(pg/g-wet)	2010	290		360	240	2.4 [0.9]	2/2	2/2
	2010				410			1/1
	2011	160		410		2.0 [0.8]	1/1 2/2	2/2
	2012**	300		170 560	150 160	1.5 [0.6] 2.1 [0.8]	2/2	2/2
	2015**			20	20	2.1 [0.8]	1/1	1/1
	2015**	91		270	31	1.9 [0.7]	2/2	2/2
				270	31	Quantification	Detection 1	
trans-Heptachlor	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		-
epoxide	year	mean*	Modium	14102111110111	141111111111111111111111111111111111111		Sample	Site
epoxide	y car					limit	•	
		nd	nd	48	nd	limit 13 [4.4]		1/6
	2003		nd nd	48 55		13 [4.4]	5/30	1/6 2/7
	2003 2004	nd	nd nd nd	55	nd	13 [4.4] 12 [4.0]	5/30 9/31	2/7
	2003 2004 2005	nd nd nd	nd nd	55 37	nd nd	13 [4.4] 12 [4.0] 23 [7.5]	5/30 9/31 5/31	2/7 1/7
	2003 2004 2005 2006	nd nd nd nd	nd nd nd	55 37 45	nd nd nd	13 [4.4] 12 [4.0] 23 [7.5] 13 [5]	5/30 9/31 5/31 5/31	2/7 1/7 1/7
<u> </u>	2003 2004 2005 2006 2007	nd nd nd nd nd	nd nd nd nd	55 37 45 61	nd nd nd nd	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5]	5/30 9/31 5/31 5/31 5/31	2/7 1/7 1/7 1/7
Bivalves	2003 2004 2005 2006 2007 2008	nd nd nd nd nd	nd nd nd nd nd	55 37 45 61 33	nd nd nd nd nd	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4]	5/30 9/31 5/31 5/31 5/31 5/31	2/7 1/7 1/7 1/7 1/7
Bivalves (pg/g-wet)	2003 2004 2005 2006 2007 2008 2009	nd nd nd nd nd nd tr(3)	nd nd nd nd nd	55 37 45 61 33 24	nd nd nd nd nd	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3]	5/30 9/31 5/31 5/31 5/31 5/31 13/31	2/7 1/7 1/7 1/7 1/7 1/7 3/7
	2003 2004 2005 2006 2007 2008 2009 2010	nd nd nd nd nd tr(3)	nd nd nd nd nd tr(2)	55 37 45 61 33 24 24	nd nd nd nd nd nd	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6	2/7 1/7 1/7 1/7 1/7 3/7 3/6
	2003 2004 2005 2006 2007 2008 2009 2010 2011	nd nd nd nd nd nd tr(3) 3 nd	nd nd nd nd nd tr(2) nd	55 37 45 61 33 24 24 tr(6)	nd nd nd nd nd nd nd	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4	2/7 1/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012	nd nd nd nd nd nd tr(3) 3 nd nd	nd nd nd nd nd tr(2) nd nd	55 37 45 61 33 24 24 tr(6) tr(4)	nd nd nd nd nd nd nd nd	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3]	5/30 9/31 5/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5	2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013	nd nd nd nd nd tr(3) 3 nd nd nd nd	nd nd nd nd nd tr(2) nd nd	55 37 45 61 33 24 24 tr(6) tr(4)	nd nd nd nd nd nd nd nd nd	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5	2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015	nd nd nd nd nd tr(3) 3 nd nd nd nd nd	nd nd nd nd nd tr(2) nd nd nd	55 37 45 61 33 24 24 tr(6) tr(4) nd	nd	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 7 [3]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5	2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016	nd nd nd nd nd tr(3) 3 nd nd nd nd nd nd	nd nd nd nd nd tr(2) nd nd nd nd	55 37 45 61 33 24 24 tr(6) tr(4) nd nd	nd n	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 7 [3] 9 [3]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3	2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016	nd nd nd nd nd tr(3) 3 nd nd nd nd nd nd nd	nd nd nd nd nd tr(2) nd nd nd nd nd	55 37 45 61 33 24 24 tr(6) tr(4) nd nd	nd n	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 13 [4.4]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/3	2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/3
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2003 2004	nd nd nd nd tr(3) 3 nd nd nd nd nd nd nd nd	nd nd nd nd nd tr(2) nd nd nd nd nd nd nd nd nd	55 37 45 61 33 24 24 tr(6) tr(4) nd nd nd tr(10)	nd n	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 7 [3] 9 [3] 13 [4.4] 12 [4.0]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/3 0/70 2/70	2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/3 0/14 2/14
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2003 2004 2005	nd nd nd nd nd tr(3) 3 nd	nd nd nd nd nd tr(2) nd nd nd nd nd nd nd	55 37 45 61 33 24 24 tr(6) tr(4) nd nd nd tr(10) nd	nd n	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 7 [3] 9 [3] 13 [4.4] 12 [4.0] 23 [7.5]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/3 0/70 2/70 0/80	2/7 1/7 1/7 1/7 1/7 3/6 1/4 1/5 0/5 0/3 0/14 2/14 0/16
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2003 2004 2005 2006	nd nd nd nd nd tr(3) 3 nd	nd nd nd nd nd tr(2) nd	55 37 45 61 33 24 24 tr(6) tr(4) nd nd tr(10) nd nd	nd n	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 7 [3] 9 [3] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/3 0/70 2/70 0/80 0/80	2/7 1/7 1/7 1/7 1/7 3/6 1/4 1/5 0/5 0/3 0/14 2/14 0/16
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2003 2004 2005 2006 2007	nd nd nd nd nd nd tr(3) 3 nd	nd nd nd nd nd tr(2) nd	55 37 45 61 33 24 24 tr(6) tr(4) nd nd tr(10) nd nd nd	nd n	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/70 2/70 0/80 0/80	2/7 1/7 1/7 1/7 1/7 3/6 1/4 1/5 0/5 0/3 0/14 2/14 0/16 0/16
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2003 2004 2005 2006 2007 2008	nd nd nd nd nd nd tr(3) 3 nd	nd nd nd nd nd tr(2) nd	55 37 45 61 33 24 24 tr(6) tr(4) nd nd rd rd nd nd nd nd	nd n	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/70 2/70 0/80 0/80 0/80 0/85	2/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/14 2/14 0/16 0/16 0/16
(pg/g-wet)	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2003 2004 2005 2006 2007 2008 2009	nd nd nd nd nd nd tr(3) 3 nd	nd nd nd nd nd tr(2) nd	55 37 45 61 33 24 24 tr(6) tr(4) nd nd tr(10) nd nd nd nd	nd n	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/70 2/70 0/80 0/80 0/80 0/85 0/90	2/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/14 2/14 0/16 0/16 0/16 0/17 0/18
(pg/g-wet)	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2003 2004 2005 2006 2007 2008 2009 2010	nd nd nd nd nd nd tr(3) 3 nd	nd nd nd nd nd tr(2) nd	55 37 45 61 33 24 24 tr(6) tr(4) nd nd rd rd nd nd nd nd nd nd	nd n	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/70 2/70 0/80 0/80 0/80 0/85 0/90 0/18	2/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/14 2/14 0/16 0/16 0/16 0/17 0/18
(pg/g-wet)	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2003 2004 2005 2006 2007 2008 2009 2010 2011	nd nd nd nd nd nd nd tr(3) 3 nd	nd nd nd nd nd tr(2) nd	55 37 45 61 33 24 24 tr(6) tr(4) nd nd rd rd nd nd nd nd nd nd nd nd nd n	nd n	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/70 2/70 0/80 0/80 0/80 0/85 0/90 0/18	2/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/14 2/14 0/16 0/16 0/16 0/17 0/18 0/18
(pg/g-wet)	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012	nd nd nd nd nd nd nd tr(3) 3 nd	nd nd nd nd nd tr(2) nd	55 37 45 61 33 24 24 tr(6) tr(4) nd nd tr(10) nd nd nd nd nd nd	nd n	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 8 [3] 8 [3]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/70 2/70 0/80 0/80 0/80 0/85 0/90 0/18 0/18	2/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/14 2/14 0/16 0/16 0/17 0/18 0/18 0/18
(pg/g-wet)	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013	nd nd nd nd nd nd nd tr(3) 3 nd	nd nd nd nd nd tr(2) nd	55 37 45 61 33 24 24 tr(6) tr(4) nd nd tr(10) nd nd nd nd nd nd	nd n	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/70 2/70 0/80 0/80 0/80 0/85 0/90 0/18 0/18 0/19 0/19	2/7 1/7 1/7 1/7 1/7 3/6 1/4 1/5 0/5 0/3 0/14 2/14 0/16 0/16 0/16 0/17 0/18 0/18 0/19 0/19
(pg/g-wet)	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012	nd nd nd nd nd nd nd tr(3) 3 nd	nd nd nd nd nd tr(2) nd	55 37 45 61 33 24 24 tr(6) tr(4) nd nd tr(10) nd nd nd nd nd nd	nd n	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 8 [3] 8 [3]	5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/70 2/70 0/80 0/80 0/80 0/85 0/90 0/18 0/18	2/7 1/7 1/7 1/7 1/7 3/6 1/4 1/5 0/5 0/3 0/14 2/14 0/16 0/16 0/17 0/18 0/18 0/18 0/19

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) "**": There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2014.

trans-Heptachlor	Monitored C	Geometric				Quantification	Detection Frequency	
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	13 [4.4]	0/10	0/2
	2004	nd	nd	nd	nd	12 [4.0]	0/10	0/2
	2005	nd	nd	nd	nd	23 [7.5]	0/10	0/2
	2006	nd	nd	nd	nd	13 [5]	0/10	0/2
	2007	nd	nd	nd	nd	13 [5]	0/10	0/2
Birds	2008	nd	nd	nd	nd	10 [4]	0/10	0/2
	2009	nd	nd	nd	nd	8 [3]	0/10	0/2
(pg/g-wet)	2010	nd		nd	nd	3 [1]	0/2	0/2
	2011			nd	nd	7 [3]	0/1	0/1
	2012	nd		nd	nd	8 [3]	0/2	0/2
	2013**	nd		tr(5)	nd	7 [3]	1/2	1/2
	2015**			nd	nd	7 [3]	0/1	0/1
	2016**	nd		nd	nd	9 [3]	0/2	0/2

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) "**": There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2014.

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in air during FY2002~2016

<Air>

FY2002~201		Geometric				Quantification	Detection	Frequency
Heptachlor	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	11	14	220	0.20	0.12 [0.04]	102/102	34/34
	2003Warm season	27	41	240	1.1	0.25 [0.095]	35/35	35/35
	2003Cold season	10	16	65	0.39	0.25 [0.085]	34/34	34/34
	2004Warm season	23	36	200	0.46	0.23 [0.078]	37/37	37/37
	2004Cold season	11	18	100	0.53		37/37	37/37
	2005Warm season	25	29	190	1.1	0.16 [0.054]	37/37	37/37
	2005Cold season	6.5	7.9	61	0.52		37/37	37/37
	2006Warm season	20	27	160	0.88	0.11 [0.04]	37/37	37/37
	2006Cold season	6.8	7.2	56	0.32		37/37	37/37
	2007Warm season	22	27	320	1.1	0.07 [0.03]	36/36	36/36
	2007Cold season	6.3	8.0	74	0.42		36/36	36/36
Air	2008Warm season	20	31	190	0.92	0.06 [0.02]	37/37	37/37
(pg/m^3)	2008Cold season	7.5	12	60	0.51		37/37	37/37
(pg/m)	2009Warm season	18	30	110	0.48	0.04 [0.01]	37/37	37/37
	2009Cold season	6.3	7.8	48	0.15		37/37	37/37
	2010Warm season	17	26	160	0.69	0.11 [0.04]	37/37	37/37
	2010Cold season	7.2	9.5	53	0.22		37/37	37/37
	2011Warm season	16	25	110	0.73	0.30 [0.099]	35/35	35/35
	2011Cold season	6.1	10	56	tr(0.13)		37/37	37/37
	2012Warm season	13	21	58	0.46	0.41 [0.14]	36/36	36/36
	2012Cold season	3.2	4.9	20	nd		35/36	35/36
	2013Warm season	11	21	43	0.46	0.16 [0.05]	36/36	36/36
	2013Cold season	3.1	4.6	22	tr(0.10)		36/36	36/36
	2015Warm season	8.7	11	49	0.43	0.19 [0.06]	35/35	35/35
	2016Warm season	12	14	120	tr(0.18)	0.22 [0.08]	37/37	37/37
cis-Heptachlo epoxide	r Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection]	Detection Sample	Frequency Site
•	2003Warm season	3.5	3.5	28	0.45	limit	35/35	35/35
	2003 Cold season	1.3	1.3	6.6	0.49	0.015 [0.0048]	34/34	34/34
	2004Warm season	2.8	2.9	9.7	0.65		37/37	37/37
	2004Cold season	1.1	1.1	7.0	0.44	0.052 [0.017]	37/37	37/37
	2005Warm season	1.5	1.7	11	tr(0.10)		37/37	37/37
	2005Cold season	0.91	0.81	2.9	0.43	0.12 [0.044]	37/37	37/37
	2006Warm season	1.7	2.0	6.7	0.13		37/37	37/37
	2006Cold season	0.74	0.88	3.2	nd	0.11 [0.04]	36/37	36/37
	2007Warm season	2.9	2.8	13	0.54		36/36	36/36
	2007Cold season					0.03 [0.01]	36/36	36/36
		0.93	0.82	3.0	0.41			
		0.93	0.82	3.0 9.9	0.41			37/37
Air	2008Warm season	2.4	2.2	9.9	0.53	0.022 [0.008]	37/37	37/37 37/37
Air (pg/m^3)		2.4 0.91	2.2 0.84	9.9 3.0	0.53 0.37		37/37 37/37	37/37
Air (pg/m³)	2008Warm season 2008Cold season 2009Warm season	2.4 0.91 2.5	2.2 0.84 2.6	9.9 3.0 16	0.53 0.37 0.37	0.022 [0.008]	37/37 37/37 37/37	37/37 37/37
	2008Warm season 2008Cold season 2009Warm season 2009Cold season	2.4 0.91 2.5 1.0	2.2 0.84 2.6 0.91	9.9 3.0 16 3.8	0.53 0.37 0.37 0.42	0.03 [0.01]	37/37 37/37 37/37 37/37	37/37 37/37 37/37
	2008Warm season 2008Cold season 2009Warm season 2009Cold season 2010Warm season	2.4 0.91 2.5 1.0 2.3	2.2 0.84 2.6 0.91 2.3	9.9 3.0 16 3.8 10	0.53 0.37 0.37 0.42 0.38		37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37
	2008Warm season 2008Cold season 2009Warm season 2009Cold season	2.4 0.91 2.5 1.0	2.2 0.84 2.6 0.91	9.9 3.0 16 3.8	0.53 0.37 0.37 0.42	0.03 [0.01]	37/37 37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37
	2008Warm season 2008Cold season 2009Warm season 2009Cold season 2010Warm season 2010Cold season 2011Warm season	2.4 0.91 2.5 1.0 2.3 0.93 2.0	2.2 0.84 2.6 0.91 2.3 0.85 2.3	9.9 3.0 16 3.8 10 4.3	0.53 0.37 0.37 0.42 0.38 0.33	0.03 [0.01]	37/37 37/37 37/37 37/37 37/37 37/37 35/35	37/37 37/37 37/37 37/37 37/37 35/35
	2008Warm season 2008Cold season 2009Warm season 2009Cold season 2010Warm season 2010Cold season	2.4 0.91 2.5 1.0 2.3 0.93	2.2 0.84 2.6 0.91 2.3 0.85	9.9 3.0 16 3.8 10 4.3	0.53 0.37 0.37 0.42 0.38 0.33	0.03 [0.01]	37/37 37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37 35/35 37/37
	2008Warm season 2008Cold season 2009Warm season 2009Cold season 2010Warm season 2010Cold season 2011Warm season 2011Cold season	2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.90 2.0	2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1	9.9 3.0 16 3.8 10 4.3 6.0 2.8 6.3	0.53 0.37 0.37 0.42 0.38 0.33 0.29 0.35	0.03 [0.01]	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36	37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36
	2008Warm season 2008Cold season 2009Warm season 2009Cold season 2010Warm season 2010Cold season 2011Warm season 2011Cold season 2012Warm season 2012Cold season	2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.90 2.0 0.62	2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1 0.57	9.9 3.0 16 3.8 10 4.3 6.0 2.8	0.53 0.37 0.37 0.42 0.38 0.33 0.29 0.35 0.37	0.03 [0.01] 0.02 [0.01] 0.04 [0.01] 0.05 [0.02]	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36	37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36
	2008Warm season 2008Cold season 2009Warm season 2009Cold season 2010Warm season 2010Cold season 2011Warm season 2011Cold season 2012Warm season	2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.90 2.0 0.62 2.0	2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1 0.57 2.1	9.9 3.0 16 3.8 10 4.3 6.0 2.8 6.3 1.9 7.7	0.53 0.37 0.42 0.38 0.33 0.29 0.35 0.37 0.30 0.43	0.03 [0.01]	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36	37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36
	2008Warm season 2008Cold season 2009Warm season 2009Cold season 2010Warm season 2011Cold season 2011Warm season 2011Cold season 2012Warm season 2012Cold season 2013Warm season	2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.90 2.0 0.62	2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1 0.57	9.9 3.0 16 3.8 10 4.3 6.0 2.8 6.3 1.9	0.53 0.37 0.42 0.38 0.33 0.29 0.35 0.37 0.30 0.43 0.32	0.03 [0.01] 0.02 [0.01] 0.04 [0.01] 0.05 [0.02] 0.03 [0.01]	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36 36/36	37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36 36/36
	2008Warm season 2008Cold season 2009Warm season 2009Cold season 2010Warm season 2011Cold season 2011Cold season 2011Cold season 2012Warm season 2012Cold season 2013Warm season 2013Cold season	2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.90 2.0 0.62 2.0 0.66	2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1 0.57 2.1 0.63	9.9 3.0 16 3.8 10 4.3 6.0 2.8 6.3 1.9 7.7	0.53 0.37 0.42 0.38 0.33 0.29 0.35 0.37 0.30 0.43	0.03 [0.01] 0.02 [0.01] 0.04 [0.01] 0.05 [0.02]	37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36	37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36

trans-Heptachl		Geometric				Quantification	Detection 1	Frequency
or epoxide	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003Warm season	tr(0.036)	tr(0.038)	0.30	nd	0.099 [0.033]	18/35	18/35
	2003Cold season	nd	nd	tr(0.094)	nd	0.099 [0.033]	3/34	3/34
	2004Warm season	nd	nd	tr(0.38)	nd	0.6 [0.2]	4/37	4/37
	2004Cold season	nd	nd	nd	nd	0.0 [0.2]	0/37	0/37
	2005Warm season	tr(0.10)	tr(0.12)	1.2	nd	0.16 [0.05]	27/37	27/37
	2005Cold season	nd	nd	0.32	nd	0.10 [0.03]	3/37	3/37
	2006Warm season	nd	nd	0.7	nd	0.3 [0.1]	2/37	2/37
	2006Cold season	nd	nd	tr(0.1)	nd	0.5 [0.1]	1/37	1/37
	2007Warm season	nd	nd	0.16	nd	0.14 [0.06]	8/36	8/36
	2007Cold season	nd	nd	tr(0.06)	nd	0.14 [0.06]	1/36	1/36
	2008Warm season	nd	nd	0.17	nd	0 16 [0 06]	6/37	6/37
Air	2008Cold season	nd	nd	nd	nd	0.16 [0.06]	0/37	0/37
(pg/m^3)	2009Warm season	nd	nd	0.18	nd	0.14.50.053	10/37	10/37
	2009Cold season	nd	nd	tr(0.06)	nd	0.14 [0.05]	1/37	1/37
	2010Warm season	nd	nd	0.16	nd	0.16 [0.06]	6/37	6/37
	2010Cold season	nd	nd	nd	nd	0.16 [0.06]	0/37	0/37
	2011Warm season	nd	nd	0.14	nd	0 12 [0 05]	5/35	5/35
	2011Cold season	nd	nd	nd	nd	0.13 [0.05]	0/37	0/37
	2012Warm season	nd	nd	tr(0.08)	nd	0.12 [0.05]	8/36	8/36
<u>2</u> 2 2	2012Cold season	nd	nd	nd	nd	0.12 [0.05]	0/36	0/36
	2013Warm season	nd	nd	tr(0.11)	nd	0.12 [0.05]	7/36	7/36
	2013Cold season	nd	nd	nd	nd	0.12 [0.03]	0/36	0/36
	2015Warm season	nd	nd	nd	nd	0.03 [0.01]	0/35	0/35
	2016Warm season	nd	nd	tr(0.2)	nd	0.3 [0.1]	1/37	1/37

(Note) No monitoring was conducted in FY2014.

[9] Toxaphenes (reference)

· History and state of monitoring

Toxaphenes are a group of organochlorine insecticides used on cotton, cereal grains, fruits, nuts, and vegetables and also it has also been used to control ticks and mites in livestock. No domestic record of manufacture/import of the substances was reported since those were historically never registrated under the Agricultural Chemicals Regulation Law. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002. Also Toxaphenes are one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series before FY2001, total amount of Toxaphenes was measured in FY1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Parlar-26, Parlar-50 and Parlar-62 have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2003 to FY2009 and in wildlife (bivalves, fish and birds) in FY2015.

No monitoring was conducted in FY2016 and FY2017. For reference, the monitoring results up to FY2015 are given below.

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in surface water during FY2003~2009

Monitoring results until FY2015

<Surface Water>

	Parlar-26	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site	
-		2003	nd	nd	nd	nd	40 [20]	0/36	0/36	_
		2004	nd	nd	nd	nd	9 [3]	0/38	0/38	
	C	2005	nd	nd	nd	nd	10 [4]	0/47	0/47	
	Surface Water	2006	nd	nd	nd	nd	16 [5]	0/48	0/48	
	(pg/L)	2007	nd	nd	nd	nd	20 [5]	0/48	0/48	

Quantification

Detection Frequency

	-					HIIIII		
	2003	nd	nd	nd	nd	40 [20]	0/36	0/36
	2004	nd	nd	nd	nd	9 [3]	0/38	0/38
Surface Water	2005	nd	nd	nd	nd	10 [4]	0/47	0/47
	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	20 [5]	0/48	0/48
	2008	nd	nd	nd	nd	8 [3]	0/48	0/48
	2009	nd	nd	nd	nd	5 [2]	0/49	0/49
	Monitored	Geometric				Quantification	Detection	Frequency
Dorlar 50	Monnorea	Geometric	Madian	Maximum	Minimum	[Detection]		

	Monitored	Geometric				Quantification	Detection	requency
Parlar-50	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	1	1	1	1		0/26	0/26
	2003	nd	nd	nd	nd	70 [30]	0/36	0/36
	2004	nd	nd	nd	nd	20 [7]	0/38	0/38
Surface Water	2005	nd	nd	nd	nd	20 [5]	0/47	0/47
	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	9 [3]	0/48	0/48
	2008	nd	nd	nd	nd	7 [3]	0/48	0/48
	2009	nd	nd	nd	nd	7 [3]	0/49	0/49

	Monitored	Geometric				Quantification	Detection I	requency
Parlar-62	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	300 [90]	0/36	0/36
	2004	nd	nd	nd	nd	90 [30]	0/38	0/38
Surface Water	2005	nd	nd	nd	nd	70[30]	0/47	0/47
	2006	nd	nd	nd	nd	60 [20]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	70 [30]	0/48	0/48
	2008	nd	nd	nd	nd	40 [20]	0/48	0/48
	2009	nd	nd	nd	nd	40 [20]	0/49	0/49

<Sediment>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in sediment during FY2003~2009

88	36 % 1	G .:				Quantification	Detection I	requency
Parlar-26	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	90 [30]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
G 1' 4	2005	nd	nd	nd	nd	60 [30]	0/189	0/63
Sediment	2006	nd	nd	nd	nd	12 [4]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	7 [3]	0/192	0/64
	2008	nd	nd	nd	nd	12 [5]	0/192	0/64
	2009	nd	nd	nd	nd	10 [4]	0/192	0/64
	Monitored	Geometric				Quantification	Detection I	requency
Parlar-50	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	200 [50]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
G 1' 4	2005	nd	nd	nd	nd	90 [40]	0/189	0/63
Sediment	2006	nd	nd	nd	nd	24 [7]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	30 [10]	0/192	0/64
	2008	nd	nd	nd	nd	17 [6]	0/192	0/64
	2009	nd	nd	nd	nd	12 [5]	0/192	0/64
	Monitored	Geometric				Quantification	Detection I	requency
Parlar-62	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	4,000 [2,000]	0/186	0/62
	2004	nd	nd	nd	nd	2,000 [400]	0/189	0/63
Sediment	2005	nd	nd	nd	nd	2,000 [700]	0/189	0/63
	2006	nd	nd	nd	nd	210 [60]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	300 [70]	0/192	0/64
	2008	nd	nd	nd	nd	90 [40]	0/192	0/64
	2009	nd	nd	nd	nd	80 [30]	0/192	0/64

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~2009.

<Wildlife>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in wildlife (bivalves, fish and birds) during FY2003~2015

	Monitored	Geometric	•	•		Quantification	Detection l	Frequency
Parlar-26	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	tr(39)	nd	45 [15]	11/30	3/6
	2004	nd	nd	tr(32)	nd	42 [14]	15/31	3/7
	2005	nd	nd	tr(28)	nd	47 [16]	7/31	4/7
Bivalves	2006	tr(9)	tr(12)	25	nd	18 [7]	21/31	5/7
(pg/g-wet)	2007	tr(7)	tr(8)	20	nd	10 [4]	26/31	6/7
	2008	tr(7)	tr(8)	22	nd	9 [3]	27/31	7/7
	2009	9	9	23	nd	7 [3]	27/31	7/7
	2015	tr(10)	tr(15)	tr(17)	nd	23 [9]	2/3	2/3
	2003	tr(28)	tr(24)	810	nd	45 [15]	44/70	11/14
	2004	43	tr(41)	1,000	nd	42 [14]	54/70	13/14
	2005	tr(42)	53	900	nd	47 [16]	50/75	13/16
Fish	2006	41	44	880	nd	18 [7]	70/80	15/16
(pg/g-wet)	2007	24	32	690	nd	10 [4]	64/80	14/16
	2008	35	33	730	nd	9 [3]	79/85	17/17
	2009	25	20	690	nd	7 [3]	82/90	18/18
	2015	26	28	400	nd	23 [9]	13/19	13/19
	2003	120	650	2,500	nd	45 [15]	5/10	1/2
	2004	70	340	810	nd	42 [14]	5/10	1/2
	2005	86	380	1,200	nd	47 [16]	5/10	1/2
Birds	2006	48	290	750	nd	18 [7]	5/10	1/2
(pg/g-wet)	2007	34	280	650	nd	10 [4]	5/10	1/2
	2008	38	320	1,200	nd	9 [3]	6/10	2/2
	2009	26	200	500	nd	7 [3]	6/10	2/2
	2015**			tr(10)	tr(10)	23 [9]	1/1	1/1

	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-50	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	tr(12)	tr(12)	58	nd	33 [11]	17/30	4/6
	2004	tr(15)	nd	tr(45)	nd	46 [15]	15/31	3/7
	2005	nd	nd	tr(38)	nd	54 [18]	9/31	4/7
Bivalves	2006	tr(10)	14	32	nd	14 [5]	24/31	6/7
(pg/g-wet)	2007	9	10	37	nd	9 [3]	27/31	7/7
	2008	tr(7)	tr(6)	23	nd	10 [4]	23/31	6/7
	2009	ý) ģ	31	nd	8 [3]	27/31	7/7
	2015	tr(11)	tr(15)	tr(16)	nd	30 [10]	2/3	2/3
	2003	35	34	1,100	nd	33 [11]	55/70	14/14
	2004	60	61	1,300	nd	46 [15]	59/70	14/14
	2005	tr(52)	66	1,400	nd	54 [18]	55/80	13/16
Fish	2006	56	52	1,300	nd	14 [5]	79/80	
(pg/g-wet)	2007	35	41	1,100	nd	9 [3]	77/80	
466	2008	44	45	1,000	nd	10 [4]	77/85	
	2009	30	23	910	nd	8 [3]	85/90	
	2015	tr(25)	tr(13)	640	nd	30 [10]	13/19	
	2003	110	850	3,000	nd	33 [11]	5/10	
	2004	83	440	1,000	nd	46 [15]	5/10	
	2005	100	480	1,500	nd	54 [18]	5/10	
Birds	2006	46	380	1,000	nd	14 [5]	5/10	
(pg/g-wet)	2007	34	360	930	nd	9 [3]	5/10	
(pg/g-wet)	2007	49	410	1,600	nd	10 [4]	5/10	
	2008	29	250	620	nd	8 [3]	5/10	
	2015**		230	<u>020</u> nd	nd	30 [10]	0/1	
	2013			IIU	IIU	Quantification		
Parlar-62	Monitored	Geometric	Median	Maximum	Minimum	[Detection]	Detection	rrequency
1 allal-02	year	mean*	McGian	Maximum	IVIIIIIIIIIIIII	limit	Sample	13/16 16/16 16/16 17/17 18/18 13/19 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0/1 1 Frequency Site 0/6 0/7 0/7 0/7 0/7 0/7 0/7 0/7 0/7 0/7 0/7
	2003	nd	nd	nd	nd	120 [40]	0/30	0/6
	2004	nd	nd	nd	nd	98 [33]	0/31	0/7
	2005	nd	nd	nd	nd	100 [34]	0/31	0/7
Bivalves	2006	nd	nd	nd	nd	70 [30]	0/31	0/7
(pg/g-wet)	2007	nd	nd	1				0/7
,			114	na	nd	70 [30]		
	2008	nd	nd	nd nd	nd nd	70 [30] 80 [30]	0/31	
	2008 2009		nd	nd	nd	80 [30]	0/31 0/31	0/7
	2009	nd	nd nd	nd nd	nd nd	80 [30] 70 [20]	0/31 0/31 0/31	0/7 0/7
	2009 2015	nd nd	nd nd nd	nd nd nd	nd nd nd	80 [30] 70 [20] 150 [60]	0/31 0/31 0/31 0/3	0/7 0/7 0/3
	2009 2015 2003	nd nd nd	nd nd nd nd	nd nd nd 580	nd nd nd nd	80 [30] 70 [20] 150 [60] 120 [40]	0/31 0/31 0/31 0/3 9/70	0/7 0/7 0/3 3/14
	2009 2015 2003 2004	nd nd nd nd	nd nd nd nd nd	nd nd nd 580 870	nd nd <u>nd</u> nd nd	80 [30] 70 [20] 150 [60] 120 [40] 98 [33]	0/31 0/31 0/31 0/3 9/70 24/70	0/7 0/7 0/3 3/14 7/14
 Fish	2009 2015 2003 2004 2005	nd nd nd nd nd	nd nd nd nd nd	nd nd 580 870 830	nd nd nd nd nd	80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34]	0/31 0/31 0/31 0/3 9/70 24/70 23/80	0/7 0/7 0/3 3/14 7/14 8/16
Fish	2009 2015 2003 2004 2005 2006	nd nd nd nd tr(30)	nd nd nd nd nd nd	nd nd 580 870 830 870	nd nd nd nd nd nd	80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30]	0/31 0/31 0/31 0/3 9/70 24/70 23/80 28/80	0/7 0/7 0/3 3/14 7/14 8/16 10/16
Fish (pg/g-wet)	2009 2015 2003 2004 2005 2006 2007	nd nd nd nd tr(30) tr(30)	nd nd nd nd nd nd nd	nd nd 580 870 830 870 530	nd nd nd nd nd nd nd	80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30]	0/31 0/31 0/31 0/3 9/70 24/70 23/80 28/80 22/80	0/7 0/7 0/3 3/14 7/14 8/16 10/16 7/16
	2009 2015 2003 2004 2005 2006 2007 2008	nd nd nd tr(30) tr(30)	nd nd nd nd nd nd nd nd	nd nd 580 870 830 870 530 590	nd nd nd nd nd nd nd nd	80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30]	0/31 0/31 0/31 0/3 9/70 24/70 23/80 28/80 22/80 31/85	0/7 0/7 0/3 3/14 7/14 8/16 10/16 7/16 8/17
	2009 2015 2003 2004 2005 2006 2007 2008 2009	nd nd nd nd tr(30) tr(30) tr(30) tr(20)	nd	nd nd 580 870 830 870 530 590 660	nd nd nd nd nd nd nd nd	80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20]	0/31 0/31 0/31 0/3 9/70 24/70 23/80 28/80 22/80 31/85 24/90	0/7 0/7 0/3 3/14 7/14 8/16 10/16 7/16 8/17 8/18
	2009 2015 2003 2004 2005 2006 2007 2008 2009 2015	nd nd nd nd tr(30) tr(30) tr(30) tr(20) nd	nd	nd nd 580 870 830 870 530 590 660 320	nd	80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 150 [60]	0/31 0/31 0/31 0/3 9/70 24/70 23/80 28/80 22/80 31/85 24/90 2/19	0/7 0/7 0/3 3/14 7/14 8/16 10/16 7/16 8/17 8/18 2/19
	2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2003	nd nd nd nd tr(30) tr(30) tr(30) tr(20) nd tr(96)	nd n	nd nd 580 870 830 870 530 590 660 320 530	nd	80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 150 [60] 120 [40]	0/31 0/31 0/31 0/3 9/70 24/70 23/80 28/80 22/80 31/85 24/90 2/19 5/10	0/7 0/7 0/3 3/14 7/14 8/16 10/16 7/16 8/17 8/18 2/19
	2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004	nd nd nd nd tr(30) tr(30) tr(30) tr(20) nd tr(96) tr(64)	nd 110	nd nd 580 870 830 870 530 590 660 320 530 280	nd n	80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 150 [60] 120 [40] 98 [33]	0/31 0/31 0/31 0/3 9/70 24/70 23/80 28/80 22/80 31/85 24/90 2/19 5/10 5/10	0/7 0/7 0/3 3/14 7/14 8/16 10/16 7/16 8/17 8/18 2/19 1/2 1/2
(pg/g-wet)	2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005	nd nd nd nd tr(30) tr(30) tr(30) tr(20) nd tr(96) tr(64) tr(78)	nd nd nd nd nd nd nd nd nd 110 130	nd nd 580 870 830 870 530 590 660 320 530 280 460	nd n	80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30] 80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34]	0/31 0/31 0/31 0/3 9/70 24/70 23/80 28/80 22/80 31/85 24/90 2/19 5/10 5/10	0/7 0/7 0/3 3/14 7/14 8/16 10/16 7/16 8/17 8/18 2/19 1/2 1/2
(pg/g-wet) Birds	2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006	nd nd nd nd nd nd tr(30) tr(30) tr(20) nd tr(96) tr(64) tr(78) 70	nd nd nd nd nd nd nd nd 110 130 120	nd nd 580 870 830 870 530 590 660 320 530 280 460 430	nd n	80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30] 80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30]	0/31 0/31 0/31 0/3 9/70 24/70 23/80 28/80 22/80 31/85 24/90 2/19 5/10 5/10 5/10	0/7 0/7 0/3 3/14 7/14 8/16 10/16 7/16 8/17 8/18 2/19 1/2 1/2 1/2 1/2
(pg/g-wet)	2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007	nd nd nd nd nd nd tr(30) tr(30) tr(20) nd tr(64) tr(78) 70 tr(60)	nd nd nd nd nd nd nd nd 130 120 100	nd nd 580 870 830 870 530 590 660 320 530 280 460 430 300	nd n	80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30] 80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30]	0/31 0/31 0/31 0/3 9/70 24/70 23/80 28/80 22/80 31/85 24/90 2/19 5/10 5/10 5/10 5/10	0/7 0/7 0/3 3/14 7/14 8/16 10/16 7/16 8/17 8/18 2/19 1/2 1/2 1/2 1/2
(pg/g-wet) Birds	2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2008	nd nd nd nd nd nd tr(30) tr(30) tr(20) nd tr(64) tr(78) 70 tr(60) tr(70)	nd nd nd nd nd nd nd nd 130 120 130	nd nd 580 870 830 870 530 590 660 320 530 280 460 430 300 360	nd n	80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30] 80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30]	0/31 0/31 0/31 0/3 9/70 24/70 23/80 28/80 22/80 31/85 24/90 2/19 5/10 5/10 5/10 5/10 5/10	0/7 0/7 0/3 3/14 7/14 8/16 10/16 7/16 8/17 8/18 2/19 1/2 1/2 1/2 1/2 1/2
(pg/g-wet) Birds	2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007	nd nd nd nd nd nd tr(30) tr(30) tr(20) nd tr(64) tr(78) 70 tr(60)	nd nd nd nd nd nd nd nd 130 120 100	nd nd 580 870 830 870 530 590 660 320 530 280 460 430 300	nd n	80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30] 80 [30] 70 [20] 150 [60] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30]	0/31 0/31 0/31 0/3 9/70 24/70 23/80 28/80 22/80 31/85 24/90 2/19 5/10 5/10 5/10 5/10	0/7 0/7 0/3 3/14 7/14 8/16 10/16 7/16 8/17 8/18 2/19 1/2 1/2 1/2 1/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was

(Note 3) No monitoring was conducted during FY2010~2014.

derived during FY2003~2009.

(Note 2) "**": There is no consistency between the results of the ornithological survey in FY2015 and those in previous years because of the changes in the survey sites and target species.

<Air>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in air during FY2003~2009

HOCKUKING	of the detection of h	Geometric		Tariar 02 III	-	Quantification	Detection	Frequency
Parlar-26	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003Warm season	0.31	0.31	0.77	tr(0.17)	0.20.50.0661	35/35	35/35
	2003Cold season	tr(0.17)	tr(0.17)	0.27	tr(0.091)	0.20 [0.066]	34/34	34/34
	2004Warm season	0.27	0.26	0.46	tr(0.17)	0.20.50.0663	37/37	37/37
	2004Cold season	tr(0.15)	tr(0.15)	0.50	tr(0.094)	0.20 [0.066]	37/37	37/37
	2005Warm season	nd	nd	nd	nd	0.2.50.13	0/37	0/37
	2005Cold season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
Air	2006Warm season	nd	nd	nd	nd	1.0.50.61	0/37	0/37
(pg/m^3)	2006Cold season	nd	nd	nd	nd	1.8 [0.6]	0/37	0/37
	2007Warm season	nd	nd	tr(0.3)	nd	0.650.23	18/36	18/36
	2007Cold season	nd	nd	nd	nd	0.6 [0.2]	0/36	0/36
	2008Warm season	tr(0.21)	0.22	0.58	tr(0.12)	0.22.50.003	37/37	37/37
	2008Cold season	tr(0.11)	tr(0.12)	tr(0.20)	nd	0.22 [0.08]	36/37	36/37
	2009Warm season	tr(0.18)	tr(0.19)	0.26	tr(0.11)	0.22.50.003	37/37	37/37
	2009Cold season	tr(0.12)	tr(0.13)	0.27	nd	0.23 [0.09]	33/37	33/37
						Quantification	Detection 1	Frequency
Parlar-50	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003Warm season	nd	nd	tr(0.37)	nd	0.81 [0.27]	2/35	2/35
	2003Cold season	nd	nd	nd	nd		0/34	0/34
	2004Warm season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
	2004Cold season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
	2005Warm season	nd	nd	nd	nd	0.6 [0.2]	0/37	0/37
	2005Cold season	nd	nd	nd	nd		0/37	0/37
Air	2006Warm season	nd	nd	nd	nd	1 6 [0 5]	0/37	0/37
(pg/m^3)	2006Cold season	nd	nd	nd	nd	1.6 [0.5]	0/37	0/37
	2007Warm season	nd	tr(0.1)	tr(0.2)	nd	0.2 [0.1]	29/36	29/36
	2007Cold season	nd	nd	nd	nd	0.3 [0.1]	0/36	0/36
	2008Warm season	nd	nd	tr(0.19)	nd	0.25 [0.00]	15/37	15/37
	2008Cold season	nd	nd	nd	nd	0.25 [0.09]	0/37	0/37
	2009Warm season	nd	nd	tr(0.1)	nd	0.2.50.13	11/37	11/37
	2009Cold season	nd	nd	tr(0.1)	nd	0.3 [0.1]	1/37	1/37
		Coomotnio				Quantification	Detection 1	Frequency
Parlar-62	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003Warm season	nd	nd	nd	nd	1.6 [0.52]	0/35	0/35
	2003Cold season	nd	nd	nd	nd	1.0 [0.32]	0/34	0/34
	2004Warm season	nd	nd	nd	nd	2 4 [0 91]	0/37	0/37
	2004Cold season	nd	nd	nd	nd	2.4 [0.81]	0/37	0/37
	2005Warm season	nd	nd	nd	nd	1 2 [0 4]	0/37	0/37
	2005Cold season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
Air	2006Warm season	nd	nd	nd	nd	0 [2]	0/37	0/37
(pg/m^3)	2006Cold season	nd	nd	nd	nd	8 [3]	0/37	0/37
	2007Warm season	nd	nd	nd	nd	1.5.00.63	0/36	0/36
	2007Cold season	nd	nd	nd	nd	1.5 [0.6]	0/36	0/36
	2008Warm season	nd	nd	nd	nd	1.6.50.63	0/37	0/37
	2008Cold season	nd	nd	nd	nd	1.6 [0.6]	0/37	0/37
	2009Warm season	nd	nd	nd	nd	1 ([0 (]	0/37	0/37
	2009Cold season	nd	nd	nd	nd	1.6 [0.6]	0/37	0/37

[10] Mirex (reference)

· History and state of monitoring

Mirex was developed as an organochlorine insecticide chemical in the United States, and it was also used as a fire retardant in plastics, rubber, and electrical goods. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002. Also the substance is one of the original twelve POPs covered by the Stockholm Convention.

Before FY2001, the substance was measured in FY1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Mirex has been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2003~2009 and FY2011.

No monitoring was conducted in FY2012~FY2017. For reference, the monitoring results up to FY2011 are given below.

· Monitoring results until FY2011

<Surface Water>

Stocktaking of the detection of Mirex in surface water during FY2003~2011

	Monitored	Geometric				Quantification	Detection 1	Frequency
Mirex	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	tr(0.13)	tr(0.12)	0.8	nd	0.3 [0.09]	25/36	25/36
	2004	nd	nd	1.1	nd	0.4 [0.2]	18/38	18/38
	2005	nd	nd	1.0	nd	0.4 [0.1]	14/47	14/47
Surface Water	2006	nd	nd	0.07	nd	1.6 [0.5]	1/48	1/48
(pg/L)	2007	nd	nd	tr(0.5)	nd	1.1 [0.4]	2/48	2/48
	2008	nd	nd	0.7	nd	0.6 [0.2]	4/48	4/48
	2009	nd	nd	0.5	nd	0.4 [0.2]	8/49	8/49
	2011	nd	nd	0.8	nd	0.5 [0.2]	3/49	3/49

(Note) No monitoring was conducted during FY2010.

<Sediment>

Stocktaking of the detection of Mirex in sediment during FY2003~2011

	Monitored	Geometric				Quantification	Detection l	Frequency
Mirex	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	2	tr(1.6)	1,500	nd	2 [0.4]	137/186	51/62
	2004	2	tr(1.6)	220	nd	2 [0.5]	153/189	55/63
	2005	1.8	1.2	5,300	nd	0.9 [0.3]	134/189	48/63
Sediment	2006	1.7	1.2	640	nd	0.6 [0.2]	156/192	57/64
(pg/g-dry)	2007	1.5	0.9	200	nd	0.9 [0.3]	147/192	55/64
	2008	1.4	1.1	820	nd	0.7 [0.3]	117/192	48/64
	2009	1.4	1.3	620	nd	1.0 [0.4]	126/192	49/64
	2011	1.2	0.9	1,900	nd	0.9 [0.4]	42/64	42/64

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~2009.

(Note 2) No monitoring was conducted in FY2010.

<Wildlife>

Stocktaking of the detection of Mirex in wildlife (bivalves, fish and birds) during FY2003~2011

-	Monitored	Geometric	•			Quantification	Detection l	requency
Mirex	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	4.9	4.2	19	tr(1.6)	2.4 [0.81]	30/30	6/6
	2004	4.4	4.3	12	tr(1.1)	2.5 [0.82]	31/31	7/7
	2005	5.4	5.2	20	tr(1.9)	3.0 [0.99]	31/31	7/7
Bivalves	2006	5	4	19	tr(2)	3 [1]	31/31	7/7
(pg/g-wet)	2007	5	4	18	tr(2)	3 [1]	31/31	7/7
	2008	4	tr(3)	18	tr(2)	4 [1]	31/31	7/7
	2009	5.9	5.2	21	tr(1.7)	2.1 [0.8]	31/31	7/7
	2011	10	7.1	44	5.2	1.9 [0.8]	4/4	4/4
	2003	8.3	9.0	25	tr(1.7)	2.4 [0.81]	70/70	14/14
	2004	13	11	180	3.8	2.5 [0.82]	70/70	14/14
	2005	13	13	78	tr(1.0)	3.0 [0.99]	80/80	16/16
Fish	2006	11	10	53	tr(2)	3 [1]	80/80	16/16
(pg/g-wet)	2007	9	11	36	tr(1)	3 [1]	80/80	16/16
	2008	11	13	48	tr(1)	4 [1]	85/85	17/17
	2009	8.6	9.6	37	tr(0.9)	2.1 [0.8]	90/90	18/18
	2011	12	15	41	tr(1.3)	1.9 [0.8]	18/18	18/18
	2003	120	150	450	31	2.4 [0.81]	10/10	2/2
	2004	61	64	110	33	2.5 [0.82]	10/10	2/2
	2005	77	66	180	41	3.0 [0.99]	10/10	2/2
Birds	2006	77	70	280	39	3 [1]	10/10	2/2
(pg/g-wet)	2007	57	59	100	32	3 [1]	10/10	2/2
	2008	74	68	260	27	4 [1]	10/10	2/2
	2009	49	50	79	32	2.1 [0.8]	10/10	2/2
	2011			58	58	1.9 [0.8]	1/1	1/1

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~2009.

(Note 2) No monitoring was conducted in FY2010.

<Air>

Stocktaking of the detection of Mirex in air during FY2003~2011

		Geometric				Quantification	Detection 1	Frequency
Mirex	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003Warm season	0.11	0.12	0.19	0.047	0.0084	35/35	35/35
	2003Cold season	0.044	0.043	0.099	0.024	[0.0028]	34/34	34/34
	2004Warm season	0.099	0.11	0.16	tr(0.042)	0.05 [0.017]	37/37	37/37
	2004Cold season	tr(0.046)	tr(0.047)	0.23	tr(0.019)	0.03 [0.017]	37/37	37/37
	2005Warm season	tr(0.09)	tr(0.09)	0.24	tr(0.05)	0.10.50.023	37/37	37/37
	2005Cold season	tr(0.04)	tr(0.04)	tr(0.08)	nd	0.10 [0.03]	29/37	29/37
	2006Warm season	tr(0.07)	tr(0.10)	0.22	nd	0.12 [0.04]	29/37	29/37
Air	2006Cold season	tr(0.07)	tr(0.07)	2.1	nd	0.13 [0.04]	27/37	27/37
(pg/m^3)	2007Warm season	0.11	0.11	0.28	0.04	0.02.50.013	36/36	36/36
	2007Cold season	0.04	0.04	0.09	tr(0.02)	0.03 [0.01]	36/36	36/36
	2008Warm season	0.09	0.09	0.25	0.03	0.02.50.013	37/37	37/37
	2008Cold season	0.05	0.04	0.08	0.03	0.03 [0.01]	37/37	37/37
	2009Warm season	0.12	0.13	0.48	0.049	0.015.50.0063	37/37	37/37
	2009Cold season	0.058	0.054	0.18	0.030	0.015 [0.006]	37/37	37/37
	2011Warm season	0.14	0.13	0.25	0.08	0.04.50.013	35/35	35/35
	2011Cold season	0.07	0.07	0.11	tr(0.03)	0.04 [0.01]	37/37	37/37

(Note) No monitoring was conducted in FY2010.

[11] HCHs

· History and state of monitoring

HCHs were used as pesticides, household insecticides, and termiticides, etc. Even after their registration under the Agricultural Chemicals Regulation Law was expired in FY1971, they continue to be used as termiticides and wood preservatives. α -HCH, β -HCH, and γ -HCH (synonym:Lindane) were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Among many HCH isomers, α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air.

Before FY2001, the substances were measured in FY1974 (in surface water, sediment and fish) under the framework of "the Environmental Survey and Monitoring of Chemicals." α -HCH and β -HCH had been the target chemicals, and surface water and sediment had been the monitored media during the period of FY1986~1998 and FY1986~2001, respectively. Under the framework of the Wildlife Monitoring, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996 and in FY1998, FY2000 and FY2001 (γ -HCH (synonym:Lindane) and δ -HCH had not been monitored since FY1997 and FY1993, respectively.)

Under the framework of the Environmental Monitoring, α -HCH and β -HCH in surface water, sediment, and wildlife (bivalves, fish and birds) have been monitored since FY2002. α -HCH and β -HCH in air and γ -HCH (synonym:Lindane) and δ -HCH in surface water, sediment, wildlife (bivalves, fish and birds) and air have also been monitored since FY2003.

· Monitoring results

<Surface Water>

 α -HCH: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.4 pg/L, and the detection range was 3.7 \sim 680 pg/L.As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

 β -HCH: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.7 pg/L, and the detection range was 12 ~830 pg/L.As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendencies in specimens from lake areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

 γ -HCH(synonym:Lindane): The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.5 pg/L, and the detection range was 2.1 ~190 pg/L.As results of the inter-annual trend analysis from FY2003 to FY2017, reduction tendencies in specimens from river areas, lake areas, river mouth areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

 δ -HCH: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.4 pg/L, and the detection range was tr(0.4)~690 pg/L.

Stocktaking of the detection of Total α -HCH, β -HCH, γ -HCH(synonym:Lindane) and δ -HCH in surface water during FY2002~2017

FY2002~2017	Monitored	Geometric				Quantification	Detection 1	Frequency
α-НСН	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	86	76	6,500	1.9	0.9 [0.3]	114/114	38/38
	2003	120	120	970	13	3 [0.9]	36/36	36/36
	2004	150	145	5,700	13	6 [2]	38/38	38/38
	2005	90	81	660	16	4 [1]	47/47	47/47
	2006	110	90	2,100	25	3 [1]	48/48	48/48
	2007	76	73	720	13	1.9 [0.6]	48/48	48/48
	2008	78	75	1,100	9	4 [2]	48/48	48/48
Surface Water	2009	74	73	560	14	1.2 [0.4]	49/49	49/49
(pg/L)	2010	94	75	1,400	14	4 [1]	49/49	49/49
	2011	67	60	1,000	11	7 [3]	49/49	49/49
	2012	65	56	2,200	9.5	1.4 [0.5]	48/48	48/48
	2013	57	55	1,900	9	7 [2]	48/48	48/48
	2014	47	41	700	7.3	4.5 [1.5]	48/48	48/48
	2015	48	40	610	8.7	1.2 [0.4]	48/48	48/48
	2016	38	36	640	5.1	1.1 [0.4]	48/48	48/48
	2017	47	45	680	3.7	0.9 [0.4]	47/47	47/47
	Monitored	Geometric				Quantification	Detection 1	Frequency
β-НСН	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	210	180	1,600	24	0.9 [0.3]	114/114	38/38
	2003	250	240	1,700	14	3 [0.7]	36/36	36/36
	2004	260	250	3,400	31	4 [2]	38/38	38/38
	2005	200	170	2,300	25	2.6 [0.9]	47/47	47/47
	2006	200	160	2,000	42	1.7 [0.6]	48/48	48/48
	2007	170	150	1,300	18	2.7[0.9]	48/48	48/48
	2008	150	150	1,800	15	1.0 [0.4]	48/48	48/48
Surface Water	2009	150	150	1,100	18	0.6[0.2]	49/49	49/49
(pg/L)	2010	180	160	2,500	33	2.0 [0.7]	49/49	49/49
	2011	130	120	840	28	2.0 [0.8]	49/49	49/49
	2012	150	130	820	17	1.4 [0.5]	48/48	48/48
	2013	130	130	1,100	20	7 [2]	48/48	48/48
	2014	100	110	1,100	11	1.0 [0.4]	48/48	48/48
	2015	130	120	1,100	21	1.2 [0.4]	48/48	48/48
	2016	100	96	1,100	12	1.2 [0.4]	48/48	48/48
	2017	100	110	830	12	1.8 [0.7]	47/47	47/47
у-НСН	Monitored	Geometric		Maximu		Quantification	Detection 1	Frequency
(synonym:Lindane)	year	mean*	Median	m	Minimum	[Detection] limit	Sample	Site
	2003	92	90	370	32	7 [2]	36/36	36/36
	2004	91	76	8,200	21	20 [7]	38/38	38/38
	2005	48	40	250	tr(8)	14 [5]	47/47	47/47
	2006	44	43	460	tr(9)	18 [6]	48/48	48/48
	2007	34	32	290	5.2	2.1 [0.7]	48/48	48/48
	2008	34	32	340	4	3 [1]	48/48	48/48
Court W	2009	32	26	280	5.1	0.6 [0.2]	49/49	49/49
Surface Water	2010	26	22	190	tr(5)	6 [2]	49/49	49/49
(pg/L)	2011	23	20	170	3	3 [1]	49/49	49/49
	2012	22	21	440	3.0	1.3 [0.4]	48/48	48/48
	2013	21	17	560	3.2	2.7 [0.8]	48/48	48/48
	2014	18	18	350	3.5	1.2 [0.4]	48/48	48/48
	2015	17	15	110	2.6	0.9 [0.3]	48/48	48/48
	2016	14	13	130	1.8	0.8 [0.3]	48/48	48/48
	2017	17	16	190	2.1	1.4 [0.5]	47/47	47/47
	_01/	17	10	170	2.1	1[0.0]	. // 1/	

	Monitored	Geometric		Maximu		Quantification	Detection 1	Frequency
δ -HCH	year	mean*	Median	m	Minimum	[Detection] limit	Sample	Site
	2003	14	14	200	tr(1.1)	2 [0.5]	36/36	36/36
	2004	24	29	670	tr(1.4)	2 [0.7]	38/38	38/38
	2005	1.8	nd	62	nd	1.5 [0.5]	23/47	23/47
	2006	24	18	1,000	2.2	2.0 [0.8]	48/48	48/48
	2007	11	9.7	720	tr(0.7)	1.2 [0.4]	48/48	48/48
	2008	11	10	1,900	tr(1.1)	2.3 [0.9]	48/48	48/48
CC W/-4	2009	10	11	450	tr(0.7)	0.9 [0.4]	49/49	49/49
Surface Water	2010	16	17	780	0.9	0.8[0.3]	49/49	49/49
(pg/L)	2011	8.6	8.9	300	0.7	0.4 [0.2]	49/49	49/49
	2012	7.9	6.7	220	tr(0.5)	1.1 [0.4]	48/48	48/48
	2013	8.2	8.9	320	tr(0.6)	1.1 [0.4]	48/48	48/48
	2014	7.1	6.5	590	0.7	0.4 [0.2]	48/48	48/48
	2015	7.2	7.4	310	0.8	0.3 [0.1]	48/48	48/48
	2016	5.5	6.0	920	tr(0.5)	0.8 [0.3]	48/48	48/48
	2017	8.2	8.2	690	tr(0.4)	1.0 [0.4]	47/47	47/47

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

 α -HCH: The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 0.2 pg/g-dry, and the detection range was 1.0 ~1,900 pg/g-dry. As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendency in specimens from river areas was identified as statistically significant and reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

 β -HCH: The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 0.6 pg/g-dry, and the detection range was 5.7 ~3,400 pg/g-dry. As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendency in specimens from river mouth areas was identified as statistically significant.

 γ -HCH(synonym:Lindane): The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 0.4 pg/g-dry, and the detection range was tr(0.4)~1,900 pg/g-dry. As results of the inter-annual trend analysis from FY2003 to FY2017, reduction tendencies in specimens from river areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

 δ -HCH: The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 0.2 pg/g-dry, and the detection range was tr(0.2)~1,700 pg/g-dry. As results of the inter-annual trend analysis from FY2003 to FY2017, reduction tendencies in specimens from river mouth areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH(synonym:Lindane) and δ -HCH in sediment during FY2002~2017

F Y 2002~2017	36 %					Quantification	Detection 1	Frequency
α -HCH	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	•	ilicali				limit		
	2002	150	170	8,200	2.0	1.2 [0.4]	189/189	63/63
	2003	160	170	9,500	2	2 [0.5]	186/186	62/62
	2004	160	180	5,700	tr(1.5)	2 [0.6]	189/189	63/63
	2005	140	160	7,000	3.4	1.7 [0.6]	189/189	63/63
	2006	140	160	4,300	tr(2)	5 [2]	192/192	64/64
	2007	140	150	12,000	tr(1.3)	1.8 [0.6]	192/192	64/64
	2008	140	190	5,200	nd	1.6 [0.6]	191/192	64/64
Sediment	2009	120	120	6,300	nd	1.1 [0.4]	191/192	64/64
(pg/g-dry)	2010	140	140	3,700	3.1	2.0 [0.8]	64/64	64/64
488 77	2011	120	140	5,100	1.6	1.5 [0.6]	64/64	64/64
	2012	100	100	3,900	tr(1.1)	1.6 [0.5]	63/63	63/63
	2013	94	98	3,200	tr(0.6)	1.5 [0.5]	63/63	63/63
	2014	84	93	4,300	nd	2.4 [0.8]	62/63	62/63
	2015	97	120	9,600	1.1	0.7 [0.3]	62/62	62/62
	2016	64	77	5,000	1.1	0.9 [0.3]	62/62	62/62
	2017	77	86	1,900	1.0	0.5 [0.2]	62/62	62/62
	2017		- 00	1,700	1.0			
	Monitored	Geometric				Quantification	Detection 1	Frequency
β -HCH	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
						limit		
	2002	230	230	11,000	3.9	0.9 [0.3]	189/189	63/63
	2003	250	220	39,000	5	2 [0.7]	186/186	62/62
	2004	240	230	53,000	4	3 [0.8]	189/189	63/63
	2005	200	220	13,000	3.9	2.6 [0.9]	189/189	63/63
	2006	190	210	21,000	2.3	1.3 [0.4]	192/192	64/64
	2007	200	190	59,000	1.6	0.9[0.3]	192/192	64/64
	2008	190	200	8,900	2.8	0.8 [0.3]	192/192	64/64
Sediment	2009	180	170	10,000	2.4	1.3 [0.5]	192/192	64/64
(pg/g-dry)	2010	230	210	8,200	11	2.4 [0.8]	64/64	64/64
	2011	180	210	14,000	3	3 [1]	64/64	64/64
	2012	160	170	8,300	3.7	1.5 [0.6]	63/63	63/63
	2013	160	170	6,900	4.5	0.4 [0.1]	63/63	63/63
	2014	140	140	7,200	2.9	0.9 [0.3]	63/63	63/63
	2015	160	170	5,900	2.5	0.8 [0.3]	62/62	62/62
	2016	130	160	6,000	3.7	0.9 [0.3]	62/62	62/62
	2017	140	110	3,400	5.7	1.5 [0.6]	62/62	62/62
HOH		G		,		Quantification	Detection 1	
у-НСН	Monitored		Median	Maximum	Minimum	[Detection]		
(synonym:Lindane)	year	mean*				limit	Sample	Site
	2003	51	47	4,000	tr(1.4)	2 [0.4]	186/186	62/62
	2004	53	48	4,100	tr(0.8)	2 [0.5]	189/189	63/63
	2005	49	46	6,400	tr(1.8)	2.0 [0.7]	189/189	63/63
	2006	48	49	3,500	tr(1.4)	2.1 [0.7]	192/192	64/64
	2007	42	41	5,200	tr(0.6)	1.2 [0.4]	192/192	64/64
	2008	40	43	2,200	tr(0.7)	0.9 [0.4]	192/192	64/64
	2009	38	43	3,800	nd	0.6 [0.2]	191/192	64/64
Sediment	2010	35	30	2,300	tr(1.5)	2.0 [0.7]	64/64	64/64
(pg/g-dry)	2010	35	42	3,500	nd	3 [1]	62/64	62/64
	2011	30	29	3,500	nd	1.3 [0.4]	61/63	61/63
	2012	33	35	2,100	0.9	0.6 [0.2]	63/63	63/63
	2013	27	30	2,600	nd	2.7 [0.9]	61/63	61/63
	2014	27	35	2,800	tr(0.3)	0.5 [0.2]	62/62	62/62
	2015	29	35 25	3,100		0.5 [0.2]	62/62	62/62
					tr(0.7)			
	2017	23	25	1,900	tr(0.4)	1.0 [0.4]	62/62	62/62

	Monitored Geometric					Quantification	Detection l	Frequency
δ -HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	42	46	5,400	nd	2 [0.7]	180/186	61/62
	2004	55	55	5,500	tr(0.5)	2 [0.5]	189/189	63/63
	2005	52	63	6,200	nd	1.0 [0.3]	188/189	63/63
	2006	45	47	6,000	nd	1.7 [0.6]	189/192	64/64
	2007	26	28	5,400	nd	5 [2]	165/192	60/64
	2008	41	53	3,300	nd	2 [1]	186/192	64/64
C - 1:4	2009	36	37	5,000	nd	1.2 [0.5]	190/192	64/64
Sediment	2010	39	40	3,800	1.3	1.2 [0.5]	64/64	64/64
(pg/g-dry)	2011	37	47	5,000	nd	1.4 [0.5]	63/64	63/64
	2012	28	28	3,100	nd	0.8 [0.3]	62/63	62/63
	2013	31	29	2,500	0.4	0.3 [0.1]	63/63	63/63
	2014	27	26	3,900	0.4	0.4 [0.1]	63/63	63/63
	2015	27	28	2,900	tr(0.4)	0.5 [0.2]	62/62	62/62
	2016	20	24	6,100	nd	0.5 [0.2]	60/62	60/62
	2017	25	22	1,700	tr(0.2)	0.6 [0.2]	62/62	62/62

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009.

<Wildlife>

 α -HCH: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1 pg/g-wet, and the detection range was $6\sim32$ pg/g-wet.For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 1 pg/g-wet, and none of the detected concentrations exceeded 130pg/g-wet.For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 1 pg/g-wet, and the detected concentration was 930pg/g-wet. As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendency in specimens of bivalves was identified as statistically significant.

 β -HCH: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1 pg/g-wet, and the detection range was $21\sim60$ pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 1 pg/g-wet, and the detection range was $4\sim290$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 1 pg/g-wet, and the detected concentration was 3,500pg/g-wet.

 γ -HCH(synonym:Lindane): The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1 pg/g-wet, and the detection range was tr(2)~11pg/g-wet.For fish, the presence of the substance was monitored in 19 areas, and it was detected at 16 of the 19 valid areas adopting the detection limit of 1 pg/g-wet, and none of the detected concentrations exceeded 30pg/g-wet.For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 1 pg/g-wet, and the detected concentration was 20pg/g-wet. As results of the inter-annual trend analysis from FY2002 to FY2017, reduction tendency in specimens of bivalves was identified as statistically significant and the last 5 years period was indicated lower concentration than the period before the last 5 years in specimens of fish as statistically significant.

 δ -HCH: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 0.9 pg/g-wet, and the detection range was tr(1)~3pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 15 of the 19 valid areas adopting the detection limit of 0.9 pg/g-wet, and none of the detected concentrations exceeded 23pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 0.9 pg/g-wet, and the detected concentration was tr(1)pg/g-wet. As results of the inter-annual trend analysis from FY2002 to FY2017, the last 5 years period was indicated lower concentration than the period before the last 5 years in specimens of fish as statistically

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH(synonym:Lindane) and δ -HCH in wildlife (bivalves, fish and birds) during FY2002~2017

α-НСН		Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection l	Frequenc
u-nen	year	mean*	Wicdian			limit	Sample	Site
	2002	67	64	1,100	12	4.2 [1.4]	38/38	8/8
	2003	45	30	610	9.9	1.8 [0.61]	30/30	6/6
	2004	56	25	1,800	tr(12)	13 [4.3]	31/31	7/7
	2005	38	25	1,100	tr(7.1)	11 [3.6]	31/31	7/7
	2006	30	21	390	6	3 [1]	31/31	7/7
	2007	31	17	1,400	8	7 [2]	31/31	7/7
	2008	26	16	380	7	6 [2]	31/31	7/7
Bivalves	2009	45	21	2,200	9	5 [2]	31/31	7/7
(pg/g-wet)	2010	35	20	730	13	3 [1]	6/6	6/6
	2011	64	33	1,200	13	3 [1]	4/4	4/4
	2012	23	12	340	4.0	3.7 [1.2]	5/5	5/5
	2013	30	25	690	6	3 [1]	5/5	5/5
	2014	16	16	39	7	3 [1]	3/3	3/3
	2015	11	15	25	3.5	3.0 [1.0]	3/3	3/3
	2016	13	20	22	5	3 [1]	3/3	3/3
	2017	15	16	32	6	3 [1]	3/3	3/3
	2002	57	56	590	tr(1.9)	4.2 [1.4]	70/70	14/14
	2003	43	58	590	2.6	1.8 [0.61]	70/70	14/14
	2004	57	55	2,900	nd	13 [4.3]	63/70	14/14
	2005	42	43	1,000	nd	11 [3.6]	75/80	16/16
	2006	44	53	360	tr(2)	3 [1]	80/80	16/16
	2007	39	40	730	tr(2)	7 [2]	80/80	16/16
	2008	36	47	410	nd	6 [2]	84/85	17/17
Fish	2008	39	32	830	tr(2)	5 [2]	90/90	18/18
(pg/g-wet)	2010	27	39	250	tr(1)	3 [2]	18/18	18/18
(pg/g-wet)	2010	37	54	690	tr(2)	3 [1]	18/18	18/18
	2011	24	32					18/19
	2012	32		170	nd	3.7 [1.2]	18/19	
			47	320	tr(2)	3 [1]	19/19	19/19
	2014	26	40	210	nd	3 [1]	18/19	18/19
	2015	18	26	180	tr(1.3)	3.0 [1.0]	19/19	19/19
	2016	15	17	81	nd	3 [1]	18/19	18/19
	2017	20	29	130	nd_	3 [1]	18/19	18/19
	2002	170	130	360	93	4.2 [1.4]	10/10	2/2
	2003	73	74	230	30	1.8 [0.61]	10/10	2/2
	2004	190	80	1,600	58	13 [4.3]	10/10	2/2
	2005	76	77	85	67 5.5	11 [3.6]	10/10	2/2
	2006	76	75 •	100	55	3 [1]	10/10	2/2
	2007	75	59	210	43	7 [2]	10/10	2/2
	2008	48	48	61	32	6 [2]	10/10	2/2
Birds	2009	43	42	56	34	5 [2]	10/10	2/2
(pg/g-wet)	2010	260		430	160	3 [1]	2/2	2/2
	2011			48	48	3 [1]	1/1	1/1
	2012	35		39	32	3.7 [1.2]	2/2	2/2
	2013**	46		130	16	3 [1]	2/2	2/2
	2014**	61		220	17	3 [1]	2/2	2/2
	2015**			13	13	3.0 [1.0]	1/1	1/1
	2016**	63		170	23	3 [1]	2/2	2/2
	2017**	81		930	7	3 [1]	2/2	2/2

0 HGH	Monitored	Geometric	* Median	Maximum	Minimum	Quantification [Detection] limit	Detection Frequency	
β-НСН	year	mean*					Sample	Site
	2002	88	62	1,700	32	12 [4]	38/38	8/8
	2003	78	50	1,100	23	9.9 [3.3]	30/30	6/6
	2004	100	74	1,800	22	6.1 [2.0]	31/31	7/7
	2005	85	56	2,000	20	2.2 [0.75]	31/31	7/7
	2006	81	70	880	11	3 [1]	31/31	7/7
	2007	79	56	1,800	21	7 [3]	31/31	7/7
	2008	73	51	1,100	23	6 [2]	31/31	7/7
Bivalves	2009	83	55	1,600	27	6 [2]	31/31	7/7
(pg/g-wet)	2010	89	56	1,500	27	3 [1]	6/6	6/6
	2011	130	68	2,000	39	3 [1]	4/4	4/4
	2012	65	37	980	15	2.0 [0.8]	5/5	5/5
	2013	61	47	710	17	2.2 [0.8]	5/5	5/5
	2014	40	35	64	28	2.4 [0.9]	3/3	3/3
	2015	34	45	69	13	3.0 [1.0]	3/3	3/3
	2016	37	47	50	21	3 [1]	3/3	3/3
	2017	39	47	60	21	3 [1]	3/3	3/3
	2002	110	120	1,800	tr(5)	12 [4]	70/70	14/14
	2003	81	96	1,100	tr(3.5)	9.9 [3.3]	70/70	14/14
	2004	110	140	1,100	tr(3.9)	6.1 [2.0]	70/70	14/14
	2005	95	110	1,300	6.7	2.2 [0.75]	80/80	16/16
	2006	89	110	1,100	4	3 [1]	80/80	16/16
	2007	110	120	810	7	7 [3]	80/80	16/16
	2008	94	150	750	tr(4)	6 [2]	85/85	17/17
Fish	2009	98	130	970	tr(5)	6 [2]	90/90	18/18
(pg/g-wet)	2010	81	110	760	5	3 [1]	18/18	18/18
(188)	2011	100	140	710	4	3 [1]	18/18	18/18
	2012	72	100	510	6.5	2.0 [0.8]	19/19	19/19
	2013	80	110	420	7.2	2.2 [0.8]	19/19	19/19
	2014	75	140	460	4.4	2.4 [0.9]	19/19	19/19
	2015	56	94	390	6.0	3.0 [1.0]	19/19	19/19
	2016	41	65	200	5	3 [1]	19/19	19/19
	2017	54	86	290	4	3 [1]	19/19	19/19
	2002	3,000	3,000	7,300	1,600	12 [4]	10/10	2/2
	2003	3,400	3,900	5,900	1,800	9.9 [3.3]	10/10	2/2
	2004	2,300	2,100	4,800	1,100	6.1 [2.0]	10/10	2/2
	2005	2,500	2,800	6,000	930	2.2 [0.75]	10/10	2/2
	2006	2,100	2,400	4,200	1,100	3 [1]	10/10	2/2
	2007	2,000	1,900	3,200	1,400	7 [3]	10/10	2/2
	2008	2,400	2,000	5,600	1,300	6 [2]	10/10	2/2
Birds	2009	1,600	1,400	4,200	870	6 [2]	10/10	2/2
(pg/g-wet)	2009	1,600	1,400	2,800	910	3 [1]	2/2	2/2
(hg/g-wei)	2010	1,000		4,500	4,500	3 [1]	1/1	1/1
	2011	1,400		2,600	730	2.0 [0.8]	2/2	2/2
	2012						2/2	2/2
	2013**	1,400 290		3,000	610 24	2.2 [0.8]		
	2014**			3,600		2.4 [0.9]	2/2	2/2
		1 400		57	57 700	3.0 [1.0]	1/1	1/1
	2016**	1,400		2,600	790	3 [1]	2/2	2/2
	2017**	1,000		3,500	300	3 [1]	2/2	2/2

γ-НСН	Monitored	Geometric				Quantification	Detection Frequence	
(synonym:Lindane)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	19	18	130	5.2	3.3 [1.1]	30/30	6/6
	2004	tr(24)	tr(16)	230	nd	31 [10]	28/31	7/7
	2005	23	13	370	tr(5.7)	8.4 [2.8]	31/31	7/7
	2006	18	12	140	7	4 [2]	31/31	7/7
	2007	16	10	450	tr(4)	9 [3]	31/31	7/7
	2008	12	10	98	tr(3)	9 [3]	31/31	7/7
D' 1	2009	14	12	89	tr(3)	7 [3]	31/31	7/7
Bivalves	2010	14	9	150	5	3 [1]	6/6	6/6
(pg/g-wet)	2011	26	17	320	5	3 [1]	4/4	4/4
	2012	8.1	3.5	68	3.0	2.3 [0.9]	5/5	5/5
	2013	7.2	3.9	31	tr(2.1)	2.4 [0.9]	5/5	5/5
	2014	7.4	4.8	18	4.6	2.2 [0.8]	3/3	3/3
	2015	7.3	7.8	14	tr(3.6)	4.8 [1.6]	3/3	3/3
	2016	6	5	11	4	3 [1]	3/3	3/3
	2017	4	3	11	tr(2)	3 [1]	3/3	3/3
	2003	16	22	130	tr(1.7)	3.3 [1.1]	70/70	14/14
	2004	tr(28)	tr(24)	660	nd	31 [10]	55/70	11/14
	2005	17	17	230	nd	8.4 [2.8]	78/80	16/16
	2006	19	22	97	tr(2)	4 [2]	80/80	16/16
	2007	15	15	190	nd	9 [3]	71/80	15/16
	2008	13	16	96	nd	9 [3]	70/85	15/17
	2009	14	12	180	nd	7 [3]	81/90	17/18
Fish	2010	9	13	56	tr(1)	3 [1]	18/18	18/18
(pg/g-wet)	2011	12	15	160	tr(1)	3 [1]	18/18	18/18
	2012	7.8	12	43	nd	2.3 [0.9]	18/19	18/19
	2013	8.6	12	81	nd	2.4 [0.9]	17/19	17/19
	2014	8.4	14	45	nd	2.2 [0.8]	16/19	16/19
	2015	6.1	7.9	42	nd	4.8 [1.6]	14/19	14/19
	2016	5	5	43	nd	3 [1]	18/19	18/19
	2017	6	9	30	nd	3 [1]	16/19	16/19
	2003	14	19	40	3.7	3.3 [1.1]	10/10	2/2
	2004	64	tr(21)	1,200	tr(11)	31 [10]	10/10	2/2
	2005	18	20	32	9.6	8.4 [2.8]	10/10	2/2
	2006	16	17	29	8	4 [2]	10/10	2/2
	2007	21	14	140	tr(8)	9 [3]	10/10	2/2
	2008	12	14	19	tr(5)	9 [3]	10/10	2/2
	2009	11	11	21	tr(6)	7 [3]	10/10	2/2
Birds	2010	10		23	4	3 [1]	2/2	2/2
(pg/g-wet)	2010			26	26	3 [1]	1/1	1/1
	2012	11		19	6.3	2.3 [0.9]	2/2	2/2
	2012**	6.0		24	tr(1.5)	2.4 [0.9]	2/2	2/2
	2014**	10		24	4.4	2.2 [0.8]	2/2	2/2
	2015**			nd	nd	4.8 [1.6]	0/1	0/1
	2015	5		14	tr(2)	3 [1]	2/2	2/2
	2010	4		20	tr(1)	3 [1]	2/2	2/2
	201/	4		20	u(1)	ا] د	LIL	L1 L

	Monitored	Geometric mean*	Median	Maximum	Minimum	Quantification	Detection Frequence	
δ-НСН	year					[Detection] limit	Sample	Site
	2003	7.4	tr(2.6)	1,300	nd	3.9 [1.3]	29/30	6/6
	2004	6.3	tr(2.1)	1,500	nd	4.6 [1.5]	25/31	6/7
	2005	5.4	tr(2.1)	1,600	nd	5.1 [1.7]	23/31	6/7
	2006	6	tr(2)	890	tr(1)	3 [1]	31/31	7/7
	2007	4	nd	750	nd	4 [2]	12/31	4/7
	2008	tr(3)	nd	610	nd	6 [2]	7/31	3/7
D: 1	2009	tr(4)	nd	700	nd	5 [2]	14/31	4/7
Bivalves	2010	4	tr(2)	870	nd	3 [1]	5/6	5/6
(pg/g-wet)	2011	9	tr(2)	1,400	tr(1)	3 [1]	4/4	4/4
	2012	3	tr(1)	580	nd	3 [1]	3/5	3/5
	2013	3	tr(1)	230	nd	3 [1]	3/5	3/5
	2014	tr(1)	tr(2)	3	nd	3 [1]	2/3	2/3
	2015	nd	nd	tr(1.5)	nd	2.1 [0.8]	1/3	1/3
	2016	tr(1)	tr(1)	tr(2)	tr(1)	3 [1]	3/3	3/3
	2017	tr(1.7)	tr(1.6)	3.0	tr(1.0)	2.3 [0.9]	3/3	3/3
	2003	tr(3.6)	4.0	<u></u>	nd	3.9 [1.3]	59/70	13/14
	2003	tr(4.2)	tr(3.5)	270	nd	4.6 [1.5]	54/70	11/14
	2004	tr(3.2)	tr(3.1)	32	nd	5.1 [1.7]	55/80	12/16
	2006	4	3	35	nd	3 [1]	72/80	16/16
Fish (pg/g-wet)	2007		_	31			42/80	10/16
		tr(3)	tr(2)		nd 1	4 [2]		
	2008	tr(4)	tr(3)	77	nd	6 [2]	54/85	12/17
	2009	tr(3)	tr(3)	18	nd	5 [2]	57/90	13/18
	2010	tr(2)	tr(2)	36	nd	3 [1]	13/18	13/18
400	2011	3	4	19	nd	3 [1]	14/18	14/18
	2012	tr(2)	tr(2)	12	nd	3 [1]	14/19	14/19
	2013	3	tr(2)	40	nd	3 [1]	14/19	14/19
	2014	tr(2)	tr(2)	23	nd	3 [1]	14/19	14/19
	2015	tr(1.7)	tr(1.8)	17	nd	2.1 [0.8]	12/19	12/19
	2016	tr(2)	tr(2)	10	nd	3 [1]	17/19	17/19
	2017	2.4	2.4	23	nd	2.3 [0.9]	15/19	15/19
	2003	19	18	31	12	3.9 [1.3]	10/10	2/2
	2004	30	14	260	6.4	4.6 [1.5]	10/10	2/2
	2005	16	15	30	10	5.1 [1.7]	10/10	2/2
	2006	13	12	21	9	3 [1]	10/10	2/2
	2007	12	10	22	4	4 [2]	10/10	2/2
	2008	9	8	31	tr(3)	6 [2]	10/10	2/2
D: 1	2009	5	6	9	tr(3)	5 [2]	10/10	2/2
Birds	2010	12		13	11	3 [1]	2/2	2/2
(pg/g-wet)	2011			5	5	3 [1]	1/1	1/1
	2012	4		7	tr(2)	3 [1]	2/2	2/2
	2013**	3		, 4	tr(2)	3 [1]	2/2	2/2
	2013	tr(2)		3	tr(2) $tr(1)$	3 [1]	2/2	2/2
	2015**			nd	nd	2.1 [0.8]	0/1	0/1
	2015**	tr(1)		tr(2)	tr(1)	3 [1]	2/2	2/2
	2010**	nd		tr(1.0)	nd	2.3 [0.9]	1/2	1/2
			1 . 1 0			geometric mean v		

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009.

(Note 2) "**" indicates there is no consistency between the results of the ornithological survey after FY2013 and those in

previous years because of the changes in the survey sites and target species.

<Air>

 α -HCH:The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.03 pg/m³, and the detection range was 4.9~700pg/m³.

 β -HCH: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.04 pg/m³, and the detection range was 0.67~59pg/m³. As results of the inter-annual trend analysis from FY2009 to FY2017, reduction tendency in specimens from warm season was identified as statistically significant.

 γ -HCH(synonym:Lindane): The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.04 pg/m³, and the detection range was 0.84~93pg/m³. As results of the inter-annual trend analysis from FY2009 to FY2017, reduction tendency in specimens from warm season was identified as statistically significant.

 δ -HCH: The presence of the substance in air was monitored at 37 sites, and it was detected at 36 of the 37 valid sites adopting the detection limit of 0.03 pg/m³, and none of the detected concentrations exceeded 46pg/m³.

In addition, it was found that there were some problems in collection of HCHs because of some parts of the air sampler that was used between FY2003 and FY2008 were contaminated by HCHs and affected monitored concentration. Therefore all samples in the air were recognized as undetectable in calculation of data for that period.

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH in air during FY2009~2017

		Geometric		Maximum	Minimum	Quantification	Detection Frequency	
α-НСН	Monitored year	mean	Median			[Detection] limit	Sample	Site
	2009Warm season	58	58	340	19	0.12 [0.05]	37/37	37/37
	2009Cold season	21	18	400	7.8	0.12 [0.05]	37/37	37/37
	2010Warm season	46	51	280	14	1 4 [0 47]	37/37	37/37
	2010Cold season	19	16	410	6.8	1.4 [0.47]	37/37	37/37
	2011Warm season	43	44	410	9.5	2.5 [0.83]	35/35	35/35
	2011Cold season	18	15	680	6.5	2.3 [0.63]	37/37	37/37
Air	2012Warm season	37	37	250	15	2 1 [0 7]	36/36	36/36
(pg/m^3)	2012Cold season	12	11	120	4.4	2.1 [0.7]	36/36	36/36
	2013Warm season	36	39	220	13	5.2 [1.7]	36/36	36/36
	2013Cold season	10	8.8	75	tr(3.9)	J.Z [1./]	36/36	36/36
	2014Warm season	44	40	650	14	0.19 [0.06]	36/36	36/36
	2015Warm season	33	32	300	8.8	0.17 [0.06]	35/35	35/35
	2016Warm season	39	35	520	5.4	0.17 [0.07]	37/37	37/37
	2017Warm season	36	37	700	4.9	0.08 [0.03]	37/37	37/37
	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification	Detection I	Frequency
β-НСН						[Detection] limit	Sample	Site
	2009Warm season	5.6	5.6	28	0.96	0.09 [0.03]	37/37	37/37
	2009Cold season	1.8	1.8	24	0.31	0.09 [0.03]	37/37	37/37
	2010Warm season	5.6	6.2	34	0.89	0.27 [0.09]	37/37	37/37
	2010Cold season	1.7	1.7	29	tr(0.26)	0.27 [0.09]	37/37	37/37
	2011Warm season	5.0	5.2	49	0.84	0.20 [0.12]	35/35	35/35
	2011Cold season	1.7	1.7	91	tr(0.31)	0.39 [0.13]	37/37	37/37
Air	2012Warm season	5.0	5.5	32	0.65	0.26 [0.12]	36/36	36/36
(pg/m^3)	2012Cold season	0.93	1.1	8.5	tr(0.26)	0.36 [0.12]	36/36	36/36
	2013Warm season	4.7	5.7	37	0.66	0.21 [0.07]	36/36	36/36
	2013Cold season	0.97	0.95	6.7	tr(0.17)	0.21 [0.07]	36/36	36/36
	2014Warm season	5.4	6.8	74	0.57	0.24 [0.08]	36/36	36/36
	2015Warm season	3.0	3.0	34	0.36	0.25 [0.08]	35/35	35/35
	2016Warm season	4.8	5.6	64	0.3	0.3 [0.1]	37/37	37/37
	2010 W all li Scasoli		<u>J.U</u>					

γ-НСН		Geometric				Quantification	Detection Frequency	
(synonym: Lindane)	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009Warm season	17	19	65	2.9	0.06.50.021	37/37	37/37
	2009Cold season	5.6	4.6	55	1.5	0.06 [0.02]	37/37	37/37
	2010Warm season	14	16	66	2.3	0.25 [0.12]	37/37	37/37
	2010Cold season	4.8	4.4	60	1.1	0.35 [0.12]	37/37	37/37
	2011Warm season	14	17	98	2.7	1.6 [0.52]	35/35	35/35
	2011Cold season	5.1	4.8	67	tr(1.1)		37/37	37/37
Air	2012Warm season	13	15	55	2.3	0.95 [0.32]	36/36	36/36
(pg/m^3)	2012Cold season	3.1	3.2	19	tr(0.63)		36/36	36/36
	2013Warm season	12	14	58	tr(2.0)	2 2 [0 7]	36/36	36/36
	2013Cold season	2.8	3.0	12	nd	2.2 [0.7]	34/36	34/36
	2014Warm season	14	16	100	1.7	0.17 [0.06]	36/36	36/36
	2015Warm season	8.3	10	51	1.4	0.19 [0.06]	35/35	35/35
	2016Warm season	12	13	89	0.79	0.18 [0.07]	37/37	37/37
	2017Warm season	10	11	93	0.84	0.10 [0.04]	37/37	37/37
	Monitored year	Geometric			Minimum	Quantification	Detection l	Frequency
δ -HCH		mean	Median	Maximum		[Detection] limit	Sample	Site
	2009Warm season	1.3	1.3	21	0.09	0.04.[0.02]	37/37	37/37
	2009Cold season	0.36	0.33	20	0.04	0.04 [0.02]	37/37	37/37
	2010Warm season	1.4	1.3	25	0.11	0.05.00.023	37/37	37/37
	2010Cold season	0.38	0.35	22	0.05	0.05 [0.02]	37/37	37/37
	2011Warm season	1.1	1.1	33	0.11	0.062 [0.021]	35/35	35/35
	2011Cold season	0.35	0.34	26	tr(0.050)	0.063 [0.021]	37/37	37/37
Air	2012Warm season	1.0	1.3	20	tr(0.06)	0.07.50.023	36/36	36/36
(pg/m^3)	2012Cold season	0.18	0.19	7.3	nd	0.07 [0.03]	35/36	35/36
	2013Warm season	1.0	1.1	20	tr(0.05)	0.00.00.023	36/36	36/36
	2013Cold season	0.17	0.17	5.3	nd	0.08 [0.03]	34/36	34/36
	2014Warm season	1.2	1.3	50	tr(0.07)	0.19 [0.06]	36/36	36/36
	2015Warm season	0.55	0.71	22	nd	0.15 [0.05]	32/35	32/35
	2016Warm season	1.0	1.2	46	nd	0.20 [0.08]	35/37	35/37
	2017Warm season	0.80	0.92	46	nd	0.08 [0.03]	36/37	36/37

[12] Chlordecone (reference)

· History and state of monitoring

Chlordecone is a synthetic chlorinated organic compound, which was mainly used as an agricultural pesticide. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. Chlordecone was adopted as a target chemical at the Fourth Meeting of the Conference of Parties (COP4) on Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2008. In the Initial Environmental Survey and the Detailed Environmental Survey etc. under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored in air in FY2003.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2008, and in surface water, sediment and wildlife (bivalves, fish and birds) air in FY2010 and FY2011.

No monitoring was conducted during FY2012~FY2017. For reference, the monitoring results up to FY2011 are given below.

· Monitoring results until FY2011

<Surface Water>

Stocktaking of the detection of Chlordecone in surface water during FY2008~2011

	Monitored Geometric					Quantification	Detection Frequency	
Chlordecone	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2008	nd	nd	0.76	nd	0.14 [0.05]	13/46	13/46
	2010	tr(0.04)	nd	1.6	nd	0.09 [0.04]	13/49	13/49
(pg/L)	2011	nd	nd	0.70	nd	0.20 [0.05]	15/49	15/49

⁽Note) No monitoring was conducted in FY2009.

<Sediment>

Stocktaking of the detection of Chlordecone sediment during FY2008~2011

	Monitored Geometr					Quantification	Detection l	Frequency
Chlordecone	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
C - 1: 4	2008	nd	nd	5.8	nd	0.42 [0.16]	23/129	10/49
Sediment	2010	nd	nd	2.8	nd	0.4 [0.2]	9/64	9/64
(pg/g-dry)	2011	nd	nd	1.5	nd	0.40 [0.20]	9/64	9/64

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

<Wildlife>

Stocktaking of the detection of Chlordecone in wildlife (bivalves, fish and birds) during FY2008~2014

-	Monitored	Geometric			3.61.1	Quantification	Detection l	Frequency
Chlordecone	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2008	nd	nd	nd	nd	5.6 [2.2]	0/31	0/7
	2010	nd	nd	nd	nd	5.9 [2.3]	0/6	0/6
(pg/g-wet)	2011	nd	nd	nd	nd	0.5 [0.2]	0/4	0/4
Fish	2008	nd	nd	nd	nd	5.6 [2.2]	0/85	0/17
	2010	nd	nd	nd	nd	5.9 [2.3]	0/18	0/18
(pg/g-wet)	2011	nd	nd	nd	nd	0.5 [0.2]	0/18	0/18
Birds	2008	nd	nd	nd	nd	5.6 [2.2]	0/10	0/2
	2010	nd		nd	nd	5.9 [2.3]	0/2	0/2
(pg/g-wet)	2011			nd	nd	0.5 [0.2]	0/1	0/1

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

⁽Note 2) No monitoring was conducted in FY2009.

⁽Note 2) No monitoring was conducted in FY2009.

<Air>
Stocktaking of the detection of Chlordecone in air in FY2010 and 2011

		Geometric		. ·		Quantification	Detection Frequency	
Chlordecone	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2010Warm season	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37
Air	2010Cold season	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37
(pg/m^3)	2011Warm season	nd	nd	nd	nd	0.04.00.021	0/35	0/35
	2011Cold season	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37

[13] Hexabromobiphenyls (reference)

· History and state of monitoring

Hexabromobiphenyls are industrial chemicals that have been used as flame retardans. Hexabromobiphenyls were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2009. Under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substance was monitored in surface water, sediment, wildlife (fish) and air in FY1989. Under the framework of the Initial Environmental Survey and the Detailed Environmental Survey etc. in the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored surface water and sediment in FY2003, in air in FY2004.

Under the framework of the Environmental Monitoring, the substances were monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2009, in air in FY2010~2011 and in sediment, wildlife (bivalves, fish and birds) and air in FY2015.

No monitoring was conducted in FY2016 and FY2017. For reference, the monitoring results up to FY2015 are given below.

• Monitoring results until FY2015

<Surface Water>

Stocktaking of the detection of Hexabromobiphenyls in surface water during FY2009~2011

	Hexabromobiphenyls	Monitored	Geometric	Median	Maximum	Minimum	Quantification	Detection I	requency
]		year	mean				[Detection] limit*	Sample	Site
	C	2009	nd	nd	nd	nd	5.7 [2.2]	0/49	0/49
	Surface Water	2010	nd	nd	nd	nd	3 [1]	0/49	0/49
_	(pg/L)	2011	nd	nd	nd	nd	2.2 [0.9]	0/49	0/49

(Note) "**" indicates the sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2011.

<Sediment>

Stocktaking of the detection of Hexabromobiphenyls in sediment during FY2009~2015

	Monitored Geometric					Quantification	Detection 1	Frequency
Hexabromobiphenyls	year	mean*	Median	Maximum	Minimum	[Detection] limit**	Sample	Site
	2009	nd	nd	12	nd	1.1 [0.40]	45/190	21/64
Sediment	2010	nd	nd	18	nd	1.5 [0.6]	10/64	10/64
(pg/g-dry)	2011	nd	nd	6.3	nd	3.6 [1.4]	8/64	8/64
	2015	nd	nd	15	nd	0.8 [0.3]	9/62	9/62

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

⁽Note 2) "** " indicates the sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2011.

⁽Note 3) No monitoring was conducted during FY2012~2014.

<Wildlife>

Stocktaking of the detection of Hexabromobiphenyls in wildlife (bivalves, fish and birds) during FY2009~2015

	Monitored	Geometric	Median			Quantification	Detection Frequency	
Hexabromobiphenyls	year	mean*		Maximum	Minimum	[Detection] limit**	Sample	Site
•	2009	nd	nd	tr(0.53)	nd	1.3 [0.43]	1/31	1/7
Bivalves	2010	nd	nd	nd	nd	24 [10]	0/6	0/6
(pg/g-wet)	2011	nd	nd	nd	nd	3 [1]	0/4	0/4
	2015	nd	nd	nd	nd	14 [5]	0/3	0/3
	2009	tr(0.49)	tr(0.43)	6.0	nd	1.3 [0.43]	46/90	12/18
Fish	2010	nd	nd	nd	nd	24 [10]	0/18	0/18
(pg/g-wet)	2011	nd	nd	3	nd	3 [1]	5/18	5/18
	2015	nd	nd	nd	nd	14 [5]	0/19	0/19
	2009	1.6	1.6	2.1	tr(1.2)	1.3 [0.43]	10/10	2/2
Birds	2010	nd		nd	nd	24 [10]	0/2	0/2
(pg/g-wet)	2011			3	3	3 [1]	1/1	1/1
	2015***			nd	nd	14 [5]	0/1	0/1

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was

<Air>

Stocktaking of the detection of Hexabromobiphenyls in air during FY2010~2015

Hexabromo		Geometric				Quantification	Detection Frequency	
biphenyls	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2010Warm season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
Air	2010Cold season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
	2011Warm season	nd	nd	nd	nd	0.3 [0.1]	0/35	0/35
(pg/m^3)	2011Cold season	nd	nd	nd	nd		0/37	0/37
	2015Warm season	nd	nd	1.1	nd	0.06 [0.02]	2/35	2/35

(Note) No monitoring was conducted during FY2012~2014.

⁽Note 2) "**" indicates the sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2010. (Note 3) "***" There is no consistency between the results of the ornithological survey in FY2015 and those in previous years because of the changes in the survey sites and target species.

⁽Note 4) No monitoring was conducted during FY2012~2014.

[14] Polybromodiphenyl ethers (Br₄~Br₁₀)

· History and state of monitoring

Polybrominated diphenyl ethers have been used as flame retardants for plastics products. Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, and Heptabromodiphenyl ethers were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010. Decabromodiphenyl ethers were adopted as target chemical at the COP8 of the Stockholm convention on Persistent Organic Pollutants from April to May 2017, and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2018.

As a continuous survey, the first survey was in FY2008. Under the framework of the Environmental Survey of Chemical Substances up to FY2001, Decabromodiphenyl ether was monitored in surface water and sediment in FY1977 and FY1996, Polybromodiphenyl ethers (Br₆, Br₈ and Br₁₀) were monitored in surface water, sediment and wildlife (fish) in FY1987 and FY1988, Polybromodiphenyl ethers (Br₁~Br₇) were monitored in air in FY2001. In the Initial Environmental Survey and the Detailed Environmental Survey etc. under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, Decabromodiphenyl ether was monitored in surface water, sediment and wildlife (fish) in FY2002, Polybromodiphenyl ethers (Br₆, Br₈ and Br₁₀) were monitored in sediment and wildlife (fish) in FY2003, Pentabromodiphenyl ethers were monitored in sediment and Polybromodiphenyl ethers (Br₁~Br₇) in air in FY2004, Polybromodiphenyl ethers (Br₁~Br₉ and Br₁₀) were monitored in surface water in FY2005.

Under the framework of the Environmental Monitoring, Polybromodiphenyl ethers (Br₄~Br₁₀) were monitored in wildlife (bivalves, fish and birds) in FY2008, in surface water, sediment and air in FY2009 and in surface water, sediment and wildlife (bivalves, fish and birds) and air in FY2010~2012, 2014~2017.

· Monitoring results

<Surface Water>

Tetrabromodiphenyl ethers: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 44 of the 47 valid sites adopting the detection limit of 3 pg/L, and none of the detected concentrations exceeded 12 pg/L.

Pentabromodiphenyl ethers: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 24 of the 47 valid sites adopting the detection limit of 1 pg/L, and none of the detected concentrations exceeded 8 pg/L. As results of the inter-annual trend analysis from FY2009 to FY2017, although the number of detections was small, the detection rates of river area and all areas in surface water were decreased, it suggested a reduction tendency of the concentrations.

Hexabromodiphenyl ethers: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 1 of the 47 valid sites adopting the detection limit of 3 pg/L, and the detected concentration was tr(6)pg/L.

Heptabromodiphenyl ethers: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 1 of the 47 valid sites adopting the detection limit of 5 pg/L, and the detected concentration was 30 pg/L.

Octabromodiphenyl ethers: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 22 of the 47 valid sites adopting the detection limit of 1 pg/L, and none of the detected concentrations exceeded 33 pg/L.

Nonabromodiphenyl ethers: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 37 of the 47 valid sites adopting the detection limit of 3 pg/L, and none of the detected concentrations

exceeded 460 pg/L.

Decabromodiphenyl ether: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 46 of the 47 valid sites adopting the detection limit of 8 pg/L, and none of the detected concentrations exceeded 4,100 pg/L.

Stocktaking of the d	letection of	Polybromodi	iphenyl eth	ers (Br ₄ ~Br ₁₀) in surface	water during F	<u>Y2009~20</u> 1′	7
Tetrabromodiphenyl	Monitored	Geometric	-			Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	17	16	160	nd	8 [3]	44/49	44/49
	2010	nd	nd	390	nd	9 [3]	17/49	17/49
	2011	11	10	180	nd	4 [2]	48/49	48/49
Surface Water	2012	tr(3)	tr(3)	22	nd	4 [1]	47/48	47/48
(pg/L)	2014	tr(6)	tr(6)	51	tr(4)	8 [3]	48/48	48/48
(18)	2015	4.3	4.1	40	tr(1.2)	3.6 [1.2]	48/48	48/48
	2016	5	tr(5)	47	tr(3)	5 [2]	48/48	48/48
	2017	tr(4)	tr(4)	12	nd	9 [3]	44/47	44/47
D 4 1 11 1						Quantification	Detection	
Pentabromodiphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	11	12	87	nd	11 [4]	43/49	43/49
	2010	tr(1)	tr(1)	130	nd	3 [1]	25/49	25/49
	2011	5	4	180	nd	3 [1]	48/49	48/49
Surface Water	2012	tr(1)	tr(1)	20	nd	2 [1]	32/48	32/48
(pg/L)	2014	nd	nd	39	nd	4 [2]	19/48	19/48
	2015	tr(3.0)	tr(3.2)	31	nd	6.3 [2.1]	34/48	34/48
	2016	tr(1.5)	tr(1.3)	36	nd	2.4 [0.9]	39/48	39/48
	2017	nd	tr(1)	8	nd	3 [1]	24/47	24/47
Hexabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(0.9)	tr(0.7)	18	nd	1.4 [0.6]	26/49	26/49
	2010	nd	nd	51	nd	4 [2]	16/49	16/49
	2011	tr(1)	nd	39	nd	3 [1]	21/49	21/49
Surface Water	2012	nd	nd	7	nd	3 [1]	6/48	6/48
(pg/L)	2014	nd	nd	8	nd	4 [1]	10/48	10/48
	2015	nd	nd	12	nd	1.5 [0.6]	5/48	5/48
	2016	nd	nd	9.1	nd	2.1 [0.8]	9/48	9/48
	2017	nd	nd	tr(6)	nd	7 [3]	1/47	1/47
Heptabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	nd	nd	40	nd	4 [2]	9/49	9/49
	2010	nd	nd	14	nd	3 [1]	17/49	17/49
	2011	nd	nd	14	nd	6 [2]	14/49	14/49
Surface Water	2012	nd	nd	10	nd	4 [1]	9/48	9/48
(pg/L)	2014	nd	nd	8	nd	8 [3]	3/48	3/48
	2015	nd	nd	28	nd	2.0 [0.8]	9/48	9/48
	2016	nd	nd	11	nd	7 [3]	10/48	10/48
	2017	nd	nd	30	nd	14 [5]	1/47	1/47
Octabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	3.0	3.9	56	nd	1.4 [0.6]	37/49	37/49
	2010	tr(2)	tr(2)	69	nd	3 [1]	40/49	40/49
	2011	4	3	98	nd	2 [1]	44/49	44/49
Surface Water	2012	tr(2)	nd	35	nd	4 [2]	16/48	16/48
(pg/L)	2014	2.5	3.7	38	nd	1.6 [0.6]	33/48	33/48
	2015	2.3	3.1	36	nd	1.5 [0.6]	31/48	31/48
	2016	5.8	7.5	230	nd	0.8 [0.3]	44/48	44/48
	2017	tr(2)	nd	33	nd	2 [1]	22/47	22/47

N 1 1 - 1 1	M:41	Geometric				Quantification	Detection	Frequency
Nonabromodiphenyl ethers	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(46)	tr(38)	500	nd	91 [30]	32/49	32/49
	2010	tr(17)	tr(13)	620	nd	21 [7]	39/49	39/49
	2011	33	24	920	nd	10 [4]	47/49	47/49
Surface Water	2012	tr(21)	tr(19)	320	nd	40 [13]	30/48	30/48
(pg/L)	2014	37	38	590	nd	6 [2]	47/48	47/48
	2015	36	33	330	nd	6 [2]	47/48	47/48
	2016	43	45	3,900	tr(2)	4 [1]	48/48	48/48
	2017	17	26	460	nd	7 [3]	37/47	37/47
Decabromodiphenyl ether	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Sample	Frequency Site
	2009	tr(310)	tr(220)	3,400	nd	600 [200]	26/49	26/49
	2010	tr(250)	tr(200)	13,000	nd	300 [100]	31/49	31/49
	2011	200	140	58,000	nd	60 [20]	45/49	45/49
Surface Water	2012	tr(400)	tr(320)	12,000	nd	660 [220]	31/48	31/48
(pg/L)	2014	200	230	5,600	tr(14)	22 [9]	48/48	48/48
(18-)	2015	720	570	13,000	140	18 [7]	48/48	48/48
	2016	210	160	34,000	tr(12)	14 [6]	48/48	48/48
	2017	150	210	4,100	nd	24 [8]	46/47	46/47

(Note) No monitoring was conducted in FY2013.

<Sediment>

Tetrabromodiphenyl ethers: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 44 of the 62 valid sites adopting the detection limit of 4 pg/g-dry, and none of the detected concentrations exceeded 570 pg/g-dry. As results of the inter-annual trend analysis from FY2009 to FY2017, although the number of detections was small, the detection rate of the river areas in sediment was decreased, it suggested a reduction tendency of the concentrations, and the last 5 years period was indicated lower concentration than the period before the last 5 years in specimens from the overall areas in sediment as statistically significant.

Pentabromodiphenyl ethers: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 37 of the 62 valid sites adopting the detection limit of 4 pg/g-dry, and none of the detected concentrations exceeded 560 pg/g-dry.

Hexabromodiphenyl ethers: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 44 of the 62 valid sites adopting the detection limit of 2 pg/g-dry, and none of the detected concentrations exceeded 570 pg/g-dry. As results of the inter-annual trend analysis from FY2009 to FY2017, reduction tendency in specimens from the overall areas in sediment was identified as statistically significant, the last 5 years period was indicated lower concentration than the period before the last 5 years in specimens from the overall areas in sediment as statistically significant.

Heptabromodiphenyl ethers: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 36 of the 62 valid sites adopting the detection limit of 6 pg/g-dry, and none of the detected concentrations exceeded 580 pg/g-dry.

Octabromodiphenyl ethers: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 48 of the 62 valid sites adopting the detection limit of 2 pg/g-dry, and none of the detected concentrations exceeded 1,900 pg/g-dry. As results of the inter-annual trend analysis from FY2009 to FY2017, reduction tendency in specimens from the overall areas in sediment was identified as statistically significant, the last 5 years period was indicated lower concentration than the period before the last 5 years in specimens from the overall areas in sediment as statistically significant.

Nonabromodiphenyl ethers: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 61 of the 62 valid sites adopting the detection limit of 5 pg/g-dry, and none of the detected concentrations exceeded 29,000 pg/g-dry. As results of the inter-annual trend analysis from FY2009 to FY2017, the last 5 years period was indicated lower concentration than the period before the last 5 years in specimens from river areas in sediment as statistically significant.

Decabromodiphenyl ether: The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 10 pg/g-dry, and the detection range was $tr(27)\sim580,000$ pg/g-dry.

Stocktaking of the detection of Polybromodiphenyl ethers (Br₄~Br₁₀) in sediment during FY2009~2017

Stocktaking of the d	letection of	Polybromodi	ipnenyi etn	ers (Br ₄ ~Br ₁₀) in sedime			Енопионоги
Tetrabromodiphenyl	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection	Frequency
ethers	year	mean*	Miculan	Maximum	William	limit	Sample	Site
	2009	tr(60)	tr(44)	1,400	nd	69 [23]	131/192	51/64
	2010	35	38	910	nd	6 [2]	57/64	57/64
	2010	32	30	2,600	nd	30 [10]	47/64	47/64
Sediment	2012	27	37	4,500	nd	2 [1]	60/63	60/63
(pg/g-dry)	2012	tr(24)	tr(19)	550	nd	27 [9]	44/63	44/63
(pg/g-dry)	2014	30	28	1,400	nd	21 [7]	44/62	44/62
	2015	tr(21)	tr(16)	390	nd	33 [11]	35/62	35/62
	2017	13	10	570	nd	9 [4]	44/62	44/62
			10	370	IIG	Quantification	Detection	
Pentabromodiphenyl	Monitored		Median	Maximum	Minimum	[Detection]		
ethers	year	mean*				limit	Sample	Site
	2009	36	24	1,700	nd	24 [8]	146/192	57/64
	2010	26	23	740	nd	5 [2]	58/64	58/64
	2011	24	18	4,700	nd	5 [2]	62/64	62/64
Sediment	2012	21	21	2,900	nd	2.4 [0.9]	62/63	62/63
(pg/g-dry)	2014	16	14	570	nd	6 [2]	53/63	53/63
	2015	23	20	1,300	nd	18 [6]	44/62	44/62
	2016	13	tr(10)	400	nd	12 [4]	46/62	46/62
	2017	10	tr(5.5)	560	nd	9 [4]	37/62	37/62
Hexabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
-						limit		
	2009	21	21	2,600	nd	5 [2]	139/192	53/64
	2010	23	23	770	nd	4 [2]	57/64	57/64
- "	2011	31	42	2,000	nd	9 [3]	52/64	52/64
Sediment	2012	15	19	1,700	nd	3 [1]	48/63	48/63
(pg/g-dry)	2014	21	27	730	nd	5 [2]	50/63	50/63
	2015	11	15	820	nd	3 [1]	42/62	42/62
	2016	17	19	600	nd	8 [3]	40/62	40/62
	2017	16	24	570	nd	6 [2]	44/62	44/62
Heptabromodiphenyl	Monitored	Geometric	3.6.11			Quantification	Detection	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	30	25	16,000	nd		125/192	51/64
	2009	28	18	930	nd	9 [4] 4 [2]	58/64	58/64
	2010	29	32	2,400	nd	4 [2]	55/64	55/64
Sediment	2011	34	32	4,400	nd	7 [3] 4 [2]	48/63	48/63
	2012	19	tr(14)	680	nd		41/63	41/63
(pg/g-dry)	2014	16	21	1,800		16 [6]	44/62	44/62
	2015	16	17	1,100	nd nd	3 [1] 6 [2]	44/62	44/62
	2010	18	16	580	nd	0 [2] 15 [6]	36/62	36/62
		10	10	380	IIu	Quantification	Detection 1	
Octabromodiphenyl	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
ethers	year	mean*	Micalan	Maximum	William	limit	Sample	Site
	2009	210	96	110,000	nd	1.2 [0.5]	182/192	63/64
	2010	71	76	1,800	nd	10 [4]	60/64	60/64
	2011	57	64	36,000	nd	10 [4]	55/64	55/64
Sediment	2012	78	74	15,000	nd	19 [6]	47/63	47/63
(pg/g-dry)	2014	52	58	2,000	nd	12 [4]	55/63	55/63
	2015	58	tr(44)	1,400	nd	48 [16]	41/62	41/62
	2016	51	49	1,400	nd	6 [2]	55/62	55/62
	2017	38	58	1,900	nd	5 [2]	48/62	48/62

Nanahaana dinhanul	Monitored	Geometric				Quantification	Detection 1	Frequency
Nonabromodiphenyl ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	1,100	710	230,000	nd	9 [4]	181/192	64/64
	2010	360	430	26,000	nd	24 [9]	60/64	60/64
	2011	710	630	70,000	nd	23 [9]	62/64	62/64
Sediment	2012	360	380	84,000	nd	34 [11]	52/63	52/63
(pg/g-dry)	2014	470	470	42,000	nd	60 [20]	60/63	60/63
	2015	300	420	11,000	nd	24 [8]	55/62	55/62
	2016	430	390	26,000	nd	27 [9]	60/62	60/62
	2017	400	490	29,000	nd	15 [5]	61/62	61/62
Decabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ether	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	6,000	4,800	880,000	tr(30)	60 [20]	192/192	64/64
	2010	5,100	4,200	700,000	nd	220 [80]	60/64	60/64
	2011	4,200	4,700	700,000	nd	40 [20]	62/64	62/64
Sediment	2012	5,700	6,300	760,000	nd	270 [89]	60/63	60/63
(pg/g-dry)	2014	5,600	5,000	980,000	nd	240 [80]	61/63	61/63
	2015	6,600	7,200	490,000	40	40 [20]	62/62	62/62
	2016	4,700	5,100	940,000	nd	120 [41]	61/62	61/62
	2017	4,600	5,700	580,000	tr(27)	30 [10]	62/62	62/62

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) No monitoring was conducted in FY2013.

<Wildlife>

Tetrabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 6 pg/g-wet, and the detection range was 23~200pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 6 pg/g-wet, and the detection range was tr(7)~360pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 6 pg/g-wet, and the detected concentration was 660pg/g-wet. As results of the inter-annual trend analysis from FY2008 to FY2017, reduction tendency in specimens of bivalves was identified as statistically significant.

Pentabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 5 pg/g-wet, and the detection range was tr(6)~62pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 5 pg/g-wet, and none of the detected concentrations exceeded 87pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 5 pg/g-wet, and the detected concentration was 500pg/g-wet.

Hexabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 7 pg/g-wet, and none of the detected concentrations exceeded 36pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 7 pg/g-wet, and none of the detected concentrations exceeded 210pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 7 pg/g-wet, and the detected concentration was 1,000pg/g-wet.

Heptabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 8 pg/g-wet, and the detected concentration was tr(9)pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 10 of the 19 valid areas adopting the detection limit of 8 pg/g-wet, and none of the detected concentrations exceeded 55pg/g-wet.

For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 8 pg/g-wet, and the detected concentration was 440pg/g-wet.

Octabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 8 pg/g-wet, and the detected concentration was tr(9)pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 9 of the 19 valid areas adopting the detection limit of 8 pg/g-wet, and none of the detected concentrations exceeded 88pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 8 pg/g-wet, and the detected concentration was 720pg/g-wet.

Nonabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was not detected at all 3 valid areas adopting the detection limit of 20 pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 1 of the 19 valid areas adopting the detection limit of 20 pg/g-wet, and the detected concentration was 68pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and not detected in the area adopting the detection limit of 20 pg/g-wet.

Decabromodiphenyl ether: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 80 pg/g-wet, and the detected concentration was tr(180)pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 1 of the 19 valid areas adopting the detection limit of 80 pg/g-wet, and the detected concentration was 2,100pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and not detected in the area adopting the detection limit of 80 pg/g-wet.

Stocktaking of the detection of Polybromodiphenyl ethers (Br₄~Br₁₀) in wildlife (bivalves, fish and birds) during FY2008~2017

Tetrabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	73	61	380	20	5.9 [2.2]	31/31	7/7
	2010	59	73	310	nd	43 [16]	5/6	5/6
	2011	96	120	490	26	16 [6]	4/4	4/4
Bivalves	2012	59	44	190	24	19 [7]	5/5	5/5
(pg/g-wet)	2014	56	38	140	33	15 [6]	3/3	3/3
	2015	48	38	89	32	15 [6]	3/3	3/3
	2016	42	32	98	23	13 [5]	3/3	3/3
	2017	47	23	200	23	16 [6]	3/3	3/3
	2008	120	110	1,300	9.8	5.9 [2.2]	85/85	17/17
	2010	160	170	740	tr(16)	43 [16]	18/18	18/18
	2011	110	110	860	tr(9)	16 [6]	18/18	18/18
Fish	2012	120	140	650	tr(10)	19 [7]	19/19	19/19
(pg/g-wet)	2014	150	160	1,300	18	15 [6]	19/19	19/19
	2015	90	82	580	tr(14)	15 [6]	19/19	19/19
	2016	76	53	390	tr(10)	13 [5]	19/19	19/19
	2017	80	73	360	tr(7)	16 [6]	19/19	19/19
	2008	170	190	1,200	32	5.9 [2.2]	10/10	2/2
	2010	140		270	72	43 [16]	2/2	2/2
	2011			67	67	16 [6]	1/1	1/1
Birds	2012	73		110	49	19 [7]	2/2	2/2
(pg/g-wet)	2014**	190		480	78	15 [6]	2/2	2/2
	2015**			36	36	15 [6]	1/1	1/1
	2016**	170		470	62	13 [5]	2/2	2/2
	2017**	130		660	26	16 [6]	2/2	2/2

Pentabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	32	27	94	tr(11)	16 [5.9]	31/31	7/7
	2010	32	37	98	tr(9)	14 [6]	6/6	6/6
	2011	51	60	160	tr(12)	15 [6]	4/4	4/4
Bivalves	2012	28	24	67	tr(8)	18 [6]	5/5	5/5
(pg/g-wet)	2014	30	37	41	18	12 [5]	3/3	3/3
	2015	18	19	20	16	13 [5]	3/3	3/3
	2016	11	9	20	tr(8)	9 [4]	3/3	3/3
	2017	18	16	62	tr(6)	12 [5]	3/3	3/3
	2008	30	37	280	nd	16 [5.9]	72/85	16/17
	2010	51	54	200	nd	14 [6]	16/18	16/18
	2011	39	39	300	nd	15 [6]	17/18	17/18
Fish	2012	37	54	180	nd	18 [6]	17/19	17/19
(pg/g-wet)	2014	41	47	570	nd	12 [5]	18/19	18/19
	2015	22	17	140	nd	13 [5]	18/19	18/19
	2016	18	14	87	tr(4)	9 [4]	19/19	19/19
	2017	23	28	87	nd	12 [5]	72/85 16/18 17/18 17/19 18/19 18/19 19/19 18/19 10/10 2/2 1/1 2/2 2/2 1/1 2/2 2/2	18/19
	2008	150	130	440	52	16 [5.9]	10/10	2/2
	2010	150		200	120	14 [6]	2/2	2/2
	2011			110	110	15 [6]	1/1	1/1
Birds	2012	85		110	66	18 [6]	2/2	2/2
(pg/g-wet)	2014**	100		320	31	12 [5]	2/2	2/2
	2015**			22	22	13 [5]	1/1	1/1
	2016**	88		300	26	9 [4]	2/2	2/2
	2017**	77		500	12	12 [5]	2/2	2/2
Harrahmanna dimbanyi	Manitanad	Coomotnio				Quantification	Detection	Frequency
Hexabromodiphenyl ethers	year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	19	16	82	tr(5.3)	14 [5.0]	31/31	7/7
	2010	8	16	26	nd	8 [3]	4/6	4/6
	2011	38	41	81	20	10 [4]	4/4	4/4
Bivalves	2012	21	23	130	tr(6)	10 [4]	5/5	5/5
(pg/g-wet)	2014	23	21	52	11	10 [4]	3/3	3/3
400	2015	tr(9)	tr(6)	41	nd	12 [5]	2/3	2/3
	2016	tr(13)	tr(13)	40	nd	21 [8]	2/3	2/3
	2017	tr(14)	20	36	nd	17 [7]	2/3	2/3
	2008	46	51	310	nd	14 [5.0]	83/85	17/17
	2010	39	47	400	nd	8 [3]	16/18	16/18
	2011	53	50	430	nd	10 [4]	17/18	17/18
Fish	2012	55	71	320	nd	10 [4]	18/19	18/19
(pg/g-wet)	2014	60	61	1,100	nd	10 [4]	18/19	18/19
(188)	2015	44	45	250	nd	12 [5]	18/19	18/19
	2016	42	36	190	nd	21 [8]	18/19	18/19
	2017	49	49	210	nd	17 [7]	18/19	18/19
	2008	140	120	380	62	14 [5.0]	10/10	2/2
		110		140	86	8 [3]	2/2	2/2
	2010				0.0		_,_	
	2010 2011					10 [4]	1/1	1/1
Birds	2011			96	96	10 [4] 10 [4]	1/1 2/2	1/1 2/2
Birds	2011 2012	 150		96 320	96 72	10 [4]	2/2	2/2
Birds (pg/g-wet)	2011 2012 2014**	150 170	 	96 320 680	96 72 42	10 [4] 10 [4]	<u>2/2</u> 2/2	2/2 2/2
	2011 2012	 150		96 320	96 72	10 [4]	2/2	2/2

Heptabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	tr(8.5)	tr(7.6)	35	nd	18 [6.7]	20/31	7/7
	2010	nd	nd	tr(10)	nd	30 [10]	1/6	1/6
	2011	14	26	44	nd	11 [4]	3/4	3/4
Bivalves	2012	tr(8)	tr(6)	59	nd	12 [5]	3/5	3/5
(pg/g-wet)	2014	nd	nd	13	nd	12 [5]	1/3	1/3
	2015	nd	nd	tr(11)	nd	12 [5]	1/3	1/3
	2016	nd	nd	tr(8)	nd	13 [5]	1/3	1/3
	2017	nd	nd	tr(9)	nd	22 [8]	1/3	1/3
	2008	tr(11)	tr(8.1)	77	nd	18 [6.7]	44/85	10/17
	2010	nd	nd	40	nd	30 [10]	4/18	4/18
	2011	13	21	130	nd	11 [4]	13/18	13/18
Fish	2012	tr(11)	18	120	nd	12 [5]	11/19	11/19
(pg/g-wet)	2014	tr(10)	13	280	nd	12 [5]	10/19	10/19
400	2015	nd	nd	44	nd	12 [5]	4/19	4/19
	2016	tr(9)	tr(7)	85	nd	13 [5]	11/19	11/19
	2017	tr(11)	tr(12)	55	nd	22 [8]	10/19	10/19
	2008	35	35	53	19	18 [6.7]	10/10	2/2
	2010	tr(19)		70	nd	30 [10]	1/2	1/2
	2011			44	44	11 [4]	1/1	1/1
Birds	2012	63		280	14	12 [5]	2/2	2/2
(pg/g-wet)	2014**	19		150	nd	12 [5]	1/2	1/2
(188)	2015**			tr(11)	tr(11)	12 [5]	1/1	1/1
	2016**	65		220	19	13 [5]	2/2	2/2
	2017**	89		440	tr(18)	22 [8]	2/2	2/2
					11(10)	Quantification	Detection 1	
Octabromodiphenyl ethers	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	2008	nd	nd	10	nd	9.6 [3.6]	15/31	6/7
	2010	nd	nd	tr(10)	nd	11 [4]	2/6	2/6
	2011	7	9	29	nd	7 [3]	3/4	3/4
Bivalves	2012	8	tr(7)	25	nd	8 [3]	4/5	4/5
(pg/g-wet)	2014	tr(9.2)	11	14	tr(5)	11 [4]	3/3	3/3
(PB/Bet)	2015	nd	nd	nd	nd	14 [5]	0/3	0/3
	2016	nd	nd	nd	nd	16 [6]	0/3	0/3
	2017	nd	nd	tr(9)	nd	20 [8]	1/3	1/3
	2008	tr(5.7)	nd	73	nd	9.6 [3.6]	35/85	7/17
	2010	tr(6)	nd	100	nd	11 [4]	8/18	8/18
	2010		tr(7)	150	nd		10/18	10/18
Fish	2011	tr(6) tr(7)	8	160	nd	7 [3] 8 [3]	12/19	10/18
(pg/g-wet)	2012	u(7) 14	13	540	nd	8 [3] 11 [4]	15/19	15/19
(hg/g-wei)	2014			60			9/19	9/19
		tr(7)	nd nd		nd nd	14 [5]	9/19 9/19	
	2016	tr(8)	nd nd	86	nd nd	16 [6]		9/19
	2017	tr(9.7)	nd 41	88	nd	20 [8]	9/19	9/19
	2008	42	41	64	30	9.6 [3.6]	10/10	2/2
	2010	41		65	26	11 [4]	2/2	2/2
D: 1	2011	120		66	66	7 [3]	1/1	1/1
Birds	2012	130		420	40	8 [3]	2/2	2/2
(pg/g-wet)	2014**	17		140	nd	11 [4]	1/2	1/2
	2015**			tr(5)	tr(5)	14 [5]	1/1	1/1
	2016**	65	250	220	19	16 [6]	2/2	2/2
	2017**	130	370	720	25	20 [8]	2/2	2/2

Nonabromodiphenyl Methers Bivalves (pg/g-wet) Fish	2008 2010 2011 2012 2014 2015 2016	Geometric mean* nd tr(16) tr(12) tr(15) 40 nd	nd tr(15) tr(11) 25 tr(20)	tr(23) 60 40 45	nd nd nd	Imit nd tr(23) nd 35 [13] (15) 60 nd 30 [10]	5/31 5/6 3/4	Site 1/7 5/6 3/4
(pg/g-wet)	2010 2011 2012 2014 2015 2016	tr(16) tr(12) tr(15) 40	tr(15) tr(11) 25	60 40	nd nd	30 [10] 22 [9]	5/6	5/6
(pg/g-wet)	2011 2012 2014 2015 2016	tr(12) tr(15) 40	tr(11) 25	40	nd	22 [9]		
(pg/g-wet)	2012 2014 2015 2016	tr(15) 40	25				3/4	3/4
(pg/g-wet)	2014 2015 2016	40		45				
	2015 2016		tr(20)		nd	24 [9]	3/5	3/5
	2016	nd		110	tr(20)	30 [10]	3/3	3/3
Eid			nd	tr(11)	nd	23 [9]	1/3	1/3
Eid		nd	nd	nd	nd	36 [14]	0/3	0/3
E:-I	2017	nd	nd	nd	nd	50 [20]	0/3	0/3
Fi.d	2008	nd	nd	tr(15)	nd	35 [13]	2/85	2/17
E:J	2010	nd	nd	40	nd	30 [10]	3/18	3/18
T7:-1	2011	nd	nd	tr(15)	nd	22 [9]	5/18	5/18
FISN	2012	nd	nd	54	nd	24 [9]	9/19	9/19
(pg/g-wet)	2014	tr(10)	tr(20)	40	nd	30 [10]	16/19	16/19
(188)	2015	nd	nd	35	nd	23 [9]	6/19	6/19
	2016	nd	nd	tr(22)	nd	36 [14]	3/19	3/19
	2017	nd	nd	68	nd	50 [20]	1/19	1/19
	2008	tr(21)	tr(20)	tr(33)	nd	35 [13]	9/10	2/2
	2010	32		50	tr(20)	30 [10]	2/2	2/2
	2011			62	62	22 [9]	1/1	1/1
Birds	2011	100		150	67	24 [9]	2/2	2/2
	2012	tr(10)		tr(20)	tr(10)	30 [10]	2/2	2/2
~ ~ ~ .	2015**	u(10)		tr(12)	tr(10)	23 [9]	1/1	1/1
	2015**						1/1	1/1
		nd d		tr(21)	nd	36 [14]	0/2	0/2
•	2017**	nd		nd	nd	50 [20] Quantification	Detection I	
Decabromodiphenyl M	Ionitored	Geometric	Median	Maximum	Minimum	[Detection]	Detection	requency
ether	year	mean*	Median	Maximum	Millillillilli	limit	Sample	Site
	2008	nd	nd	tr(170)	nd	220 [74]	8/31	3/7
	2008	nd	nd	tr(190)	nd	270 [97]	2/6	2/6
				240			1/4	1/4
Bivalves	2011 2012	nd 120	nd 170	480	nd nd	230 [80]	4/5	4/5
					nd	120 [50]		
(pg/g-wet)	2014	220	tr(150)	570	tr(120)	170 [60]	3/3	3/3
	2015	nd	nd	tr(70)	nd	170 [70]	1/3	1/3
	2016	nd	nd	tr(110)	nd	300 [100]	1/3	1/3
	2017	nd	nd	tr(180)	nd	210 [80]	1/3	1/3
	2008	nd	nd	230	nd	220 [74]	5/76	4/16
	2010	nd	nd	tr(150)	nd	270 [97]	2/18	2/18
	2011	nd	nd	tr(90)	nd	230 [80]	2/18	2/18
Fish	2012	tr(59)	tr(60)	380	nd	120 [50]	11/19	11/19
(pg/g-wet)	2014	tr(75)	tr(70)	300	nd	170 [60]	13/19	13/19
	2015	nd	nd	380	nd	170 [70]	5/19	5/19
	2016	nd	nd	tr(190)	nd	300 [100]	7/19	7/19
	2017	nd	nd	2,100	nd	210 [80]	1/19	1/19
	2008	nd	nd	tr(110)	nd	220 [74]	4/10	1/2
	2010	nd		nd	nd	270 [97]	0/2	0/2
	2011			tr(170)	tr(170)	230 [80]	1/1	1/1
					240	120 [50]	2/2	2/2
Birds	2012	250		260	240	120 [50]	2/2	414
	2012 2014**	250 tr(65)		260 tr(140)	240 nd		1/2	1/2
(pg/g-wet)				tr(140)	nd	170 [60]	1/2	1/2
(pg/g-wet)	2014**	tr(65)						

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was

derived in FY2008.

(Note 2) "**" There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2009 and FY2013.

<Air>

Tetrabromodiphenyl ethers: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.05 pg/m³, and the detection range was tr(0.06)~4.1pg/m³. As results of the inter-annual trend analysis from FY2009 to FY2017, reduction tendency in specimens from warm season was identified as statistically significant.

Pentabromodiphenyl ethers: The presence of the substance in air was monitored at 37 sites, and it was detected at 33 of the 37 valid sites adopting the detection limit of 0.04 pg/m³, and none of the detected concentrations exceeded 3.4pg/m³.

Hexabromodiphenyl ethers: The presence of the substance in air was monitored at 37 sites, and it was detected at 11 of the 37 valid sites adopting the detection limit of 0.1 pg/m³, and none of the detected concentrations exceeded 2.1pg/m³.

Heptabromodiphenyl ethers: The presence of the substance in air was monitored at 37 sites, and it was detected at 10 of the 37 valid sites adopting the detection limit of 0.2 pg/m³, and none of the detected concentrations exceeded 3.2 pg/m³.

Octabromodiphenyl ethers: The presence of the substance in air was monitored at 37 sites, and it was detected at 28 of the 37 valid sites adopting the detection limit of 0.07 pg/m³, and none of the detected concentrations exceeded 5.7pg/m³.

Nonabromodiphenyl ethers: The presence of the substance in air was monitored at 37 sites, and it was detected at 31 of the 37 valid sites adopting the detection limit of 0.2 pg/m³, and none of the detected concentrations exceeded 40pg/m^3 .

Decabromodiphenyl ether: The presence of the substance in air was monitored at 37 sites, and it was detected at 34 of the 37 valid sites adopting the detection limit of 0.8 pg/m³, and none of the detected concentrations exceeded 140pg/m³.

Stocktaking of the detection of Polybromodiphenyl ethers (Br₄~Br₁₀) in air during FY2008~2017

Tetrabromo diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2009Warm season	0.89	0.80	18	0.11		37/37	37/37
	2009Cold season	0.40	0.37	7.1	tr(0.04)	0.11 [0.04]	37/37	37/37
	2010Warm season	0.79	0.57	50	0.15		37/37	37/37
	2010Cold season	0.40	0.35	25	tr(0.09)	0.12 [0.05]	37/37	37/37
	2011Warm season	0.80	0.72	9.3	tr(0.11)		35/35	35/35
	2011Cold season	0.36	0.34	7.0	nd	0.18 [0.07]	35/37	35/37
	2012Warm season	0.7	0.7	5.7	nd	0.0.50.43	35/36	35/36
	2012Cold season	tr(0.2)	tr(0.2)	1.7	nd	0.3 [0.1]	25/36	25/36
	2014Warm season	0.53	0.47	2.3	tr(0.09)	0.28 [0.09]	36/36	36/36
	2015Warm season	tr(0.3)	tr(0.3)	2.7	nd	0.4 [0.1]	30/35	30/35
	2016Warm season	0.5	0.4	28	nd	0.4 [0.2]	30/37	30/37
	2017Warm season	0.39	0.34	4.1	tr(0.06)	0.15 [0.05]	37/37	37/37
Pentabromo diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
•	2009Warm season	0.20	0.19	18	nd	0.4650.063	33/37	33/37
	2009Cold season	0.19	0.16	10	nd	0.16 [0.06]	29/37	29/37
	2010Warm season	0.20	0.17	45	nd	0.40.50.053	35/37	35/37
	2010Cold season	0.20	0.22	28	nd	0.12 [0.05]	34/37	34/37
	2011Warm season	0.19	0.17	8.8	nd	0.16.50.063	31/35	31/35
Air	2011Cold season	0.16	tr(0.14)	2.6	nd	0.16 [0.06]	31/37	31/37
(pg/m^3)	2012Warm season	tr(0.13)	tr(0.12)	2.4	nd	0.14.50.063	30/36	30/36
	2012Cold season	tr(0.09)	tr(0.09)	0.77	nd	0.14 [0.06]	26/36	26/36
	2014Warm season	tr(0.13)	tr(0.14)	0.80	nd	0.28 [0.09]	25/36	25/36
	2015Warm season	nd	nd	0.9	nd	0.6 [0.2]	6/35	6/35
	2016Warm season	nd	nd	28	nd	0.4 [0.2]	6/37	6/37
	2017Warm season	0.11	0.10	3.4	nd	0.10 [0.04]	33/37	33/37
Hexabromo diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
-	2009Warm season	tr(0.11)	tr(0.11)	2.0	nd		19/37	19/37
	2009 Warm season 2009 Cold season	tr(0.11)	0.22	2.0	nd	0.22[0.09]	24/37	24/37
	2010Warm season	tr(0.14)	tr(0.13)	4.9	nd		29/37	24/3/
	2010 Warm season 2010Cold season	0.24	0.27	5.4		0.16 [0.06]		20/27
	2011Warm season		0.47		nd	0.10 [0.00]		29/37
	2011 Wallii Scasoli				nd nd		31/37	31/37
	2011Cold season	tr(0.11)	tr(0.10)	1.2	nd	0.14 [0.05]	31/37 28/35	31/37 28/35
(pg/III [*])	2011Cold season	0.16	tr(0.10) 0.18	1.2 1.7	nd nd		31/37 28/35 30/37	31/37 28/35 30/37
	2012Warm season	0.16 nd	tr(0.10) 0.18 nd	1.2 1.7 3.1	nd nd nd		31/37 28/35 30/37 9/36	31/37 28/35 30/37 9/36
	2012Warm season 2012Cold season	0.16 nd tr(0.1)	tr(0.10) 0.18 nd tr(0.1)	1.2 1.7 3.1 0.5	nd nd nd nd	0.14 [0.05]	31/37 28/35 30/37 9/36 22/36	31/37 28/35 30/37 9/36 22/36
	2012Warm season 2012Cold season 2014Warm season	0.16 nd tr(0.1) nd	tr(0.10) 0.18 nd tr(0.1)	1.2 1.7 3.1 0.5 0.4	nd nd nd nd nd	0.14 [0.05] 0.3 [0.1] 0.4 [0.1]	31/37 28/35 30/37 9/36 22/36 5/36	31/37 28/35 30/37 9/36 22/36 5/36
	2012Warm season 2012Cold season 2014Warm season 2015Warm season	0.16 nd tr(0.1) nd nd	tr(0.10) 0.18 nd tr(0.1) nd	1.2 1.7 3.1 0.5 0.4 2.0	nd nd nd nd nd nd	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4]	31/37 28/35 30/37 9/36 22/36 5/36 3/35	31/37 28/35 30/37 9/36 22/36 5/36 3/35
	2012Warm season 2012Cold season 2014Warm season 2015Warm season 2016Warm season	0.16 nd tr(0.1) nd nd	tr(0.10) 0.18 nd tr(0.1) nd nd nd	1.2 1.7 3.1 0.5 0.4 2.0 2.7	nd nd nd nd nd nd	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2]	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37
	2012Warm season 2012Cold season 2014Warm season 2015Warm season	0.16 nd tr(0.1) nd nd nd	tr(0.10) 0.18 nd tr(0.1) nd	1.2 1.7 3.1 0.5 0.4 2.0	nd nd nd nd nd nd	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1]	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37
Heptabromo diphenyl ethers	2012Warm season 2012Cold season 2014Warm season 2015Warm season 2016Warm season 2017Warm season	0.16 nd tr(0.1) nd nd	tr(0.10) 0.18 nd tr(0.1) nd nd nd	1.2 1.7 3.1 0.5 0.4 2.0 2.7	nd nd nd nd nd nd	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] Quantification [Detection]	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37
Heptabromo diphenyl ethers	2012Warm season 2012Cold season 2014Warm season 2015Warm season 2016Warm season 2017Warm season Monitored year	0.16 nd tr(0.1) nd nd nd Geometric mean	tr(0.10) 0.18 nd tr(0.1) nd nd nd	1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1	nd nd nd nd nd nd nd	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] Quantification [Detection] limit	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Detection	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Frequency
Heptabromo diphenyl ethers	2012Warm season 2012Cold season 2014Warm season 2015Warm season 2016Warm season 2017Warm season	0.16 nd tr(0.1) nd nd nd Geometric mean tr(0.1)	tr(0.10) 0.18 nd tr(0.1) nd nd nd nd nd	1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 Maximum	nd nd nd nd nd nd nd nd Minimum	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] Quantification [Detection]	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Detection Sample 17/37	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Frequency Site 17/37
Heptabromo diphenyl ethers	2012Warm season 2012Cold season 2014Warm season 2015Warm season 2016Warm season 2017Warm season Monitored year	0.16 nd tr(0.1) nd nd nd Geometric mean tr(0.1) tr(0.2)	tr(0.10) 0.18 nd tr(0.1) nd nd nd Median	1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 Maximum	nd nd nd nd nd nd nd nd nd	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] Quantification [Detection] limit 0.3 [0.1]	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Detection	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Frequency
Heptabromo diphenyl ethers	2012Warm season 2012Cold season 2014Warm season 2015Warm season 2016Warm season 2017Warm season Monitored year 2009Warm season 2009Cold season	0.16 nd tr(0.1) nd nd nd Geometric mean tr(0.1)	tr(0.10) 0.18 nd tr(0.1) nd nd nd nd nd nd od Median	1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 Maximum	nd	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] Quantification [Detection] limit	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Detection Sample 17/37 25/37	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Frequency Site 17/37 25/37 24/37
Heptabromo diphenyl ethers	2012Warm season 2012Cold season 2014Warm season 2015Warm season 2016Warm season 2017Warm season Monitored year 2009Warm season 2010Warm season 2010Warm season 2010Cold season	0.16 nd tr(0.1) nd nd nd rd Geometric mean tr(0.1) tr(0.2) tr(0.2) 0.3	tr(0.10) 0.18 nd tr(0.1) nd nd nd nd nd nd tr(0.1) nd nd nd nd nd nd nd nd nd n	1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 Maximum 1.7 20 1.4	nd n	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] Quantification [Detection] limit 0.3 [0.1] 0.3 [0.1]	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Detection Sample 17/37 25/37 24/37 28/37	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Frequency Site 17/37 25/37
Heptabromo diphenyl ethers	2012Warm season 2012Cold season 2014Warm season 2015Warm season 2016Warm season 2017Warm season Monitored year 2009Warm season 2009Cold season 2010Warm season 2010Cold season 2011Warm season	0.16 nd tr(0.1) nd nd nd rd Geometric mean tr(0.1) tr(0.2) tr(0.2) 0.3 tr(0.1)	tr(0.10) 0.18 nd tr(0.1) nd nd nd nd Median rd 0.3 tr(0.1) 0.4 tr(0.1)	1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 Maximum 1.7 20 1.4 11	nd n	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] Quantification [Detection] limit 0.3 [0.1]	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Detection Sample 17/37 25/37 24/37 28/37 20/35	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Frequency Site 17/37 25/37 24/37 28/37 20/35
Heptabromo diphenyl ethers	2012Warm season 2012Cold season 2014Warm season 2015Warm season 2016Warm season 2017Warm season Monitored year 2009Warm season 2010Warm season 2010Cold season 2011Warm season 2011Warm season 2011Cold season	0.16 nd tr(0.1) nd nd nd nd Geometric mean tr(0.1) tr(0.2) tr(0.2) 0.3 tr(0.1) tr(0.2)	tr(0.10) 0.18 nd tr(0.1) nd nd nd nd nd tr(0.1) tr(0.1) tr(0.1) tr(0.1)	1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 Maximum 1.7 20 1.4 11 1.1 2.3	nd n	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] Quantification [Detection] limit 0.3 [0.1] 0.3 [0.1] 0.3 [0.1]	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Detection Sample 17/37 25/37 24/37 28/37 20/35 25/37	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Frequency Site 17/37 25/37 24/37 28/37 20/35 25/37
Heptabromo diphenyl ethers Air (pg/m³)	2012Warm season 2012Cold season 2014Warm season 2015Warm season 2016Warm season 2017Warm season Monitored year 2009Warm season 2009Cold season 2010Warm season 2011Warm season 2011Cold season 2011Cold season 2012Warm season	0.16 nd tr(0.1) nd nd nd nd Geometric mean tr(0.1) tr(0.2) tr(0.2) 0.3 tr(0.1) tr(0.2) nd	tr(0.10) 0.18 nd tr(0.1) nd nd nd Median nd 0.3 tr(0.1) 0.4 tr(0.1) tr(0.2)	1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 Maximum 1.7 20 1.4 11 1.1 2.3	nd n	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] Quantification [Detection] limit 0.3 [0.1] 0.3 [0.1]	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Detection Sample 17/37 25/37 24/37 28/37 20/35 25/37 6/36	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Frequency Site 17/37 25/37 24/37 28/37 20/35 25/37 6/36
Heptabromo diphenyl ethers Air (pg/m³)	2012Warm season 2012Cold season 2014Warm season 2015Warm season 2016Warm season 2017Warm season Monitored year 2009Warm season 2010Warm season 2010Cold season 2011Warm season 2011Cold season 2011Cold season 2012Warm season	0.16 nd tr(0.1) nd nd nd nd Geometric mean tr(0.1) tr(0.2) tr(0.2) 0.3 tr(0.1) tr(0.2) nd nd	tr(0.10) 0.18 nd tr(0.1) nd nd nd Median Metian tr(0.1) 0.3 tr(0.1) 0.4 tr(0.1) tr(0.2) nd nd	1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 Maximum 1.7 20 1.4 11 2.3 1.8 0.7	nd n	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] Quantification [Detection] limit 0.3 [0.1] 0.3 [0.1] 0.3 [0.1] 0.5 [0.2]	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Detection Sample 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Frequency Site 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36
Heptabromo diphenyl ethers Air (pg/m³)	2012Warm season 2012Cold season 2014Warm season 2015Warm season 2016Warm season 2017Warm season Monitored year 2009Warm season 2010Warm season 2010Cold season 2011Warm season 2011Cold season 2012Warm season 2012Warm season 2014Warm season	0.16 nd tr(0.1) nd nd nd nd Geometric mean tr(0.1) tr(0.2) tr(0.2) 0.3 tr(0.1) tr(0.2) nd nd nd	tr(0.10) 0.18 nd tr(0.1) nd nd nd Median Median tr(0.1) 0.4 tr(0.1) tr(0.2) nd nd	1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 Maximum 1.7 20 1.4 11 1.1 2.3 1.8 0.7 tr(0.4)	nd n	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] Quantification [Detection] limit 0.3 [0.1] 0.3 [0.1] 0.3 [0.1] 0.5 [0.2] 0.7 [0.2]	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Detection Sample 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36 2/36	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Frequency Site 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36 2/36
Heptabromo diphenyl ethers Air (pg/m³)	2012Warm season 2012Cold season 2014Warm season 2015Warm season 2016Warm season 2017Warm season Monitored year 2009Warm season 2010Warm season 2010Cold season 2011Warm season 2011Cold season 2011Cold season 2012Warm season	0.16 nd tr(0.1) nd nd nd nd Geometric mean tr(0.1) tr(0.2) tr(0.2) 0.3 tr(0.1) tr(0.2) nd nd	tr(0.10) 0.18 nd tr(0.1) nd nd nd Median Metian tr(0.1) 0.3 tr(0.1) 0.4 tr(0.1) tr(0.2) nd nd	1.2 1.7 3.1 0.5 0.4 2.0 2.7 2.1 Maximum 1.7 20 1.4 11 2.3 1.8 0.7	nd n	0.14 [0.05] 0.3 [0.1] 0.4 [0.1] 1.1 [0.4] 0.6 [0.2] 0.3 [0.1] Quantification [Detection] limit 0.3 [0.1] 0.3 [0.1] 0.3 [0.1] 0.5 [0.2]	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Detection Sample 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36	31/37 28/35 30/37 9/36 22/36 5/36 3/35 3/37 11/37 Frequency Site 17/37 25/37 24/37 28/37 20/35 25/37 6/36 8/36

Octabromo M		Geometric				Quantification	Detection 1	Frequency
diphenyl ethers	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009Warm season	tr(0.2)	0.3	1.6	nd	0.3 [0.1]	23/37	23/37
	2009Cold season	0.3	0.4	7.1	nd		26/37	26/37
	2010Warm season	0.25	0.30	2.3	nd	0.15 [0.06]	30/37	30/37
	2010Cold season	0.40	0.52	6.9	nd		32/37	32/37
	2011Warm season	0.24	0.31	1.9	nd	0.20 [0.08]	27/35	27/35
Air	2011Cold season	0.35	0.44	7.0	nd		30/37	30/37
(pg/m^3)	2012Warm season	tr(0.2)	tr(0.2)	1.2	nd	0.3 [0.1]	29/36	29/36
	2012Cold season	0.3	0.4	1.2	nd		30/36	30/36
	2014Warm season	tr(0.1)	tr(0.1)	0.7	nd	0.4 [0.1]	22/36	22/36
	2015Warm season	nd	nd	3.8	nd	1.1 [0.4]	9/35	9/35
	2016Warm season	nd	nd	1.6	nd	0.6 [0.2]	18/37	18/37
	2017Warm season	tr(0.19)	0.23	5.7	nd	0.21 [0.07]	28/37	28/37
Nonabromo		Geometric				Quantification	Detection 1	Frequency
diphenyl ethers	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009Warm season	tr(0.7)	tr(0.7)	3.0	nd	1.8 [0.6]	22/37	22/37
	2009Cold season	tr(1.0)	tr(0.8)	3.9	nd		27/37	27/37
	2010Warm season	nd	nd	24	nd	3.7 [1.2]	12/37	12/37
	2010Cold season	tr(1.2)	tr(1.3)	7.1	nd	J./ [1.2]	22/37	22/37
	2011Warm season	tr(0.8)	0.9	3.9	nd	0.9 [0.4]	29/35	29/35
Air	2011Cold season	1.1	1.1	14	nd	ia	30/37	30/37
(pg/m^3)	2012Warm season	tr(0.5)	tr(0.5)	5.1	nd	1.2 [0.4]	24/36	24/36
	2012Cold season	tr(0.9)	tr(1.1)	4.7	nd		30/36	30/36
	2014Warm season	nd	nd	tr(3)	nd	4 [1]	7/36	7/36
	2015Warm season	nd	nd	12	nd	3.2 [1.1]	14/35	14/35
	2016Warm season	tr(0.9)	tr(0.9)	11	nd	1.4 [0.5]	28/37	28/37
	2017Warm season	0.8	0.8	40	nd	0.6 [0.2]	31/37	31/37
Decabromo	36 %	Geometric	3.6.12		3.61.1	Quantification	Detection 1	Frequency
diphenyl ether	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009Warm season	tr(7)	tr(9)	31	nd	16 [5]	28/37	28/37
	2009Cold season	tr(10)	tr(11)	45	nd		29/37	29/37
	2010Warm season	nd	nd	290	nd	27 [9.1]	10/37	10/37
	2010Cold season	tr(11)	tr(12)	88	nd	27 [7.1]	21/37	21/37
	2011Warm season	tr(8.2)	tr(9.0)	30	nd	12 [4.0]	31/35	31/35
Air	2011Cold season	tr(8.4)	tr(9.0)	44	nd	12 [+.U] 	29/37	29/37
(pg/m^3)	2012Warm season	nd	nd	31	nd	16 [5]	17/36	17/36
	2012Cold season	tr(10)	tr(12)	73	nd	10[3]	28/36	28/36
	2014Warm season	tr(4.7)	tr(5.0)	64	nd	9 [3]	24/36	24/36
	2015Warm season	4.2	4.3	61	nd	2.2 [0.7]	30/35	30/35
	2016Warm season	5	5	86	nd	3 [1]	35/37	35/37
	2017Warm season	4.2	4.4	140	nd	2.4 [0.8]	34/37	34/37

(Note) No monitoring was conducted in FY2013.

[15] Perfluorooctane sulfonic acid (PFOS)

· History and state of monitoring

Perfluorooctane sulfonic acid (PFOS) has been used as electric and electronic parts, fire fighting foam, photo imaging, hydraulic fluids and textiles. Perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009, and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2008. Under the framework the Initial Environmental Survey and the Detailed Environmental Survey etc. in the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored in surface water in FY2002, sediment and wildlife (fish) in FY2003, air in FY2004, surface water, sediment and wildlife (bivalves and fish) in FY2005.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2009, in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2010~2012, 2014~2016 and in air in FY2013 in wildlife (bivalves, fish and birds) and air in FY2017. The survey of the Perfluorooctane sulfonic acid (PFOS) only monitored linear octyl Perfluorooctane sulfonic acid (PFOS) from FY2002.

Monitoring results

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 4 pg/g-wet, and none of the detected concentrations exceeded 160pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 4 pg/g-wet, and the detection range was tr(4)~11,000pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 4 pg/g-wet, and the detected concentration was 32,000pg/g-wet.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in wildlife (bivalves, fish and birds) during FY2009~2017

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection 1	Frequency
(PFOS)	year	mean*	Median	Maxilliulli	William	limit	Sample	Site
	2009	24	28	640	nd	19 [7.4]	17/31	5/7
	2010	72	85	680	nd	25 [9.6]	5/6	5/6
	2011	38	44	100	16	10 [4]	4/4	4/4
Bivalves	2012	27	21	160	tr(4)	7 [3]	5/5	5/5
(pg/g-wet)	2014	8	6	93	nd	5 [2]	2/3	2/3
	2015	7	tr(2)	210	nd	4 [2]	2/3	2/3
	2016	11	tr(6)	160	nd	9 [3]	2/3	2/3
	2017	22	34	160	nd	12 [4]	2/3	2/3
	2009	220	230	15,000	nd	19 [7.4]	83/90	17/18
	2010	390	480	15,000	nd	25 [9.6]	17/18	17/18
	2011	82	95	3,200	nd	10 [4]	16/18	16/18
Fish	2012	110	130	7,300	tr(5)	7 [3]	19/19	19/19
(pg/g-wet)	2014	82	83	4,600	nd	5 [2]	18/19	18/19
	2015	91	90	2,500	nd	4 [2]	18/19	18/19
	2016	79	80	5,200	nd	9 [3]	18/19	18/19
	2017	150	150	11,000	tr(4)	12 [4]	19/19	19/19

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	requency
(PFOS)	year	mean*	Wicdian	Waxiiiaiii	William	limit	Sample	Site
	2009	300	360	890	37	19 [7.4]	10/10	2/2
	2010	1,300		3,000	580	25 [9.6]	2/2	2/2
	2011			110	110	10 [4]	1/1	1/1
Birds	2012	160		410	63	7 [3]	2/2	2/2
(pg/g-wet)	2014**	4,600		110,000	190	5 [2]	2/2	2/2
	2015**			790	790	4 [2]	1/1	1/1
	2016**	3,600		9,100	1,400	9 [3]	2/2	2/2
	2017**	9,800		32,000	3,000	12 [4]	2/2	2/2

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 3) No monitoring was conducted in FY2013.

<Air>

The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.1 pg/m³, and the detection range was 1.1~8.9pg/m³. As results of the inter-annual trend analysis from FY2010 to FY2017, reduction tendency in specimens from warm season was identified as statistically significant.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in air during FY2010~2017

Perfluorooct ane sulfonic		Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection 1	Frequency
acid (PFOS)	•	mean	Median	Maxilliulli	Millillini	limit	Sample	Site
	2010Warm season	5.2	5.9	14	1.6	0.4.0.11	37/37	37/37
	2010Cold season	4.7	4.4	15	1.4	0.4 [0.1]	37/37	37/37
	2011Warm season	4.4	4.2	10	0.9	0.5.[0.2]	35/35	35/35
	2011Cold season	3.7	3.8	9.5	1.3	0.5 [0.2]	37/37	37/37
	2012Warm season	3.6	3.8	8.9	1.3	0.5 [0.2]	36/36	36/36
Air	2012Cold season	2.7	3.0	5.9	1.0	0.3 [0.2]	36/36	36/36
(pg/m^3)	2013Warm season	4.6	5.2	9.6	1.2	0.2 [0.1]	36/36	36/36
	2013Cold season	3.7	3.9	7.4	1.6	0.3 [0.1]	36/36	36/36
	2014Warm season	3.1	3.2	8.6	0.52	0.17 [0.06]	36/36	36/36
	2015Warm season	2.8	2.6	8.8	0.59	0.19 [0.06]	35/35	35/35
	2016Warm season	3.1	2.4	9.3	0.7	0.6 [0.2]	37/37	37/37
	2017Warm season	2 9	3.7	8 9	1 1	0.3 [0.1]	37/37	37/37

⁽Note 2) " ** " indicates there is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

• Monitoring results in surfacewater and sediment until FY2016 (reference)

<Surface Water>

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in surface water during FY2009~2016

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	Maximum			Detection 1	Frequency
(PFOS)	year	mean	Median	Maxillulli	Minimum	limit	Sample	Site
	2009	730	580	14,000	tr(26)	37 [14]	49/49	49/49
	2010	490	380	230,000	tr(37)	50 [20]	49/49	49/49
Surface Water	2011	480	360	10,000	tr(20)	50 [20]	49/49	49/49
	2012	550	510	14,000	39	31 [12]	48/48	48/48
(pg/L)	2014	460	410	7,500	nd	50 [20]	47/48	47/48
	2015	630	490	4,700	120	29 [11]	48/48	48/48
	2016	330	300	14,000	tr(23)	50 [20]	48/48	48/48

(Note) No monitoring was conducted in FY2013.

<Sediment>

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in sediment during FY2009~2016

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection 1	Frequency
(PFOS)	year	mean*	Wicdian	Waxiiiuiii	William	limit	Sample	Site
	2009	78	97	1,900	nd	9.6 [3.7]	180/190	64/64
	2010	82	100	1,700	tr(3)	5 [2]	64/64	64/64
Sediment	2011	92	110	1,100	nd	5 [2]	63/64	63/64
	2012	68	84	1,200	tr(7)	9 [4]	63/63	63/63
(pg/g-dry)	2014	59	79	980	nd	5 [2]	62/63	62/63
	2015	91	88	2,200	7	3 [1]	62/62	62/62
	2016	54	61	690	5	5 [2]	62/62	62/62

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) No monitoring was conducted in FY2013.

[16] Perfluorooctanoic acid (PFOA)

· History and state of monitoring

Perfluorooctanoic acids (PFOA) have been used as water repellent agent, oil repellent agent and surface acting agent. Perfluorooctanoic acid (PFOA), its salts and PFOA-related compounds were adopted as target chemical at the COP9 of the Stockholm convention on Persistent Organic Pollutants from April to May 2019.

As a continuous survey, the first survey was in FY2009. Under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water in FY2002, sediment and wildlife (fish) in FY2003, air in FY2004, surface water, sediment and wildlife (bivalves and fish) in FY2005.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2009, in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2010~2012, 2014~2016 and in air in FY2013, in wildlife (bivalves, fish and birds) and air in FY2017.

The survey of the Perfluorooctanoic acid (PFOA) only monitored linear octyl Perfluorooctanoic acid (PFOA). However, it remains possible that the survey in wildlife monitored isomer of branched-chain Perfluorooctanoic acid (PFOA).

Monitoring results

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 4 pg/g-wet, and none of the detected concentrations exceeded 18pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 12 of the 19 valid areas adopting the detection limit of 4 pg/g-wet, and none of the detected concentrations exceeded 79pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 4 pg/g-wet, and the detected concentration was 680pg/g-wet.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in wildlife (bivalves, fish and birds) during FY2009~2017

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection 1	Frequency
acid (PFOA)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(20)	tr(21)	94	nd	25 [9.9]	27/31	7/7
	2010	28	33	76	nd	26 [9.9]	5/6	5/6
	2011	100	93	1,100	22	5 [2]	64/64	64/64
Bivalves	2012	tr(21)	tr(23)	46	nd	38 [13]	4/5	4/5
(pg/g-wet)	2014	tr(4)	tr(6)	10	nd	10 [3]	2/3	2/3
	2015	tr(6.5)	tr(6.3)	26	nd	10 [3.4]	2/3	2/3
	2016	4	7	9	nd	4 [2]	2/3	2/3
	2017	tr(6)	tr(7)	18	nd	12 [4]	2/3	2/3
	2009	tr(23)	tr(19)	490	nd	25 [9.9]	74/90	17/18
	2010	tr(13)	tr(11)	95	nd	26 [9.9]	13/18	13/18
	2011	nd	nd	51	nd	41 [14]	7/18	7/18
Fish	2012	tr(35)	tr(32)	86	nd	38 [13]	18/19	18/19
(pg/g-wet)	2014	tr(6)	tr(4)	85	nd	10 [3]	11/19	11/19
	2015	tr(5.7)	tr(5.3)	99	nd	10 [3.4]	11/19	11/19
	2016	4	tr(3)	20	tr(2)	4 [2]	19/19	19/19
	2017	tr(6)	tr(4)	79	nd	12 [4]	12/19	12/19

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection I	requency
acid (PFOA)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	32	29	58	tr(16)	25 [9.9]	10/10	2/2
	2010	38		48	30	26 [9.9]	2/2	2/2
	2011			nd	nd	41 [14]	0/1	0/1
Birds	2012	tr(27)		tr(28)	tr(26)	38 [13]	2/2	2/2
(pg/g-wet)	2014**	62		2,600	nd	10 [3]	1/2	1/2
	2015**			31	31	10 [3.4]	1/1	1/1
	2016**	130		320	52	4 [2]	2/2	2/2
	2017**	240		680	85	12 [4]	2/2	2/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was

<Air>

The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 1.1 pg/m³, and the detection range was tr(2.0)~150pg/m³.

Stocktaking	of the detection of	Perfluoroocta	anoic acid	(PFOA) in ai	r during F Y	2010~2017		
Perfluorooct		Geometric				Quantification	Detection 1	Frequency
anoic acid (PFOA)	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2010Warm season	25	26	210	4.0	0.5 [0.2]	37/37	37/37
	2010Cold season	14	14	130	2.4	0.5 [0.2]	37/37	37/37
	2011Warm season	20	18	240	tr(3.5)	5 / [1 0]	35/35	35/35
	2011Cold season	12	11	97	nd	5.4 [1.8]	36/37	36/37
	2012Warm season	11	12	120	1.9	0.7.[0.2]	36/36	36/36
Air	2012Cold season	6.9	6.0	48	1.6	0.7 [0.2]	36/36	36/36
(pg/m^3)	2013Warm season	23	23	190	3.2	1 9 [0 6]	36/36	36/36
	2013Cold season	14	14	53	3.0	1.8 [0.6]	36/36	36/36
	2014Warm season	28	29	210	5.4	0.4 [0.1]	36/36	36/36
	2015Warm season	19	17	260	tr(3.7)	4.2 [1.4]	35/35	35/35
	2016Warm season	17	15	140	3.2	1.3 [0.4]	37/37	37/37
	2017Warm season	14	13	150	tr(2.0)	3.3 [1.1]	37/37	37/37

derived in FY2009.

(Note 2) " ** " indicates there is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species. (Note 3) No monitoring was conducted in FY2013.

• Monitoring results in surfacewater and sediment until FY2016 (reference)

<Surface Water>

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in surface water during FY2009~2016

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection	Frequency
acid (PFOA)	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	1,600	1,300	31,000	250	59 [23]	49/49	49/49
	2010	2,700	2,400	23,000	190	60 [20]	49/49	49/49
C	2011	2,000	1,700	50,000	380	50 [20]	49/49	49/49
Surface Water	2012	1,400	1,100	26,000	240	170 [55]	48/48	48/48
(pg/L)	2014	1,400	1,400	26,000	140	50 [20]	48/48	48/48
	2015	1,400	1,200	17,000	310	56 [22]	48/48	48/48
	2016	1,300	1,200	21,000	260	50 [20]	48/48	48/48

(Note) No monitoring was conducted in FY2013.

<Sediment>

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in sediment during FY2009~2016

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection l	Frequency
acid (PFOA)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	27	24	500	nd	8.3 [3.3]	182/190	64/64
	2010	28	33	180	nd	12 [5]	62/64	62/64
C - 1:4	2011	100	93	1,100	22	5 [2]	64/64	64/64
Sediment	2012	51	48	280	12	4 [2]	63/63	63/63
(pg/g-dry)	2014	44	50	190	tr(6)	11 [5]	63/63	63/63
	2015	48	48	270	8	3 [1]	62/62	62/62
	2016	27	27	190	nd	9 [4]	61/62	61/62

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) No monitoring was conducted in FY2013.

[17] Pentachlorobenzene

History and state of monitoring

Pentachlorobenzene have been used as used in PCB products, in dyestuff carriers, as a fungicide, a flame retardant and as a chemical intermediate e.g. previously for the production of quintozene. PeCB might still be used as an intermediate. PeCB is also produced unintentionally during combustion, thermal and industrial processes. It also present as impurities in products such as solvents or pesticides. It was historically never registered under the Agricultural Chemicals Regulation Law. The substance is produced as a by-product when agricultural chemicals are produced. In addition, it is generated unintentionally at the time of combustion. The substance was adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey to FY2001, undert the framework "the Wildlife Monitoring of Chemicals," the substance was monitored in wildlife (bivalves and fish) in FY1980, wildlife (bivalves, fish and birds) from FY1979 to FY1986, in FY1988, FY1990, FY1992, FY1996 and FY1999.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2007 and FY2010~2015 and FY2017, in air in FY2009 and in sediment, wildlife (bivalves, fish and birds) and air in FY2016.

· Monitoring results in surfacewater, sediment, wildlife (bivalves, fish and birds) and air

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.6 pg/L, and the detection range was $2.0 \sim 140 \text{ pg/L}$.

Stocktaking of the detection of Pentachlorobenzene in surface water during FY2007~2017

	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachlorobenzene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	nd	nd	3,300 [1,300]	0/48	0/48
	2010	8	5	100	tr(1)	4[1]	49/49	49/49
	2011	11	11	170	2.6	2.4 [0.9]	49/49	49/49
Surface Water	2012	14	11	170	3	3 [1]	48/48	48/48
(pg/L)	2013	12	10	170	tr(3)	4 [1]	48/48	48/48
	2014	10	7.0	180	2.8	0.8 [0.3]	48/48	48/48
	2015	13	11	180	3.0	1.5 [0.5]	48/48	48/48
	2017	8.8	5.9	140	2.0	1.4 [0.6]	47/47	47/47

(Note) No monitoring was conducted in FY2008 and FY2009.

<Sediment>

The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 0.5 pg/g-dry, and the detection range was $1.3 \sim 2,800 \text{ pg/g-dry}$.

Stocktaking of the detection of Pentachlorobenzene in sediment during FY2007~2017

	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachlorobenzene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	tr(46)	nd	2,400	nd	86 [33]	79/192	35/64
	2010	90	95	4,200	1.0	0.9 [0.3]	64/64	64/64
	2011	95	76	4,500	3	5 [2]	64/64	64/64
Sediment	2012	33	33	1,100	nd	2.5 [0.8]	62/63	62/63
	2013	84	98	3,800	2.2	2.1 [0.7]	63/63	63/63
(pg/g-dry)	2014	70	78	3,600	tr(1.2)	2.4 [0.8]	63/63	63/63
	2015	65	69	2,600	2.4	1.5 [0.5]	62/62	62/62
	2016	62	71	3,700	tr(1.1)	1.8 [0.6]	62/62	62/62
	2017	61	61	2,800	1.3	1.2 [0.5]	62/62	62/62

⁽Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1 pg/g-wet, and the detection range was 14~22pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 1 pg/g-wet, and the detection range was 4~170pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 1 pg/g-wet, and the detected concentration was 470pg/g-wet.

Stocktaking of the detection of Pentachlorobenzene in wildlife (bivalves, fish and birds) during FY2007~2017

	Monitored	Geometric			-	Quantification	Detection 1	Frequency
Pentachlorobenzene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	tr(150)	nd	180 [61]	1/31	1/7
	2010	18	16	110	5.9	1.9 [0.7]	6/6	6/6
	2011	28	16	260	10	4 [1]	4/4	4/4
Bivalves	2012	16	9.7	110	tr(5.8)	8.1 [2.7]	5/5	5/5
	2013	nd	nd	87	nd	78 [26]	1/5	1/5
(pg/g-wet)	2014	14	11	23	10	9.3 [3.1]	3/3	3/3
	2015	tr(11)	tr(9.7)	18	tr(7.4)	12 [4.0]	3/3	3/3
	2016	tr(13)	tr(12)	15	tr(11)	15 [5.1]	3/3	3/3
	2017	18	19	22	14	4 [1]	3/3	3/3
	2007	nd	nd	480	nd	180 [61]	36/80	10/16
	2010	42	37	230	5.6	1.9 [0.7]	18/18	18/18
	2011	36	37	220	5	4[1]	18/18	18/18
F:-1.	2012	29	37	190	tr(5.0)	8.1 [2.7]	19/19	19/19
Fish	2013	tr(35)	tr(40)	160	nd	78 [26]	11/19	11/19
(pg/g-wet)	2014	38	51	280	nd	9.3 [3.1]	18/19	18/19
	2015	26	40	230	nd	12 [4.0]	18/19	18/19
	2016	19	22	150	nd	15 [5.1]	16/19	16/19
	2017	29	32	170	4	4[1]	19/19	19/19
	2007	tr(140)	tr(140)	210	tr(89)	180 [61]	10/10	2/2
	2010	91		170	49	1.9 [0.7]	2/2	2/2
	2011			52	52	4 [1]	1/1	1/1
D:1-	2012	77		130	46	8.1 [2.7]	2/2	2/2
Birds	2013**	300		390	230	78 [26]	2/2	2/2
(pg/g-wet)	2014**	56		560	tr(5.6)	9.3 [3.1]	2/2	2/2
	2015**			53	53	12 [4.0]	1/1	1/1
	2016**	240		570	100	15 [5.1]	2/2	2/2
	2017**	130		470	35	4[1]	2/2	2/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

⁽Note 2) No monitoring was conducted in FY2008 and FY2009.

⁽Note 2) " ** " indicates there is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2008 and FY2009.

<Air>

The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.1 pg/m^3 , and the detection range was $32\sim200\text{pg/m}^3$.

Stocktaking of the detection of Pentachlorobenzene in air during FY2007~2017

Pentachloro		Geometric				Quantification	Detection l	requency
benzene	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007Warm season	85	83	310	18	12 [4 0]	78/78	26/26
	2007Cold season	60	55	220	27	12 [4.8]	75/75	25/25
	2009Warm season	63	64	210	20	(4 [2 5]	111/111	37/37
	2009Cold season	25	22	120	tr(5.0)	6.4 [2.5]	111/111	37/37
	2010Warm season	68	73	140	36	1 2 [0 5]	37/37	37/37
	2010Cold season	70	69	180	37	1.2 [0.5]	37/37	37/37
	2011Warm season	61	60	140	30	2.1.[0.70]	35/35	35/35
Air	2011Cold season	59	57	180	26	2.1 [0.70]	37/37	37/37
(pg/m^3)	2012Warm season	58	57	150	31	1 0 [0 6]	36/36	36/36
	2012Cold season	55	55	120	27	1.8 [0.6]	36/36	36/36
	2013Warm season	55	58	160	27	1.7.50.61	36/36	36/36
	2013Cold season	55	52	110	34	1.7 [0.6]	36/36	36/36
	2014Warm season	83	86	210	39	0.9 [0.3]	36/36	36/36
	2015Warm season	67	68	170	34	0.6 [0.2]	35/35	35/35
	2016Warm season	75	75	220	33	0.5 [0.2]	37/37	37/37
	2017Warm season	71	69	200	32	0.3 [0.1]	37/37	37/37

(Note) No monitoring was conducted in FY2008.

[18] Endosulfans (reference)

· History and state of monitoring

Endosulfans have been used an insecticide that has been used since the 1950s to control crop pests, tsetse flies and ectoparasites of cattle and as a wood preservative. As a broad-spectrum insecticide, endosulfan is currently used to control a wide range of pests on a variety of crops including coffee, cotton, rice, sorghum and soy.

As a continuous survey, the first survey was in FY2011, under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substance was monitored in surface water and sediment in FY1982 and air in FY1996.

Under the framework of the Environmental Monitoring, the substances were monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2011 and FY2012, in wildlife (bivalves, fish and birds) and air in FY2014 and FY2015 and in air in FY2016.

No monitoring was conducted in FY2017. For reference, the monitoring results up to FY2016 are given below.

· Monitoring results in air

<Surface Water>

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in surface water in FY2011 and FY2012

	Monitored	Geometric	•			Quantification	Detection l	requency
α-Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	180	nd	120 [50]	2/49	2/49
(pg/L)	2012	nd	nd	30	nd	27 [10]	3/48	3/48
	Monitored	Geometric				Quantification	Detection l	Frequency
β -Endosulfan	vear	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
	year	incan				limit	Sample	Site
Surface Water	2011	nd	nd	270	nd	22 [9]	8/49	8/49
(pg/L)	2012	nd	nd	tr(12)	nd	24 [9]	1/48	1/48

<Sediment>

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in sediment in FY2011 and FY2012

Stocktaking of the	detection of	or Endopulies	Tune p Em			12011 0110 1 1	-01-	
	Monitored	Geometric				Quantification	Detection 1	Frequency
α-Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	tr(13)	tr(11)	480	nd	30 [10]	35/64	35/64
(pg/g-dry)	2012	nd	nd	480	nd	13 [5]	19/63	19/63
	Monitored	Geometric				Quantification	Detection 1	Frequency
β -Endosulfan			Median	Maximum	Minimum	[Detection]	C1-	C:4-
	year	mean				limit	Sample	Site
Sediment	2011	tr(5)	tr(4)	240	nd	9 [4]	38/64	38/64
(pg/g-dry)	2012	nd	nd	250	nd	13 [5]	8/63	8/63

<Wildlife>

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in wildlife (bivalves, fish and birds) during FY2011~2015

	Monitored	Geometric				Quantification	Detection l	Frequency
α-Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	62	120	330	nd	50 [20]	3/4	3/4
Bivalves	2012	tr(54)	tr(61)	200	nd	71 [24]	4/5	4/5
(pg/g-wet)	2014	tr(20)	nd	130	nd	60 [20]	1/3	1/3
	2015	nd	nd	130	nd	120 [38]	1/3	1/3
	2011	tr(20)	tr(20)	140	nd	50 [20]	10/18	10/18
Fish	2012	nd	nd	tr(54)	nd	71 [24]	6/19	6/19
(pg/g-wet)	2014	nd	nd	tr(30)	nd	60 [20]	1/19	1/19
	2015*	nd	nd	tr(49)	nd	120 [38]	1/19	1/19
	2011			nd	nd	50 [20]	0/1	0/1
Birds	2012	nd		nd	nd	71 [24]	0/2	0/2
(pg/g-wet)	2014*	nd		nd	nd	60 [20]	0/2	0/2
	2015*			nd	nd	120 [38]	0/1	0/1
	Monitored	Geometric				Quantification	Detection l	Frequency
β -Endosulfan			Median	Maximum	Minimum	[Detection]	C1-	C:4-
	year	mean				limit	Sample	Site
	2011	16	26	52	4	11 [4]	4/4	4/4
Bivalves	2012	15	16	43	nd	14 [5]	4/5	4/5
(pg/g-wet)	2014	nd	nd	23	nd	19 [6]	1/3	1/3
	2015	nd	nd	tr(22)	nd	32 [11]	1/3	1/3
	2011	nd	nd	37	nd	11 [4]	9/18	9/18
Fish	2012	nd	nd	15	nd	14 [5]	6/19	6/19
(pg/g-wet)	2014	nd	nd	tr(8)	nd	19 [6]	3/19	3/19
	2015	nd	nd	tr(11)	nd	32 [11]	1/19	1/19
	2011			nd	nd	11 [4]	0/1	0/1
Birds	2012	nd		tr(7)	nd	14 [5]	1/2	1/2
(pg/g-wet)	2014*	nd		tr(8)	nd	19 [6]	1/2	1/2
	2015*			nd	nd	32 [11]	0/1	0/1

(Note 1) " * " indicates there is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 2) No monitoring was conducted in FY2013.

<Air>

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in air during FY2011~2016

		Geometric	•			Quantification	Detection 1	Frequency
α-Endosulfan	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011Warm season	26	24	190	tr(7.8)	12 [4 0]	35/35	35/35
	2011Cold season	tr(9.6)	tr(9.8)	45	nd	12 [4.0]	35/37	35/37
+ <i>=</i>	2012Warm season	23	22	98	tr(6.0)	16 [5 2]	36/36	36/36
大気	2012Cold season	nd	nd	19	nd	16 [5.3]	15/36	15/36
(pg/m^3)	2014Warm season	20	23	90	2.6	0.8 [0.3]	36/36	36/36
	2015Warm season	10	11	140	1.6	1.0 [0.3]	35/35	35/35
	2016Warm season	8.9	9.3	46	1.0	0.8 [0.3]	37/37	37/37
		Coomotnio				Quantification	Detection 1	Frequency
β -Endosulfan	Manitanad wasn	Geometric	Median	Maximum	Minimum	[Datastian]		
p-Endosunan	Monitored year	mean	Median	Maximum	Millimum	[Detection] limit	Sample	Site
p-Endosurian	2011Warm season	mean 2.1	1.8	11	nd	limit	Sample 34/35	Site 34/35
p-Elidosullali	·							
,	2011Warm season	2.1	1.8	11	nd	limit 1.2 [0.39]	34/35	34/35
<u></u>	2011Warm season 2011Cold season	2.1 tr(0.80)	1.8 tr(0.90)	11 8.3	nd nd	limit	34/35 31/37	34/35 31/37
,	2011Warm season 2011Cold season 2012Warm season	2.1 tr(0.80)	1.8 tr(0.90)	11 8.3 18	nd nd nd	limit 1.2 [0.39]	34/35 31/37 33/36	34/35 31/37 33/36
<u></u>	2011Warm season 2011Cold season 2012Warm season 2012Cold season	2.1 tr(0.80) 1.3 nd	1.8 tr(0.90) 1.3 nd	11 8.3 18 1.7	nd nd nd nd	limit 1.2 [0.39] 1.2 [0.4]	34/35 31/37 33/36 17/36	34/35 31/37 33/36 17/36

(Note) No monitoring was conducted in FY2013.

[19] 1,2,5,6,9,10-Hexabromocyclododecanes

· History and state of monitoring

1,2,5,6,9,10-Hexabromocyclododecanes have been used a flame retardant additive, providing fire protection during the service life of vehicles, buildings or articles, as well as protection while stored. α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane were adopted as target chemicals at the COP6 of the Stockholm convention on Persistent Organic Pollutants in April~May 2013, and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in May 2014.

As a continuous survey, the first survey was in FY2011, under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substances were monitored in surface water, sediment and wildlife (fish) in FY1987. In the framework of the Environmental Survey and Monitoring of Chemicals after FY2002 under the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water and sediment in FY2003, in wildlife (fish) in FY2004.

Under the framework of the Environmental Monitoring, α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane, γ -1,2,5,6,9,10-Hexabromocyclododecane, δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecan have been monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2011, in sediment, wildlife (bivalves, fish and birds) and air in FY2012, surface water, wildlife (bivalves, fish and birds) and air in FY2015. And α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane have been monitored in sediment, wildlife (bivalves, fish and birds) and air in FY2016. And α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane have been monitored in wildlife (bivalves, fish and birds) and air in FY2017.

Monitoring results wildlife (bivalves, fish and birds) and air Wildlife>

 α -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 9 pg/g-wet, and the detection range was 86~430pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 9 pg/g-wet, and the detection range was tr(9)~7,800pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 9 pg/g-wet, and the detected concentration was 2,200pg/g-wet.

 β -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 9 pg/g-wet, and the detected concentration was 36pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 2 of the 19 valid areas adopting the detection limit of 9 pg/g-wet, and none of the detected concentrations exceeded tr(12)pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and not detected in the area adopting the detection limit of 9 pg/g-wet.

 γ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 9 pg/g-wet, and the detection range was tr(20)~200pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 12 of the 19 valid areas adopting the detection limit of 9 pg/g-wet, and none of the detected concentrations exceeded 120pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit

Stocktaking of the detection of α -1,2,5,6,9,10-Hexabromocyclododecanes, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane in wildlife (bivalves, fish and birds) during FY2011~2017

α -1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection l	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	1,100	1,200	13,000	tr(86)	170 [70]	10/10	4/4
	2012	530	480	2,500	190	50 [20]	5/5	5/5
Bivalves	2014	270	270	380	200	30 [10]	3/3	3/3
(pg/g-wet)	2015	260	200	560	150	30 [10]	3/3	3/3
	2016	140	140	180	110	22 [9]	3/3	3/3
	2017	190	200	430	86	24 [9]	3/3	3/3
	2011	770	850	69,000	nd	170 [70]	41/51	16/17
	2012	510	560	8,700	nd	50 [20]	18/19	18/19
Fish	2014	240	290	15,000	nd	30 [10]	18/19	18/19
(pg/g-wet)	2015	160	180	3,000	nd	30 [10]	18/19	18/19
	2016	110	140	1,100	tr(12)	22 [9]	19/19	19/19
	2017	140	140	7,800	tr(9)	24 [9]	19/19	19/19
	2011	200	nd	530	nd	170 [70]	1/3	1/1
	2012	120		1,400	nd	50 [20]	1/2	1/2
Birds	2014**	480		1,800	130	30 [10]	2/2	2/2
(pg/g-wet)	2015**			80	80	30 [10]	1/1	1/1
,	2016**	400		1,600	100	22 [9]	2/2	2/2
	2017**	330		2,200	50	24 [9]	2/2	2/2
β-1,2,5,6,9,10-Hexa	Monitored	Coomotnio				Quantification	Detection l	Frequency
bromocyclododecane		Geometric mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
bromocyclododecane	year	mean				limit	Sample	Site
	2011	tr(70)	tr(85)	240	nd	00 5407	= (4.0	3/4
	2011	u(70)	u(03)		IIG	98 [40]	7/10	
	2011	tr(25)	40	90	nd	98 [40] 40 [10]	7/10 4/5	4/5
Bivalves								4/5 3/3
Bivalves (pg/g-wet)	2012	tr(25)	40	90	nd	40 [10]	4/5	4/5 3/3 2/3
	2012 2014	tr(25) tr(10)	40 tr(10)	90 tr(20)	nd tr(10)	40 [10] 30 [10]	4/5 3/3	4/5 3/3
	2012 2014 2015	tr(25) tr(10) tr(10)	40 tr(10) tr(10)	90 tr(20) 30	nd tr(10) nd	40 [10] 30 [10] 30 [10]	4/5 3/3 2/3	4/5 3/3 2/3
	2012 2014 2015 2016	tr(25) tr(10) tr(10) nd	40 tr(10) tr(10) tr(8)	90 tr(20) 30 tr(9)	nd tr(10) nd nd	40 [10] 30 [10] 30 [10] 21 [8]	4/5 3/3 2/3 2/3	4/5 3/3 2/3 2/3
	2012 2014 2015 2016 2017	tr(25) tr(10) tr(10) nd tr(9)	tr(10) tr(10) tr(8) nd	90 tr(20) 30 tr(9) 36	nd tr(10) nd nd nd	40 [10] 30 [10] 30 [10] 21 [8] 23 [9]	4/5 3/3 2/3 2/3 1/3	4/5 3/3 2/3 2/3 1/3
	2012 2014 2015 2016 2017 2011	tr(25) tr(10) tr(10) nd tr(9)	40 tr(10) tr(10) tr(8) nd	90 tr(20) 30 tr(9) 36 760	nd tr(10) nd nd nd	40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 98 [40]	4/5 3/3 2/3 2/3 1/3 11/51	4/5 3/3 2/3 2/3 1/3 5/17
(pg/g-wet)	2012 2014 2015 2016 2017 2011 2012	tr(25) tr(10) tr(10) nd tr(9) nd nd	40 tr(10) tr(10) tr(8) nd nd nd	90 tr(20) 30 tr(9) 36 760 40	nd tr(10) nd nd nd nd nd	40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 98 [40] 40 [10] 30 [10]	4/5 3/3 2/3 2/3 1/3 11/51 8/19	4/5 3/3 2/3 2/3 1/3 5/17 8/19
(pg/g-wet) Fish	2012 2014 2015 2016 2017 2011 2012 2014	tr(25) tr(10) tr(10) nd tr(9) nd nd nd	40 tr(10) tr(10) tr(8) nd nd nd	90 tr(20) 30 tr(9) 36 760 40 30	nd tr(10) nd nd nd nd nd nd	40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 98 [40] 40 [10] 30 [10] 30 [10]	4/5 3/3 2/3 2/3 1/3 11/51 8/19 5/19	4/5 3/3 2/3 2/3 1/3 5/17 8/19 5/19
(pg/g-wet) Fish	2012 2014 2015 2016 2017 2011 2012 2014 2015	tr(25) tr(10) tr(10) nd tr(9) nd nd nd	40 tr(10) tr(10) tr(8) nd nd nd nd	90 tr(20) 30 tr(9) 36 760 40 30 tr(20)	nd tr(10) nd nd nd nd nd nd nd	40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 98 [40] 40 [10] 30 [10]	4/5 3/3 2/3 2/3 1/3 11/51 8/19 5/19 2/19	4/5 3/3 2/3 2/3 1/3 5/17 8/19 5/19 2/19
(pg/g-wet) Fish	2012 2014 2015 2016 2017 2011 2012 2014 2015 2016	tr(25) tr(10) tr(10) nd tr(9) nd nd nd nd	40 tr(10) tr(10) tr(8) nd nd nd nd nd	90 tr(20) 30 tr(9) 36 760 40 30 tr(20) tr(12)	nd tr(10) nd nd nd nd nd nd nd nd nd	40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8]	4/5 3/3 2/3 2/3 1/3 11/51 8/19 5/19 2/19 3/19	4/5 3/3 2/3 2/3 1/3 5/17 8/19 5/19 2/19 3/19
(pg/g-wet) Fish	2012 2014 2015 2016 2017 2011 2012 2014 2015 2016 2017	tr(25) tr(10) tr(10) nd tr(9) nd nd nd nd nd nd	tr(10) tr(10) tr(8) nd nd nd nd nd nd nd nd	90 tr(20) 30 tr(9) 36 760 40 30 tr(20) tr(12) tr(12)	nd tr(10) nd nd nd nd nd nd nd nd	40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8] 23 [9]	4/5 3/3 2/3 2/3 1/3 11/51 8/19 5/19 2/19 3/19 2/19	4/5 3/3 2/3 2/3 1/3 5/17 8/19 5/19 2/19 3/19 2/19
(pg/g-wet) Fish	2012 2014 2015 2016 2017 2011 2012 2014 2015 2016 2017	tr(25) tr(10) tr(10) nd tr(9) nd nd nd nd nd nd nd	40 tr(10) tr(10) tr(8) nd nd nd nd nd nd nd	90 tr(20) 30 tr(9) 36 760 40 30 tr(20) tr(12) tr(12)	nd tr(10) nd	40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 98 [40]	4/5 3/3 2/3 2/3 1/3 11/51 8/19 5/19 2/19 3/19 2/19 0/3	4/5 3/3 2/3 2/3 1/3 5/17 8/19 5/19 2/19 3/19 2/19 0/1
(pg/g-wet) Fish (pg/g-wet)	2012 2014 2015 2016 2017 2011 2012 2014 2015 2016 2017 2011 2012	tr(25) tr(10) tr(10) nd tr(9) nd nd nd nd nd nd nd nd	40 tr(10) tr(10) tr(8) nd nd nd nd nd nd nd nd	90 tr(20) 30 tr(9) 36 760 40 30 tr(20) tr(12) tr(12) nd nd	nd tr(10) nd	40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 98 [40] 40 [10]	4/5 3/3 2/3 2/3 1/3 11/51 8/19 5/19 2/19 3/19 0/3 0/2	4/5 3/3 2/3 2/3 1/3 5/17 8/19 5/19 2/19 3/19 2/19 0/1 0/2
(pg/g-wet) Fish (pg/g-wet) Birds	2012 2014 2015 2016 2017 2011 2012 2014 2015 2016 2017 2011 2012 2014**	tr(25) tr(10) tr(10) nd tr(9) nd nd nd nd nd nd nd nd	40 tr(10) tr(10) tr(8) nd nd nd nd nd nd nd	90 tr(20) 30 tr(9) 36 760 40 30 tr(20) tr(12) tr(12) nd nd	nd tr(10) nd	40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 98 [40] 40 [10] 30 [10] 21 [8] 23 [9] 98 [40] 40 [10] 30 [10]	4/5 3/3 2/3 2/3 1/3 11/51 8/19 5/19 2/19 3/19 2/19 0/3 0/2 0/2	4/5 3/3 2/3 2/3 1/3 5/17 8/19 5/19 2/19 3/19 2/19 0/1 0/2 0/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2011.

⁽Note 2) " ** ": There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2013.

γ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection l	requency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	440	470	3,300	nd	210 [80]	8/10	4/4
	2012	170	180	910	30	30 [10]	5/5	5/5
Bivalves	2014	60	60	110	30	30 [10]	3/3	3/3
(pg/g-wet)	2015	70	90	200	tr(20)	30 [10]	3/3	3/3
	2016	37	39	61	tr(21)	24 [9]	3/3	3/3
	2017	49	30	200	tr(20)	24 [9]	3/3	3/3
	2011	210	tr(90)	50,000	nd	210 [80]	26/51	10/17
	2012	75	80	1,600	nd	30 [10]	16/19	16/19
Fish	2014	30	tr(20)	2,800	nd	30 [10]	12/19	12/19
(pg/g-wet)	2015	tr(20)	tr(10)	230	nd	30 [10]	10/19	10/19
	2016	tr(16)	tr(13)	160	nd	24 [9]	11/19	11/19
	2017	tr(16)	tr(18)	120	nd	24 [9]	12/19	12/19
	2011	tr(180)	nd	460	nd	210 [80]	1/3	1/1
	2012	31		190	nd	30 [10]	1/2	1/2
Birds	2014**	tr(10)		tr(10)	tr(10)	30 [10]	2/2	2/2
(pg/g-wet)	2015**			tr(10)	tr(10)	30 [10]	1/1	1/1
	2016**	tr(10)		tr(20)	nd	24 [9]	1/2	1/2
	2017**	tr(9)		tr(18)	nd	24 [9]	1/2	1/2

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2011.

(Note 2) " ** ": There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2013.

Stocktaking of the detection of δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecane in wildlife (bivalves, fish and birds) during FY2011~2015 (reference)

δ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection I	requency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	nd	nd	140 [60]	0/10	0/4
Bivalves	2012	nd	nd	nd	nd	50 [20]	0/5	0/5
(pg/g-wet)	2014	nd	nd	nd	nd	30 [10]	0/3	0/3
	2015	nd	nd	nd	nd	30 [10]	0/3	0/3
	2011	nd	nd	nd	nd	140 [60]	0/51	0/17
Fish	2012	nd	nd	nd	nd	50 [20]	0/19	0/19
(pg/g-wet)	2014	nd	nd	nd	nd	30 [10]	0/19	0/19
	2015	nd	nd	tr(20)	nd	30 [10]	1/19	1/19
	2011	nd	nd	nd	nd	140 [60]	0/3	0/1
Birds	2012	nd		nd	nd	50 [20]	0/2	0/2
(pg/g-wet)	2014**	nd		nd	nd	30 [10]	0/2	0/2
	2015**			nd	nd	30 [10]	0/1	0/1
ε-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection I	requency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	nd	nd	140 [60]	0/10	0/4
Bivalves	2012	nd	nd	tr(30)	nd	40 [20]	1/5	1/5
(pg/g-wet)	2014	nd	nd	tr(20)	nd	30 [10]	1/3	1/3
	2015	nd	nd	tr(10)	nd	30 [10]	1/3	1/3
	2011	nd	nd	nd	nd	140 [60]	0/51	0/17
Fish	2012	nd	nd	tr(30)	nd	40 [20]	3/19	3/19
(pg/g-wet)	2014	nd	nd	80	nd	30 [10]	3/19	3/19
	2015	nd	nd	tr(10)	nd	30 [10]	1/19	1/19
	2011	nd	nd	nd	nd	140 [60]	0/3	0/1
Birds	2012	nd		nd	nd	40 [20]	0/2	0/2
(pg/g-wet)	2014**	nd		nd	nd	30 [10]	0/2	0/2

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2011.

nd

30 [10]

nd

0/1

0/1

(Note 2) " ** ": There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2013.

2015**

<Air>

 α -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air was monitored at 37 sites, and it was detected at 36 of the 37 valid sites adopting the detection limit of 0.1 pg/m³, and none of the detected concentrations exceeded 3.3pg/m³.

 β -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air was monitored at 37 sites, and it was detected at 33 of the 37 valid sites adopting the detection limit of 0.1 pg/m³, and none of the detected concentrations exceeded 0.8pg/m³.

 γ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air was monitored at 37 sites, and it was detected at 20 of the 37 valid sites adopting the detection limit of 0.1 pg/m³, and none of the detected concentrations exceeded 0.8pg/m³.

Stocktaking of the detection of α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane

and γ -1,2,5,6,9,10-Hexabromocyclododecane in air during FY2012~2017

α -1,2,5,6,9,10-	,9,10-Hexabromoc	,	iii aii uui	ilig 1 1 2012	-2017	Quantification	Detection 1	Frequency
Hexabromo cyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012Warm season	1.7	2.2	130	nd	0.6 [0.2]	31/36	31/36
	2012Cold season	2.9	3.0	63	nd	0.0 [0.2]	35/36	35/36
Air	2014Warm season	tr(0.6)	tr(0.7)	3.1	nd	1.2 [0.4]	25/36	25/36
(pg/m^3)	2015Warm season	tr(0.6)	tr(0.7)	30	nd	0.9 [0.3]	26/35	26/35
	2016Warm season	0.5	0.5	2.4	tr(0.1)	0.3 [0.1]	37/37	37/37
	2017Warm season	0.5	0.5	3.3	nd	0.3 [0.1]	36/37	36/37
β-1,2,5,6,9,10-		Geometric				Quantification	Detection 1	Frequency
Hexabromo cyclododecane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012Warm season	0.5	0.5	29	nd	0.2.50.13	30/36	30/36
	2012Cold season	0.8	0.8	18	nd	0.3 [0.1]	35/36	35/36
Air	2014Warm season	nd	nd	tr(0.8)	nd	1.0 [0.3]	8/36	8/36
(pg/m^3)	2015Warm season	nd	nd	3.9	nd	0.8 [0.3]	7/35	7/35
	2016Warm season	tr(0.1)	tr(0.1)	0.7	nd	0.3 [0.1]	21/37	21/37
	2017Warm season	tr(0.2)	tr(0.1)	0.8	nd	0.3 [0.1]	33/37	33/37
γ-1,2,5,6,9,10-		Geometric				Quantification	Detection 1	Frequency
Hexabromo cyclododecane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012Warm season	1.6	1.7	280	nd	0.2 [0.1]	31/36	31/36
	2012Cold season	2.1	1.8	84	nd	0.3 [0.1]	35/36	35/36
Air	2014Warm season	nd	nd	tr(1.2)	nd	1.3 [0.4]	4/36	4/36
(pg/m^3)	2015Warm season	nd	nd	4.4	nd	0.8 [0.3]	11/35	11/35
	2016Warm season	tr(0.1)	nd	1.4	nd	0.3 [0.1]	16/37	16/37
	2017Warm season	tr(0.1)	tr(0.1)	0.8	nd	0.3 [0.1]	20/37	20/37

(Note) No monitoring was conducted in FY2013.

Stocktaking of the detection of δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecane

in air during FY2012~2015 (reference)

δ-1,2,5,6,9,10-	,	Geometric				Quantification	Detection I	requency
Hexabromo cyclododecane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012Warm season	nd	nd	0.8	nd	0.4.[0.2]	1/36	1/36
Air	2012Cold season	nd	nd	1.1	nd	0.4 [0.2]	1/36	1/36
(pg/m^3)	2014Warm season	nd	nd	nd	nd	1.8 [0.6]	0/36	0/36
40	2015Warm season	nd	nd	1.9	nd	1.9 [0.6]	1/35	1/35
ε-1,2,5,6,9,10- Hexabromo cyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2012Warm season	nd	nd	nd	nd	0.6 [0.2]	0/36	0/36
Air	2012Cold season	nd	nd	tr(0.5)	nd	0.0 [0.2]	1/36	1/36
(pg/m^3)	2014Warm season	nd	nd	nd	nd	0.9 [0.3]	0/36	0/36
	2015Warm season	nd	nd	nd	nd	0.9 [0.3]	0/35	0/35

(Note) No monitoring was conducted in FY2013.

• Monitoring results in surface water and sediment until FY2014 (reference)

<Surface Water>

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in surface wate during FY2011~2014

α-1,2,5,6,9,10-Hexabro	Monitored	Geometric				Quantification	Detection I	requency
mocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	6,300	nd	1,500 [600]	4/47	4/47
(pg/L)	2014	nd	nd	1,600	nd	1,500 [600]	1/48	1/48
β-1,2,5,6,9,10-Hexabro	Monitored	Geometric				Quantification	Detection I	requency
mocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	1,300	nd	1,300 [500]	4/47	4/47
(pg/L)	2014	nd	nd	tr(300)	nd	500 [200]	1/48	1/48
γ-1,2,5,6,9,10-Hexabrom	Manitarad	Gaamatria				Quantification	Detection I	requency
ocyclododecane	year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	65,000	nd	1,200 [500]	5/47	5/47
(pg/L)	2014	nd	nd	nd	nd	700 [300]	0/48	0/48
δ -1,2,5,6,9,10-Hexabro	Monitored	Geometric				Quantification	Detection I	requency
mocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	nd	nd	790 [300]	0/47	0/47
(pg/L)	2014	nd	nd	nd	nd	600 [200]	0/48	0/48
	Manitarad	Coomotrio				Quantification	Detection I	requency
ε-1,2,5,6,9,10-Hexabrom ocyclododecane	year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	nd	nd	740 [300]	0/47	0/47
(pg/L)	2014	nd	nd	nd	nd	400 [200]	0/48	0/48

(Note 2) No monitoring was conducted in FY2012 and FY2013.

<Sediment>

Stocktaking of the detection of α -1,2,5,6,9,10-Hexabromocyclododecanes, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane in sediment during FY2011~2016

		J						
α-1,2,5,6,9,10-Hexa bromocyclododecane	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2011	430	nd	24,000	nd	420 [280]	78/186	35/62
Sediment	2012	310	280	22,000	nd	180 [70]	47/63	47/63
(pg/g-dry)	2015	390	410	27,000	nd	150 [60]	47/62	47/62
400 77	2016	260	210	27,000	nd	130 [60]	43/62	43/62
β-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection 1	Frequency
bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	14,000	nd	250 [170]	48/186	21/62
Sediment	2012	tr(93)	nd	8,900	nd	150 [60]	29/63	29/63
(pg/g-dry)	2015	120	92	7,600	nd	150 [60]	33/62	33/62
	2016	tr(87)	nd	7,400	nd	130 [50]	31/62	31/62
γ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection 1	Frequency
bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	670	nd	570,000	nd	400 [260]	89/186	36/62
Sediment	2012	420	330	55,000	nd	160 [60]	52/63	52/63
(pg/g-dry)	2015	330	450	60,000	nd	110 [42]	48/62	48/62
	2016	250	190	50,000	nd	150 [60]	42/62	42/62

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2011.

(Note 2) No monitoring was conducted in FY2013 and FY2014.

Stocktaking of the detection of δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecane in sediment during FY2011~2015 (reference)

δ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection I	requency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	nd	nd	800	nd	350 [250]	11/186	6/62
	2012	nd	nd	680	nd	300 [100]	5/63	5/63
(pg/g-dry)	2015	nd	nd	nd	nd	180 [70]	0/62	0/62
ε-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection I	requency
6-1,2,5,0,7,10-11CAa								
bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	year 2011		Median nd	Maximum tr(260)	Minimum		Sample 2/186	Site 1/62
Sediment (pg/g-dry)		mean				limit		

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2011.

⁽Note 2) No monitoring was conducted in FY2013 and FY2014.

[20] Total Polychlorinated Naphthalenes (Total PCNs)

· History and results of the monitoring

Polychlorinated Naphthalenes (PCNs) make effective insulating coatings for electrical wires and have been used as wood preservatives, as rubber and plastic additives, for capacitor dielectrics and in lubricants. The substances with over 3 chloric ions were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in August 1979. And PCNs (Cl₂~Cl₈) was adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015 and Dichloronaphthalene designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2016.

In previous monitoring series, Polychlorinated Naphthalenes were monitored in wildlife (bivalves, fish and birds) during the period of FY1980~1985 FY1987 FY 1989 FY 1991 and FY 1993 under the framework of "the Wildlife Monitoring."

Under the framework of "the Environmental Monitoring", Polychlorinated Naphthalenes with over a chloric ions have been monitored in wildlife (bivalves, fish and birds) in FY 2006, in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2018, in air in FY2014, in wildlife (bivalves, fish and birds) in FY2015 and in sediment, wildlife (bivalves, fish and birds) and air in FY2016~2017.

Monitoring results in sediment, wildlife (bivalves, fish and birds) and air
 Sediment>

The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 9.1pg/g-dry, and the detection range was tr(16)~32,000 pg/g-dry.

Stocktaking of the detection of Total Polychlorinated Naphthalenes in sediment during FY2008~FY2017

Total Polychlorinated	Monitored	Geometric				Quantification	Detection Frequency	
Naphthalenes	year	mean*	Median	Maximum	Minimum	[Detection] limit**	Sample	Site
C - 1:	2008	410	400	28,000	nd	84 [30]	166/189	58/63
Sediment	2016	760	870	160,000	nd	59 [20]	59/62	59/62
(pg/g-dry)	2017	630	800	32,000	tr(16)	27 [9.1]	62/62	62/62

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 12pg/g-wet, and none of the detected concentrations exceeded 1,400pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 17 of the 19 valid areas adopting the detection limit of 12pg/g-wet, and none of the detected concentrations exceeded 360pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 12pg/g-wet, and the detected concentration was 460pg/g-wet.

⁽Note 2) " ** " indicates the sum value of the Quantification [Detection] limits of each congener.

⁽Note 3) No monitoring was conducted during FY2009~2015.

Stocktaking of the detection of Total Polychlorinated Naphthalenes in wildlife (bivalves, fish and birds) during $FY2006\sim2017$

Total Polychlorinated	Manitanad	Coomotnio				Quantification	Detection l	Frequency
Naphthalenes	year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit**	Sample	Site
	2006	85	73	1.2	tr(19)	27 [11]	31/31	7/7
D:1	2008	77	73	1,300	tr(11)	26 [10]	31/31	7/7
Bivalves (pg/g-wet)	2015	70	67	580	nd	54 [18]	2/3	2/3
	2016	72	tr(49)	790	nd	57 [19]	2/3	2/3
	2017	46	68	1,400	nd	33 [12]	2/3	2/3
	2006	68	49	2,700	nd	27 [11]	78/80	16/16
E. 1	2008	55	40	2,200	nd	26 [10]	79/85	17/17
Fish	2015	tr(50)	85	390	nd	54 [18]	13/19	13/19
(pg/g-wet)	2016	tr(44)	tr(48)	340	nd	57 [19]	13/19	13/19
	2017	32	51	360	nd	33 [12]	17/19	17/19
	2006	tr(17)	tr(18)	27	tr(11)	27 [11]	10/10	2/2
D' 1	2008	nd	nd	tr(22)	nd	26 [10]	5/10	1/2
Birds	2015***			tr(20)	tr(20)	54 [18]	1/1	1/1
(pg/g-wet)	2016***	130		320	tr(49)	57 [19]	2/2	2/2
	2017***	91		460	tr(18)	33 [12]	2/2	2/2

⁽Note 1) " * " :Arithmetic mean values were calculated for each point, from which the geometric mean value for all points were derived in FY2006 and FY2008.

<Air>

The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.24pg/m^3 , and the detection range was $7 \sim 920 \text{pg/m}^3$.

Stocktaking of the detection of Total Polychlorinated Naphthalenes in sediment during FY2008~2017

Total Polychlorinated	Monitored	Geometric			3.61.1	Quantification	Detection l	Frequency
Naphthalenes	year	mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site
	2008Warm season	200	230	660	35	4.0[1.3]	22/22	22/22
	2008Cold season	tr(9.6)	tr(9.8)	45	nd	4.0[1.3] 	36/36	36/36
Air (pg/m³)	2014Warm season	110	130	1,600	5.4	2.8 [1.0]	36/36	36/36
_	2016Warm season	110	130	660	9.0	0.79 [0.28]	37/37	37/37
	2017Warm season	110	120	920	7	0.67 [0.24]	37/37	37/37

⁽Note 1) " * " indicates the sum value of the Quantification [Detection] limits of each congener.

• Monitoring results in surface wate in FY2014 (reference)

<Surface Water>

Stocktaking of the detection of Total Polychlorinated Naphthalenes in surface water in FY2008

Total Polychlorinated	Monitored	Geometric				Quantification	Detection I	Frequency
Naphthalenes	year	mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site
Surface Water (pg/L)	2008	nd	nd	180	nd	85[30]	9/48	9/48

⁽Note) "*" indicates the sum value of the Quantification [Detection] limits of each congener.

⁽Note 2) " * " indicates the sum value of the Quantification [Detection] limits of each congener.

⁽Note 3) "***" indicates there is no consistency between the results of the ornithological survey after FY2015 and those in previous years because of the changes in the survey sites and target species.

⁽Note 4) No monitoring was conducted in FY2007 and FY2009~2014.

⁽Note 2) No monitoring was conducted during FY2009~2013, 2015.

[21] Hexachlorobuta-1,3-diene

· History and results of the monitoring

Hexachlorobuta-1,3-diene had been used as a solvent for other chlorine-containing compounds. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law on April 2005. The substance was adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015.

As a continuous survey, the first survey was in FY2007, under the framework of the Environmental Survey of Chemical Substances up to FY2002, the substance was monitored in surface wate and sediment in FY1981, under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, in the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water and sediment in FY2007.

Under the framework of the Environmental Monitoring, the substances have been monitored in surface water sediment and wildlife (bivalves, fish and birds) in FY2013, and in air in FY2015~2017.

· Monitoring results in air

<Air>

The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 20 pg/m^3 , and the detection range was $1,100\sim23,000\text{pg/m}^3$.

Stocktaking of the detection of Hexachlorobuta-1,3-diene in air in FY2015~2017

Hexachlorobuta	Monitored Geor	Geometric				Quantification	Detection Frequency	
1,3-diene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2015Warm season	1,100	1,200	3,500	45	29 [11]	102/102	34/34
Air (pg/m³)	2016Warm season	850	800	4,300	510	60 [20]	111/111	37/37
	2017Warm season	4,200	4,000	23,000	1,100	60 [20]	37/37	37/37

• Monitoring results in surface water, sediment and wildlife (bivalves, fish and birds) until FY2013 (reference)

<Surface Water>

Stocktaking of the detection of Hexachlorobuta-1,3-diene in surface water in FY2007 and FY2013

Hexachlorobuta	Monitored	Geometric				Quantification	Detection I	requency
1,3-diene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2007	nd	nd	nd	nd	870 [340]	0/48	0/48
(pg/L)	2013	nd	nd	tr(43)	nd	94 [37]	1/48	1/48

⁽Note) No monitoring was conducted during FY2008~2012.

<Sediment>

Stocktaking of the detection of Hexachlorobuta-1,3-diene in sediment in FY2007 and FY2013

Hexachlorobuta	Monitored	Geometric				Quantification	Detection 1	Frequency
1,3-diene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2007	nd	nd	1,300	nd	22 [8.5]	22/192	10/64
(pg/g-dry)	2013	nd	nd	1,600	nd	9.9 [3.8]	40/189	20/63

(Note 1) " * ": Arithmetic mean values were calculated for each point, from which the geometric mean value for all points were derived in FY2007 and FY2013.

(Note 2) No monitoring was conducted during FY2008~2012.

<Wildlife>

Stocktaking of the detection of Hexachlorobuta-1,3-diene in wildlife (bivalves, fish and birds) in FY2007 and FY2013

Hexachlorobuta	Monitored	Geometric				Quantification	Detection I	requency
1,3-diene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2007	nd	nd	nd	nd	36 [12]	0/31	0/7
(pg/g-wet)	2013	nd	nd	tr(7.1)	nd	9.4 [3.7]	3/13	1/5
Fish	2007	nd	nd	nd	nd	36 [12]	0/80	0/16
(pg/g-wet)	2013	nd	nd	59	nd	9.4 [3.7]	7/57	4/19
Birds	2007	nd	nd	nd	nd	36 [12]	0/10	0/2
(pg/g-wet)	2013**	nd	nd	nd	nd	9.4 [3.7]	0/6	0/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.
(Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2015 and those in

previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted during FY2008~2012.

[22] Pentachlorophenol and its salts and esters

· History and state of monitoring

Pentachlorophenol was used as a herbicide, insecticide, fungicide, algaecide, disinfectant and as an ingredient in antifouling paint. Pentachlorophenol and its salts and esters were adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015, and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in Octorber 2016.

As a continuous survey, the first survey of Pentachlorophenol was in FY2015, under the framework of the Environmental Survey of Chemical Substances up to FY2007, the substance was monitored in surface water and sediment in FY1974 and FY1996, and under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, in the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water in FY2005.

Under the framework of the Environmental Monitoring, Pentachlorophenol was monitored in surface water in FY2015. And Pentachlorophenol and Pentachloroanisole were monitored in wildlife (bivalves, fish and birds) and air in FY2016, in surfacewater, sediment, wildlife (bivalves, fish and birds) and air in FY2017.

· Monitoring results

<Surface Water>

Pentachlorophenol: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 43 of the 47 valid sites adopting the detection limit of 10 pg/L, and none of the detected concentrations exceeded 3,500 pg/L.

Pentachloroanisole: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 32 of the 47 valid sites adopting the detection limit of 5 pg/L, and none of the detected concentrations exceeded 1,000 pg/L.

Stocktaking of the detection of Pentachlorophenol and Pentachloroanisole in surface water in FY2015 and FY2017

	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachlorophenol	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	H27	tr(130)	tr(90)	26,000	nd	260 [85]	25/48	25/48
(pg/L)	H29	86	110	3,500	nd	30 [10]	43/47	43/47
	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachloroanisole	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water (pg/L)	H29	tr(10)	tr(8)	1,000	nd	14 [5]	32/47	32/47

<Sediment>

Pentachlorophenol: The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 2 pg/g-dry, and the detection range was $8 \sim 7,400$ pg/g-dry.

Pentachloroanisole: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 61 of the 62 valid sites adopting the detection limit of 2 pg/g-dry, and none of the detected concentrations exceeded 190 pg/g-dry.

Stocktaking of the detection of Pentachlorophenol and Pentachloroanisole in sediment in FY2017

	Monitored	Geometric				Quantification	Detection l	Frequency
Pentachlorophenol	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment (pg/g-dry)	H29	350	390	7,400	8	4 [2]	62/62	62/62
	Monitored	Geometric				Quantification	Detection l	Frequency
Pentachloroanisole	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection l Sample	Frequency Site

<Wildlife>

Pentachlorophenol: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 12 pg/g-wet, and the detected concentration was tr(35)pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 14 of the 19 valid areas adopting the detection limit of 12 pg/g-wet, and none of the detected concentrations exceeded 110pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 12 pg/g-wet, and the detected concentration was 11,000pg/g-wet.

Pentachloroanisole: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1 pg/g-wet, and the detection range was tr(2)~36pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 1 pg/g-wet, and the detection range was tr(1)~120pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 1 pg/g-wet, and the detected concentration was 47pg/g-wet.

Stocktaking of the detection of Pentachlorophenol and Pentachloroanisole in wildlife (bivalves, fish and birds) in FY2016 and FY2017

/							
Monitored	Geometric				Quantification	Detection 1	Frequency
		Median	Maximum	Minimum	[Detection]	Sample	Site
ycai	incan				limit	Sample	Site
2016	tr(45)	tr(46)	65	tr(30)	63 [21]	3/3	3/3
2017	nd	nd	tr(35)	nd	36 [12]	1/3	1/3
2016	100	130	990	nd	63 [21]	18/19	18/19
2017	tr(15)	tr(15)	110	nd	36 [12]	14/19	14/19
2016	1,200		3,100	440	63 [21]	2/2	2/2
2017	1,800		11,000	300	36 [12]	2/2	2/2
Manitarad	Coomotrio				Quantification	Detection 1	Frequency
		Median	Maximum	Minimum	[Detection]	G 1	G.,
year	mean*				limit	Sample	Site
2016	7	3	35	3	3 [1]	3/3	3/3
2017	6	tr(3)	36	tr(2)	4 [1]	3/3	3/3
2016	8	6	100	tr(1)	3 [1]	19/19	19/19
2017	7	5	120	tr(1)	4 [1]	19/19	19/19
2016	12		14	10	3 [1]	2/2	2/2
2017	23		47	11	4[1]	2/2	2/2
	Monitored year 2016 2017 2016 2017 2016 2017 Monitored year 2016 2017 2016 2017 2016	Monitored year Geometric mean* 2016 tr(45) 2017 nd 2016 100 2017 tr(15) 2016 1,200 2017 1,800 Monitored year Geometric mean* 2016 7 2017 6 2016 8 2017 7 2016 12	Monitored year Geometric mean* Median 2016 tr(45) tr(46) 2017 nd nd 2016 100 130 2017 tr(15) tr(15) 2016 1,200 2017 1,800 Monitored year Geometric mean* Median 2016 7 3 2017 6 tr(3) 2016 8 6 2017 7 5 2016 12	Monitored year Geometric mean* Median Maximum 2016 tr(45) tr(46) 65 2017 nd nd tr(35) 2016 100 130 990 2017 tr(15) tr(15) 110 2016 1,200 3,100 2017 1,800 11,000 Monitored year Geometric mean* Median Maximum 2016 7 3 35 2017 6 tr(3) 36 2016 8 6 100 2017 7 5 120 2016 12 14	Monitored year Geometric mean* Median Maximum Minimum 2016 tr(45) tr(46) 65 tr(30) 2017 nd nd tr(35) nd 2016 100 130 990 nd 2017 tr(15) tr(15) 110 nd 2016 1,200 3,100 440 2017 1,800 11,000 300 Monitored year Geometric mean* Median Maximum Minimum 2016 7 3 35 3 2017 6 tr(3) 36 tr(2) 2016 8 6 100 tr(1) 2017 7 5 120 tr(1) 2017 7 5 120 tr(1) 2016 12 14 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Monitored year Geometric year Median mean* Maximum Minimum Quantification [Detection] limit Detection of sample 2016 tr(45) tr(46) 65 tr(30) 63 [21] 3/3 2017 nd nd tr(35) nd 36 [12] 1/3 2016 100 130 990 nd 63 [21] 18/19 2017 tr(15) tr(15) 110 nd 36 [12] 14/19 2016 1,200 3,100 440 63 [21] 2/2 2017 1,800 11,000 300 36 [12] 2/2 Monitored year Geometric year Median Maximum Minimum Quantification [Detection] Detection [Detection] 2016 7 3 35 3 3 [1] 3/3 2017 6 tr(3) 36 tr(2) 4 [1] 3/3 2016 8 6 100 tr(1) 3 [1] 19/19

<Air>

Pentachlorophenol: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.2 pg/m³, and the detection range was 0.7~33pg/m³.

Pentachloroanisole: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.5 pg/m^3 , and the detection range was $6.0 \sim 210 \text{pg/m}^3$.

Stocktaking of the detection of Pentachlorophenol and Pentachloroanisole in air in FY2016 and FY2017

Detection I Sample	Frequency Site
37/37	37/37
37/37	37/37
37737	
Detection I	Frequency
Sample	Site
37/37	37/37
	Sample 37/37 37/37 Detection I Sample

[23] Short-chain chlorinated paraffins

· History and state of monitoring

Short-chain chlorinated paraffinsare are used primarily in metalworking applications and in polyvinyl chloride (PVC) plastics. Other uses are adhesives and sealants, leather fat liquors, plastics, and as flame retardants in rubber, textiles and polymeric materials. The substances were adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants in April-May 2017, and the substances with chlorine content exceeding 48% of the total weight designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2018.

Under the framework of the Initial Environmental Survey and the Detailed Environmental Survey etc., the substances were surveied in surface water, sediment and wildlife (fish) in FY2004 and in surface water, sediment and wildlife (bivalves and fish) in FY2005.

Under the framework of the Environmental Monitoring, the substances have been monitored in wildlife (bivalves, fish and birds) and air in FY2016, in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2017.

The results of short-chain chlorinated paraffins are tentative values obtained in trials among various problems in the measurement method.

· Monitoring results

<Surface water>

Chlorinated decanes: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 1 of the 47 valid sites adopting the detection limit of 1,100 pg/L, and the detected concentration was tr(1,600)pg/L.

Chlorinated undecanes: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 13 of the 47 valid sites adopting the detection limit of 500 pg/L, and none of the detected concentrations exceeded 3,100 pg/L.

Chlorinated dodecanes: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 4 of the 47 valid sites adopting the detection limit of 1,100 pg/L, and none of the detected concentrations exceeded 10,000 pg/L.

Chlorinated tridecanes: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 7 of the 47 valid sites adopting the detection limit of 1,200 pg/L, and none of the detected concentrations exceeded 10,000 pg/L.

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in surface water in FY2017

Chlorinated	Monitored	Geometric				Quantification	Detection I	Frequency
decanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water (pg/L)	2017	nd	nd	tr(1,600)	nd	3,300 [1,100]	1/47	1/47
Chlorinated	Monitored	Geometric				Quantification	Detection I	Frequency
undecanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water (pg/L)	2017	nd	nd	3,100	nd	1,500 [500]	13/47	13/47
Chlorinated	Monitored	Geometric				Quantification	Detection I	Frequency
dodecanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water (pg/L)	2017	nd	nd	10,000	nd	3,300 [1,100]	4/47	4/47
Chlorinated	Monitored	Geometric	Median	Maximum	Minimum	Quantification	Detection I	Frequency

tridecanes	year	mean*				[Detection] limit	Sample	Site
Surface Water (pg/L)	2017	nd	nd	10,000	nd	3,600 [1,200]	7/47	7/47

(Note) Short-chain Chlorinated paraffins with 5~9 chlorines are target chemicals

<Sediment >

Chlorinated decanes: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 12 of the 62 valid sites adopting the detection limit of 4,000 pg/g-dry, and none of the detected concentrations exceeded 17,000 pg/g-dry.

Chlorinated undecanes: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 19 of the 62 valid sites adopting the detection limit of 4,000 pg/g-dry, and none of the detected concentrations exceeded 37,000 pg/g-dry.

Chlorinated dodecanes: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 19 of the 62 valid sites adopting the detection limit of 4,000 pg/g-dry, and none of the detected concentrations exceeded 44,000 pg/g-dry.

Chlorinated tridecanes: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 18 of the 62 valid sites adopting the detection limit of 5,000 pg/g-dry, and none of the detected concentrations exceeded 94,000 pg/g-dry.

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in sediment in FY2017

Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
decanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment (pg/g-dry)	2017	nd	nd	17,000	nd	10,000 [4,000]	12/62	12/62
Chlorinated undecanes	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
Sediment (pg/g-dry)	2017	nd	nd	37,000	nd	10,000 [4,000]	19/62	19/62
Chlorinated dodecanes	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
Sediment (pg/g-dry)	2017	nd	nd	44,000	nd	11,000 [4,000]	19/62	19/62
Chlorinated tridecanes	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I	Frequency Site
Sediment (pg/g-dry)	2017	nd	nd	94,000	nd	12,000 [5,000]	18/62	18/62

(Note) Short-chain Chlorinated paraffins with 5~9 chlorines are target chemicals

<Wildlife>

Chlorinated decanes: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 200 pg/g-wet, and none of the detected concentrations exceeded 1,800pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 16 of the 19 valid areas adopting the detection limit of 200 pg/g-wet, and none of the detected concentrations exceeded 2,100pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 200 pg/g-wet, and the detected concentration was 1,600pg/g-wet.

Chlorinated undecanes: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 300 pg/g-wet, and the detection range was tr(300)~11,000pg/g-wet.

For fish, the presence of the substance was monitored in 19 areas, and it was detected at 16 of the 19 valid areas adopting the detection limit of 300 pg/g-wet, and none of the detected concentrations exceeded 24,000pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 300 pg/g-wet, and the detected concentration was 31,000pg/g-wet.

Chlorinated dodecanes: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 300 pg/g-wet, and the detection range was 1,300~4,700pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 300 pg/g-wet, and none of the detected concentrations exceeded 19,000pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 300 pg/g-wet, and the detected concentration was 25,000pg/g-wet.

Chlorinated tridecanes: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 200 pg/g-wet, and the detection range was tr(300)~3,100pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 8 of the 19 valid areas adopting the detection limit of 200 pg/g-wet, and none of the detected concentrations exceeded 4,100pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and detected in the area adopting the detection limit of 200 pg/g-wet, and the detected concentration was 8,100pg/g-wet.

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in wildlife (bivalves, fish and birds) in FY2016 and FY2017

Chlorinated	Monitored	Geometric				Quantification	Detection	Frequency
decanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2016	tr(700)	tr(700)	2,200	nd	1,300 [500]	2/3	2/3
(pg/g-wet)	2017	670	1,700	1,800	nd	500 [200]	2/3	2/3
Fish	2016	tr(600)	tr(700)	2,800	nd	1,300 [500]	13/19	13/19
(pg/g-wet)	2017	tr(410)	tr(400)	2,100	nd	500 [200]	16/19	16/19
Birds	2016	tr(1,000)		1,300	tr(800)	1,300 [500]	2/2	2/2
(pg/g-wet)	2017	tr(400)		1,600	nd	500 [200]	1/2	1/2
Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
undecanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2016	tr(2,900)	tr(2,000)	6,000	tr(2,000)	3,000 [1,000]	3/3	3/3
(pg/g-wet)	2017	2,200	3,400	11,000	tr(300)	800 [300]	3/3	3/3
Fish	2016	tr(2,900)	tr(2,000)	15,000	nd	3,000 [1,000]	18/19	18/19
(pg/g-wet)	2017	1,900	1,100	24,000	nd	800 [300]	16/19	16/19
Birds	2016	4,900		8,000	3,000	3,000 [1,000]	2/2	2/2
(pg/g-wet)	2017	5,000		31,000	800	800 [300]	2/2	2/2
Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
dodecanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2016	tr(1,400)	tr(1,500)	tr(1,800)	tr(1,100)	2,100 [700]	3/3	3/3
(pg/g-wet)	2017	2.000	1.400	4,700	1,300	900 [300]	3/3	3/3
Fish	2016	tr(1,800)	tr(1,800)	8,700	nd	2,100 [700]	17/19	17/19
(pg/g-wet)	2017	2,100	2.100	19,000	nd	900 [300]	18/19	18/19
Birds	2016	3,800		6,600	2,200	2,100 [700]	2/2	2/2
(pg/g-wet)	2017	5,500		25,000	1,200	900 [300]	2/2	2/2
400				20,000	1,200	Quantification	Detection 1	
Chlorinated tridecanes	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
Bivalves	2016	tr(700)	tr(700)	tr(900)	tr(500)	1,100 [400]	3/3	3/3
(pg/g-wet)	2017	870	700	3,100	tr(300)	500 [200]	3/3	3/3
Fish	2016	tr(800)	tr(800)	4,900	nd	1,100 [400]	17/19	17/19
(pg/g-wet)	2017	tr(290)	nd	4,100	nd	500 [200]	8/19	8/19
Birds	2016	1,400		1,500	1,400	1,100 [400]	2/2	2/2
Dilus								

(Note) Short-chain Chlorinated paraffins with 5~9 chlorines are target chemicals

<Air>

Chlorinated decanes: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 50 pg/m³, and the detection range was $tr(70)\sim1,500$ pg/m³.

Chlorinated undecanes: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 60 pg/m^3 , and the detection range was $tr(90)\sim2,300 \text{ pg/m}^3$.

Chlorinated dodecanes: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 30 pg/m³, and the detection range was tr(30)~730 pg/m³.

Chlorinated tridecanes: The presence of the substance in air was monitored at 37 sites, and it was detected at 35 of the 37 valid sites adopting the detection limit of 40 pg/m³, and none of the detected concentrations exceeded 1,600 pg/m³.

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in air in FY2016 and FY2017

Chlorinated	Monitored	Geometric				Quantification	Detection Frequency	
decanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Air	2016	tr(170)	tr(200)	940	nd	290 [110]	24/37	24/37
(pg/m^3)	2017	370	380	1,500	tr(70)	140 [50]	37/37	37/37
 Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
undecanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Air	2016	tr(350)	tr(320)	3,200	nd	610 [240]	20/37	20/37
(pg/m^3)	2017	500	510	2,300	tr(90)	190 [60]	37/37	37/37
Chlorinated	ated Monitored	Geometric				Quantification	Detection 1	Frequency
 dodecanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Air	2016	nd	nd	740	nd	430 [170]	7/37	7/37
(pg/m^3)	2017	190	190	730	tr(30)	100 [30]	37/37	37/37
 Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
tridecanes			Median	Maximum	Minimum	[Detection]	Commis	Cita
 undecanes	year	mean*				limit	Sample	Site
Air (pg/m³)	2016	nd	nd	510	nd	320 [120]	13/37	13/37

⁽Note) Short-chain Chlorinated paraffins with 4~7 chlorines are target chemicals

[24] Dicofol (reference)

· History and state of monitoring

Dicofol was used as insecticides and mites etc., but the registration of Chlordanes under the Agricultural Chemicals Regulation Law was expired in FY2004. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2005. The POPs Review Committee evaluates the proposals and makes recommendation to the Conference of the Parties, and currently, Dicofol is under review.

Under the framework of the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was surveied in sediment in FY2004.

Under the framework of the Environmental Monitoring, the substance has been monitored in wildlife (bivalves, fish and birds) in FY2006, in surface water, sediment, wildlife (bivalves, fish and birds) in FY2008 and in air in FY2016.

No monitoring was conducted in FY2017. For reference, the monitoring results up to FY2016 are given below.

• Monitoring results until FY2016 (reference)

<Surface Water>

Stocktaking of the detection of Dicofol in surface water in FY2008

	Monitored	Geometric				Quantification	Detection l	Frequency
Dicofol	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water (pg/L)	2008	nd	nd	76	nd	25 [10]	13/48	13/48

<Sediment>

Stocktaking of the detection of Dicofol in sediment in FY2018

	Monitored	Geometric				Quantification	Detection	Frequency
Dicofol	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment(pg/g-dry)	2008	nd	nd	460	nd	160 [63]	13/63	30/186

⁽Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points.

<Wildlife>

Stocktaking of the detection of Dicofol in wildlife (bivalves, fish and birds) in FY2006 and FY2008

	Monitored	Geometric				Quantification	Detection Frequency	
Dicofol	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2006	tr(58)	tr(70)	240	nd	92 [36]	22/31	5/7
(pg/g-wet)	2008	tr(110)	120	210	nd	120 [48]	28/31	7/7
Fish	2006	nd	nd	290	nd	92 [36]	5/80	1/16
(pg/g-wet)	2008	tr(62)	tr(77)	270	nd	120 [48]	55/85	14/17
Birds	2006	nd	nd	nd	nd	92 [36]	0/10	0/2
(pg/g-wet)	2008	nd	nd	300	nd	120 [48]	1/10	1/2

⁽Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points.

<Air>

Stocktaking of the detection of Dicofol in air in FY2016

		Geometric				Quantification	Detection Frequency	
Dicofol	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Air (pg/m ³)	2016Warm season	nd	nd	1.0	nd	0.5 [0.2]	10/37	10/37

• References

- i) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Surface Water/Sediment Monitoring (http://www.env.go.jp/chemi/kurohon/)
- ii) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Wildlife Monitoring (http://www.env.go.jp/chemi/kurohon/)
 iii) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals
- iii) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Follow-up Survey of the Status of Pollution by Unintentionally Formed Chemicals (http://www.env.go.jp/chemi/kurohon/)
- iv) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Environmental Survey of Chemical Substances (http://www.env.go.jp/chemi/kurohon/)

Egg of Great Cormorants (egg yolk and white) (References)

In the FY2017 monitoring survey, eggs of great cormorants were analyzed to check for the presence of 11 chemicals (groups): Total PCBs, Hexachlorobenzene, HCHs (hexachlorobexanes), Polybromodiphenyl ethers, Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acid (PFOA), Pentachlorobenzene, 1,2,5,6,9,10-Hexabromocyclododecanes, Total Polychlorinated Naphthalenes, Pentachlorophenol and its salts and esters, and Short-chain chlorinated paraffins.

The eggs were taken under Shimosone-bashi Bridge Riv. Fuefuki* and around Koyaike pond**. The results of the analysis in Table 1.

- (Note 1) " * ": The eggs were taken by Yamanashi Institute for Public Health and Environment and Yamanashi Prefectural Fisheries Technology Center.
- (Note 2) " ** " :The eggs were taken by Water and Air Quality Control Division, Environmental Management Bureau, Agricultural and Environmental Affairs Department, Hyogo Prefectural Government and Green Nature Division, Environmental Policy Office, Department of Citizen Autonomy, Itami City.

Table 1 List of the detection values of egg of Great Cormorant

No. Target chemicals Checking Checking Chimists Chin City Egg white Egg wh					Egg of Grea		(Reposted) Adult of Great Cormorant**			
Figs white Figs yolk Figs white Figs y	No.	Target chemicals		Riv.F (Kofu	Riv.Fuefuki		_	(offshore of	(Kurayoshi	
RCHS HCB 3.9[1.3] 93 35,000 63 24,000 4,900 230 HCHS (Hexachlorohexanes)				Egg white	Egg yolk	Egg white	Egg yolk	Island)	City)	
HCHs (Hexachlorohexanes)	[1]	Total PCBs	68 [23]	4,800	2,500,000	37,000	14,800,000	380,000	4,000	
[11-1] a-HCH 3[1] 5 270 7 560 930 7 [1-1] [11-2] b-HCH 3[1] 220 8,200 510 17,000 3,500 300 300 [11-3] p-HCH (synonym±indane) 3[1] 6 510 tr(1) 140 20 tr(1) de	[2]	HCB	3.9[1.3]	93	35,000	63	24,000	4,900	230	
$ \begin{bmatrix} 111 \\ 11-2 \\ 11-3 \\ 2 \\ 11-4 \\ 3 \\ 11-2 \\ 3 \\ 4 \\ 11-4 \\ 4 \\ 11-4 \\ 4 \\ 11-4 \\ 11-4 \\ 4 \\ 11-4 \\ 11-4 \\ 4 \\ 11-4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\$		HCHs (Hexachlorohexanes)	•							
The content of the		[11-1] α-HCH	3[1]	5	270	7	560	930	7	
	[11]	[11-2] β-HCH	3[1]	220	8,200	510	17,000	3,500	300	
Polybromodiphenyl ethers 16 [6] 160 27,000 32 7,000 660 26 [14-2] Pentabromodiphenyl ethers 12 [5] 36 20,000 12 5,700 500 12 [14-3] Hexabromodiphenyl ethers 17 [7] 34 25,000 tr(11) 10,000 1,000 51 [14-4] Heptabromodiphenyl ethers 22 [8] nd 12,000 nd 8,100 440 tr(18) [14-5] Octabromodiphenyl ethers 20 [8] nd 11,000 nd 12,000 720 25 [14-6] Nonabromodiphenyl ethers 50 [20] nd 450 nd 160 nd nd [14-7] Decabromodiphenyl ether 210 [80] nd 680 nd 260 nd nd [14-7] Decabromodiphenyl ether 210 [80] nd 680 nd 260 nd nd [15] Perfluorooctanoic acid (PFOS) 12 [4] 270 53,000 300 21,000 32,000 3,000 [16] Perfluorooctanoic acid (PFOA) 12 [4] tr(4) 540 24 1,100 680 85 [17] Pentachlorobenzene 4 [1] 15 5,600 12 3,900 470 35 12,5,6,9,10-Hexabromocyclododecanes [19-1] a-1,2,5,6,9,10-Hexabromocyclododecanes [19-2] a-1,2,5,6,9,10-Hexabromocyclododecanes 24 [9] 390 47,000 170 26,000 2,200 50 [19] [19-2] a-1,2,5,6,9,10-Hexabromocyclododecanes 24 [9] nd nd nd nd nd nd nd n		[11-3] γ-HCH (synonym:Lindane)	3[1]	6	510	tr(1)	140	20	tr(1)	
[14-1] Tetrabromodiphenyl ethers		[11-4] δ-HCH	2.3[0.9]	nd	12	tr(1.7)	30	tr(1.0)	nd	
[14-2] Pentabromodiphenyl ethers 12 [5] 36 20,000 12 5,700 500 12 [14-3] Hexabromodiphenyl ethers 17 [7] 34 25,000 tr(11) 10,000 1,000 51 [14-4] Heptabromodiphenyl ethers 22 [8] nd 12,000 nd 8,100 440 tr(18) [14-5] Octabromodiphenyl ethers 20 [8] nd 11,000 nd 12,000 720 25 [14-6] Nonabromodiphenyl ethers 50 [20] nd 450 nd 160 nd nd nd [14-7] Decabromodiphenyl ethers 210 [80] nd 680 nd 260 nd nd nd nd [15] Perfluorooctane sulfonic acid (PFOS) 12 [4] 270 53,000 300 21,000 32,000 3,000 [16] Perfluorooctane sulfonic acid (PFOA) 12 [4] tr(4) 540 24 1,100 680 85 17] Pentachlorobenzene 4 [1] 15 5,600 12 3,900 470 35 1,2,5,6,9,10-Hexabromocyclododecanes [19-1] a-1,2,5,6,9,10-Hexabromocyclododecane 24 [9] 390 47,000 170 26,000 2,200 50 ne 19-3] β-1,2,5,6,9,10-Hexabromocyclododecane 24 [9] 390 47,000 170 26,000 2,200 50 ne 19-3] β-1,2,5,6,9,10-Hexabromocyclododecane 24 [9] nd nd nd nd nd nd nd n		Polybromodiphenyl ethers(Br ₄ ~Br ₁₀)								
[143] Hexabromodiphenyl ethers		[14-1] Tetrabromodiphenyl ethers	16 [6]	160	27,000	32	7,000	660	26	
144 Heptabromodiphenyl ethers 22 [8] nd 12,000 nd 8,100 440 tr(18)		[14-2] Pentabromodiphenyl ethers	12 [5]	36	20,000	12	5,700	500	12	
[14-4] Heptabromodiphenyl ethers 22 [8] nd 12,000 nd 8,100 440 tr(18)	F1.43	[14-3] Hexabromodiphenyl ethers	17 [7]	34	25,000	tr(11)	10,000	1,000	51	
[14-6] Nonabromodiphenyl ethers	[14]	[14-4] Heptabromodiphenyl ethers	22 [8]	nd	12,000	nd	8,100	440	tr(18)	
Table Tab		[14-5] Octabromodiphenyl ethers	20 [8]	nd	11,000	nd	12,000	720	25	
15 Perfluoroctane sulfonic acid (PFOS) 12 [4] 270 53,000 300 21,000 32,000 3,000 16 Perfluoroctanoic acid (PFOA) 12 [4] tr(4) 540 24 1,100 680 85 17 Pentachlorobenzene 4 [1] 15 5,600 12 3,900 470 35 1,2,5,6,9,10-Hexabromocyclododecanes [19-1] α-1,2,5,6,9,10-Hexabromocyclododecane 24 [9] 390 47,000 170 26,000 2,200 50 19 β-1,2,5,6,9,10-Hexabromocyclododecane 23 [9] nd nd nd nd nd nd nd n		[14-6] Nonabromodiphenyl ethers	50 [20]	nd	450	nd	160	nd	nd	
16 Perfluorooctanoic acid (PFOA) 12 [4] tr(4) 540 24 1,100 680 85 17 Pentachlorobenzene 4 [1] 15 5,600 12 3,900 470 35 1,2,5,6,9,10-Hexabromocyclododecanes [19-1]		[14-7] Decabromodiphenyl ether	210[80]	nd	680	nd	260	nd	nd	
Pentachlorobenzene	[15]	Perfluorooctane sulfonic acid (PFOS)	12 [4]	270	53,000	300	21,000	32,000	3,000	
Pentachlorobenzene	[16]	Perfluorooctanoic acid (PFOA)	12 [4]	tr(4)	540	24	1,100	680	85	
1,2,5,6,9,10-Hexabromocyclododecanes 19-1 α-1,2,5,6,9,10-Hexabromocyclododeca 24 [9] 390 47,000 170 26,000 2,200 50	[17]	Pentachlorobenzene			5,600	12	3,900	470	35	
[19-1] α-1,2,5,6,9,10-Hexabromocyclododeca ne [19-2] β-1,2,5,6,9,10-Hexabromocyclododeca ne [19-3] γ-1,2,5,6,9,10-Hexabromocyclododeca ne [19-3] γ-1,2,5,6,9,10-Hexabromocyclododeca ne [19-3] γ-1,2,5,6,9,10-Hexabromocyclododeca ne [20] Total Polychlorinated Naphthalenes 33 [12] nd 9,200 nd 7,300 460 tr(18) Pentachlorophenol and its salts and esters [22] [22-1] Pentachlorophenol 36 [12] tr(13) 750 tr(19) 140 300 11,000 [22-2] Pentachloroanisole 4 [1] tr(2) 570 tr(1) 220 11 47 Short-chain chlorinated decanes 500 [200] nd 33,00 tr(400) 34,000 1,600 nd [23] [23-2] Chlorinated dudecanes 800 [300] tr(600) 200,000 5,300 320,000 31,000 800 [23-3] Chlorinated dodecanes 900 [300] tr(700) 170,000 2,700 480,000 2,5000 1,200		1,2,5,6,9,10-Hexabromocyclododecanes								
19 β-1,2,5,6,9,10-Hexabromocyclododeca 23 [9] nd nd nd nd nd nd nd n		[19-1] α-1,2,5,6,9,10-Hexabromocyclododeca	24 [9]	390	47,000	170	26,000	2,200	50	
V-1,2,5,6,9,10-Hexabromocyclododeca 24 [9] nd 410 nd 79 tr(18) nd nd ne nd nd nd nd nd	[19]	β -1,2,5,6,9,10-Hexabromocyclododeca	23 [9]	nd	nd	nd	nd	nd	nd	
Pentachlorophenol and its salts and esters		γ -1,2,5,6,9,10-Hexabromocyclododeca	24 [9]	nd	410	nd	79	tr(18)	nd	
[22] [22-1] Pentachlorophenol 36 [12] tr(13) 750 tr(19) 140 300 11,000 [22-2] Pentachloroanisole 4 [1] tr(2) 570 tr(1) 220 11 47 Short-chain chlorinated paraffins [23-1] Chlorinated decanes 500 [200] nd 33,00 tr(400) 34,000 1,600 nd [23] [23-2] Chlorinated undecanes 800 [300] tr(600) 200,000 5,300 320,000 31,000 800 [23-3] Chlorinated dodecanes 900 [300] tr(700) 170,000 2,700 480,000 25,000 1,200	[20]	Total Polychlorinated Naphthalenes	33 [12]	nd	9,200	nd	7,300	460	tr(18)	
[22-2] Pentachloroanisole 4 [1] tr(2) 570 tr(1) 220 11 47 Short-chain chlorinated paraffins [23-1] Chlorinated decanes 500 [200] nd 33,00 tr(400) 34,000 1,600 nd [23] [23-2] Chlorinated undecanes 800 [300] tr(600) 200,000 5,300 320,000 31,000 800 [23-3] Chlorinated dodecanes 900 [300] tr(700) 170,000 2,700 480,000 25,000 1,200										
Short-chain chlorinated paraffins [23-1] Chlorinated decanes 500 [200] nd 33,00 tr(400) 34,000 1,600 nd [23] [23-2] Chlorinated undecanes 800 [300] tr(600) 200,000 5,300 320,000 31,000 800 [23-3] Chlorinated dodecanes 900 [300] tr(700) 170,000 2,700 480,000 25,000 1,200	[22]	[22-1] Pentachlorophenol	36 [12]	tr(13)	750	tr(19)	140	300	11,000	
[23-1] Chlorinated decanes 500 [200] nd 33,00 tr(400) 34,000 1,600 nd [23-2] Chlorinated undecanes 800 [300] tr(600) 200,000 5,300 320,000 31,000 800 [23-3] Chlorinated dodecanes 900 [300] tr(700) 170,000 2,700 480,000 25,000 1,200	L	[22-2] Pentachloroanisole	4 [1]	tr(2)	570	tr(1)	220	11	47	
[23] [23-2] Chlorinated undecanes 800 [300] tr(600) 200,000 5,300 320,000 31,000 800 [23-3] Chlorinated dodecanes 900 [300] tr(700) 170,000 2,700 480,000 25,000 1,200		Short-chain chlorinated paraffins								
[23] [23-2] Chlorinated undecanes 800 [300] tr(600) 200,000 5,300 320,000 31,000 800 [23-3] Chlorinated dodecanes 900 [300] tr(700) 170,000 2,700 480,000 25,000 1,200		[23-1] Chlorinated decanes	500 [200]	nd	33,00	tr(400)	34,000	1,600	nd	
[23-3] Chlorinated dodecanes 900 [300] tr(700) 170,000 2,700 480,000 25,000 1,200	[23]	[23-2] Chlorinated undecanes		tr(600)	200,000		320,000	31,000	800	
	-	[23-3] Chlorinated dodecanes	900 [300]	`	170,000	2,700			1,200	
		[23-4] Chlorinated tridecanes		nd					nd	

⁽Note 1) "*" indicates the sum value of the Quantification [Detection] limits of each congener.
(Note 2) "**" indicates these values are previously mentioned in the main part but are mentioned here again to indicate the stage of life cycle of great cormorants from egg to adult.