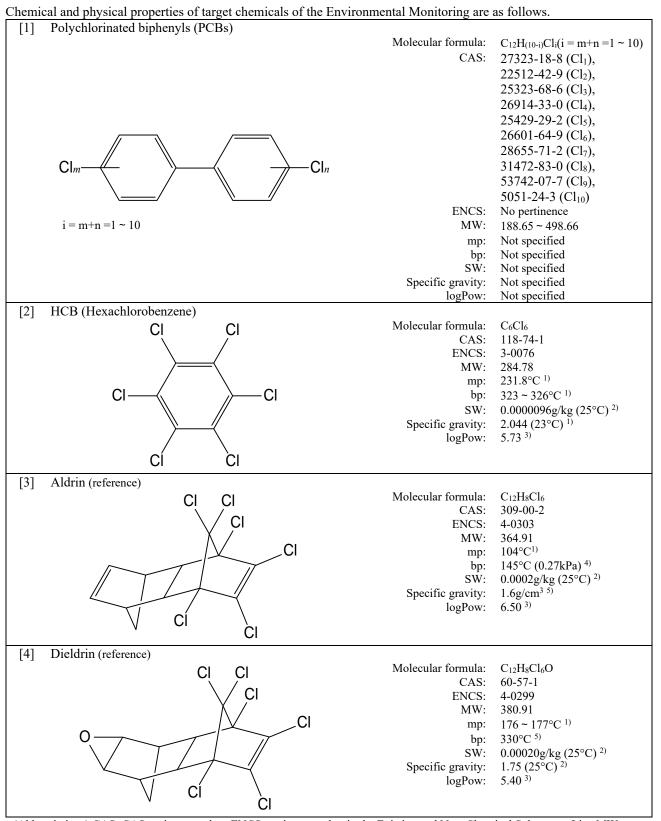
# Chapter 3 Results of the Environmental Monitoring in FY 2012

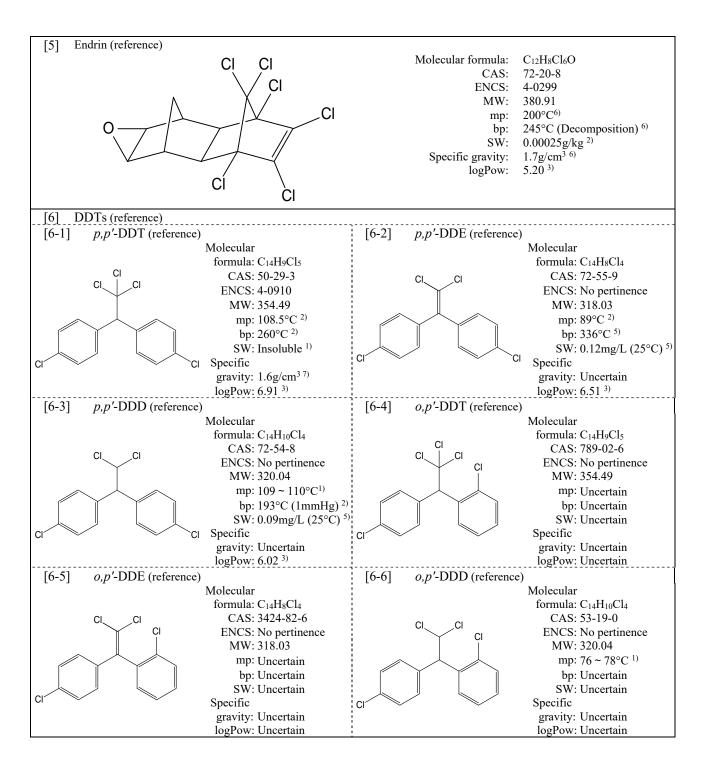
# 1. Purpose of the monitoring

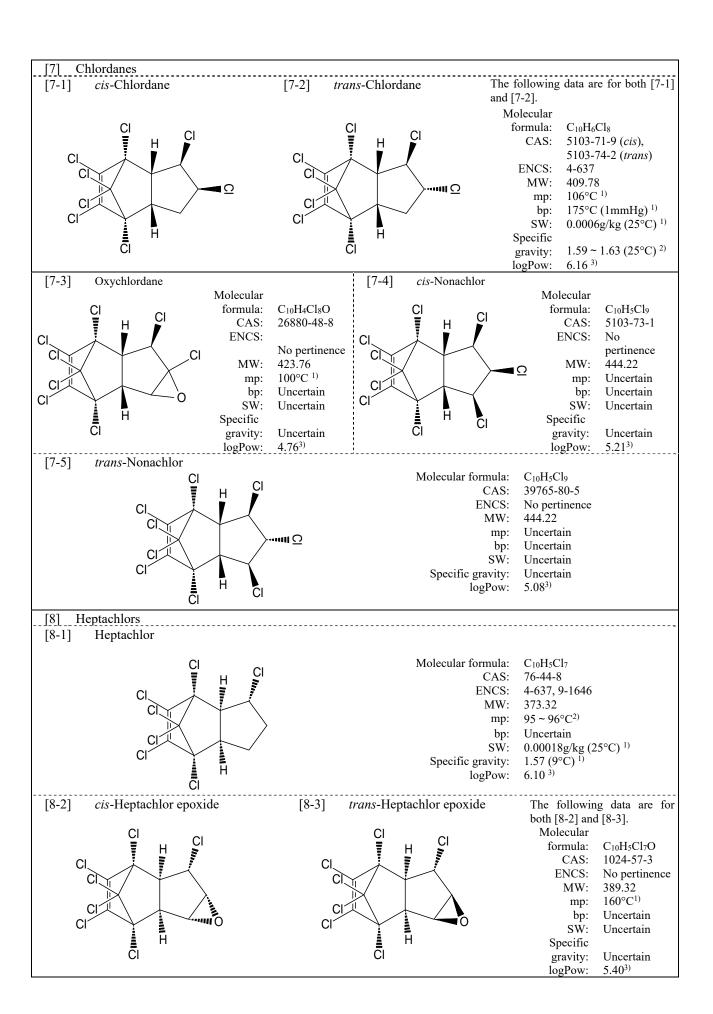
Environmental Monitoring provides annual surveys of the environmental persistence of target chemicals as listed in the Stockholm Convention, chemicals that while undesignated are still subject to review for potential risk, and/or highly persistent chemicals annotated as Specified Chemical Substances and Monitored Chemical Substances under the Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances (aka, the Chemical Substances Control Law), all target chemicals whose year to year changes in persistence in the environment must be understood.

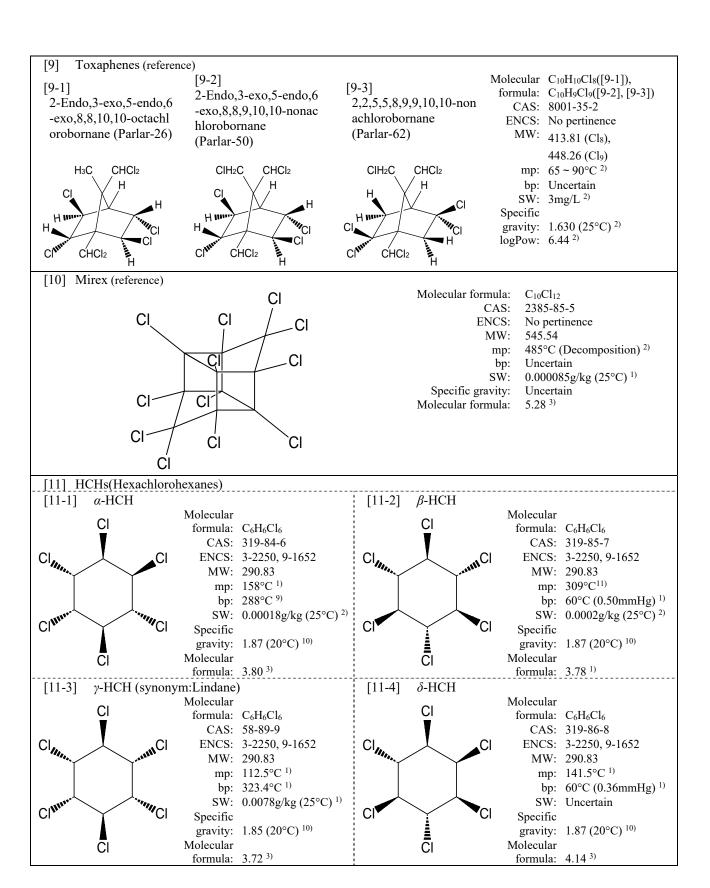
\*POPs: persistent organic pollutants


### 2. Target chemicals

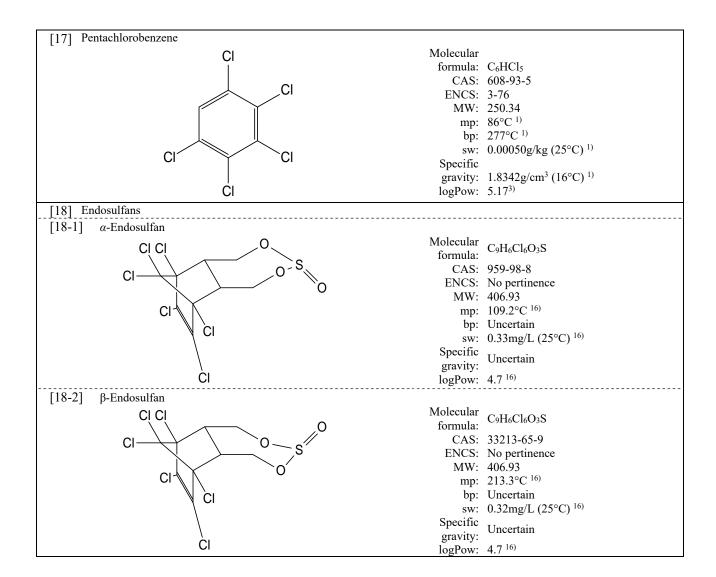
In the FY 2012 Environmental Monitoring, usual 10 chemicals (groups) which added Hexachlorohexanes\*, Chlordecone, Hexabromobiphenyls, Polybromodiphenyl ethers ( $Br_4 \sim Br_{10}$ ) \*\*, Perfluorooctane sulfonic acid (PFOS), Pentachlorobenzene which were adopted to be POPs in the Stockholm Convention at fourth meeting of the Conference of the Parties held from 4 to 8 May 2009 and Endosulfans which was adopted to be POPs in the Stockholm Convention at fifth meeting of the Conference of the Parties held from 25 to 29 April 2011, to initial 7 chemicals\*\*\* (groups), namely, Polychlorinated biphenyls (PCBs), Hexachlorobenzene, Dieldrin, Endrin, Chlordanes, Heptachlors and Mirex included in the Stockholm Convention (hereafter, POPs), and 3 chemicals (groups), namely, Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acid (PFOA), 1,2,5,6,9,10-Hexabromocyclododecanes were designated as target chemicals. The combinations of target chemicals and the monitoring media are given below.

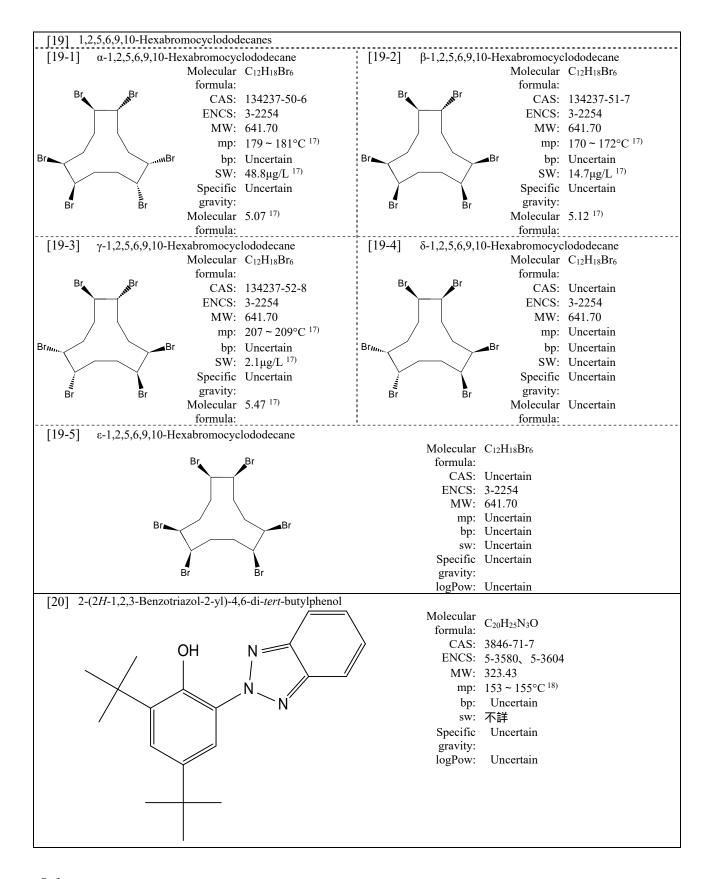

- \* In the COP4,  $\alpha$ -HCH,  $\beta$ -HCH and  $\gamma$ -HCH (synonym:Lindane) were adopted to be POPs among HCHs, but in this Environmental Monitoring, HCHs which were able to include  $\delta$ -HCH were designated as target chemicals.
- \*\* In the COP4, Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers and Heptabromodiphenyl ethers were adopted to be POPs among Polybromodiphenyl ethers but in this Environmental Monitoring, Polybromodiphenyl ethers(Br<sub>4</sub> ~ Br<sub>10</sub>) which were able to include Octabromodiphenyl ethers Nonabromodiphenyl ethers and Decabromodiphenyl ether were designated as target chemicals.
- \*\*\* Up to FY 2009, the ten (10) target substance groups of pollutants annotated in the Stockholm Convention text with the exceptions of Polybrominated dibenzo-p-dioxin (PCDDs) and Polybrominated dibenzo-furans (PCDFs) were monitored each fiscal year. As of FY 2010, the scope of monitoring had been reviewed and adjustments made to implementation frequency; as some target substances were re-designated for bi-annual monitoring, the scope did not include three (3)substances (groups): Aldrin, DDTs, and Toxaphenes. In this vein, the FY 2009 or FY2010 findings for these three (3) target substances not specifically monitored in FY 2011 have been included in this report for purpose of reference.


|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitored media  |          |          |     |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------|-----|--|
| No   | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Surface<br>water | Sediment | Wildlife | Air |  |
| [1]  | Polychlorinated biphenyls (PCBs)  [1-1] Monochlorobiphenyls [1-2] Dichlorobiphenyls [1-3] Trichlorobiphenyls [1-4-1] Tetrachlorobiphenyls [1-4-1] 3,3',4,4'-Tetrachlorobiphenyl (#77) [1-4-2] 3,4,4',5-Tetrachlorobiphenyl (#81) [1-5] Pentachlorobiphenyls [1-5-1] 2,3,3',4,4'-Pentachlorobiphenyl (#105) [1-5-2] 2,3,4,4',5-Pentachlorobiphenyl (#118) [1-5-3] 2,3',4,4'-5-Pentachlorobiphenyl (#123) [1-5-5] 3,3',4,4',5-Pentachlorobiphenyl (#126) [1-6] Hexachlorobiphenyls [1-6-1] 2,3,3',4,4',5-Hexachlorobiphenyl (#156) [1-6-2] 2,3,3',4,4',5'-Hexachlorobiphenyl (#157) [1-6-3] 2,3',4,4',5,5'-Hexachlorobiphenyl (#167) [1-6-4] 3,3',4,4',5,5'-Hexachlorobiphenyl (#169) [1-7] Heptachlorobiphenyls [1-7-1] 2,2',3,3',4,4',5,5'-Heptachlorobiphenyl (#180) [1-7-2] 2,2',3,4,4',5,5'-Heptachlorobiphenyl (#189) [1-8] Octachlorobiphenyls [1-9] Nonachlorobiphenyls [1-10] Decachlorobiphenyl | 0                | 0        | 0        | 0   |  |
| [2]  | Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                | 0        | 0        | 0   |  |
| [3]  | Aldrin (reference)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |          |          |     |  |
| [4]  | Dieldrin (reference)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |          |          |     |  |
| [6]  | Endrin (reference)  DDTs (reference)  [6-1] p,p'-DDT (reference)  [6-2] p,p'-DDE (reference)  [6-3] p,p'-DDD (reference)  [6-4] o,p'-DDT (reference)  [6-5] o,p'-DDE (reference)  [6-6] o,p'-DDD (reference)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |          |          |     |  |
| [7]  | Chlordanes [7-1] cis-Chlordane [7-2] trans-Chlordane [7-3] Oxychlordane [7-4] cis-Nonachlor [7-5] trans-Nonachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                | 0        | 0        | 0   |  |
| [8]  | Heptachlors  [8-1] Heptachlor  [8-2] cis-Heptachlor epoxide  [8-3] trans-Heptachlor epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |          | 0        | 0   |  |
| [9]  | Toxaphenes (reference)  [9-1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |          |          |     |  |
| [10] | Mirex (reference)  HCHs (Hexachlorohexanes)  [11-1] $\alpha$ -HCH  [11-2] $\beta$ -HCH  [11-3] $\gamma$ -HCH (synonym:Lindane)  [11-4] $\delta$ -HCH  Chlordecone (reference)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                | 0        | 0        | 0   |  |


|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitored media  |          |          |     |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------|-----|--|
| No           | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Surface<br>water | Sediment | Wildlife | Air |  |
| [13]         | Hexabromobiphenyls (reference)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |          |          |     |  |
| [14]         | Polybromodiphenyl ethers (Br <sub>4</sub> ~ Br <sub>10</sub> ) $[14-1]  \text{Tetrabromodiphenyl ethers}$ $[14-1-1]  2,2',4,4'-\text{Tetrabromodiphenyl ether (#47)}$ $[14-2]  \text{Pentabromodiphenyl ethers}$ $[14-2-1]  2,2',4,4',5-\text{Pentabromodiphenyl ether (#99)}$ $[14-3]  \text{Hexabromodiphenyl ethers}$ $[14-3-1]  2,2',4,4',5,5'-\text{Pentabromodiphenyl ether (#153)}$ $[14-3-2]  2,2',4,4',5,6'-\text{Pentabromodiphenyl ether (#154)}$ $[14-4]  \text{Heptabromodiphenyl ethers}$ $[14-4-1]  2,2',3,3',4,5',6'-\text{Pentabromodiphenyl ether (#175)}$ $[14-4-2]  2,2',3,4,4',5',6'-\text{Pentabromodiphenyl ether (#183)}$ $[14-5]  \text{Octabromodiphenyl ethers}$ $[14-6]  \text{Nonabromodiphenyl ethers}$ $[14-7]  \text{Decabromodiphenyl ether}$ | 0                | 0        | 0        | 0   |  |
| [15]         | Perfluorooctane sulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                | 0        | 0        | 0   |  |
| [16]<br>[17] | Perfluorooctanoic acid (PFOA) Pentachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                | 0        | 0        | 0   |  |
| [18]         | Endosulfans [18-1] $\alpha$ -Endosulfan [18-2] $\beta$ -Endosulfan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                | 0        | 0        | 0   |  |
| [19]         | 1,2,5,6,9,10-Hexabromocyclododecanes         [19-1] $\alpha$ -1,2,5,6,9,10-Hexabromocyclododecane         [19-2] $\beta$ -1,2,5,6,9,10-Hexabromocyclododecane         [19-3] $\gamma$ -1,2,5,6,9,10-Hexabromocyclododecane         [19-4] $\delta$ -1,2,5,6,9,10-Hexabromocyclododecane         [19-5] $\varepsilon$ -1,2,5,6,9,10-Hexabromocyclododecane                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 0        | 0        | 0   |  |
| [20]         | 2-(2H-1,2,3-Benzotriazol-2-yl)-4,6-di-tert-butylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                | 0        | 0        |     |  |




(Abbreviations) CAS: CAS registry number, ENCS: registry number in the Existing and New Chemical Substances List, MW: molecular weight, mp: melting point, bp: boiling point, SW: solubility in water, logPow: *n*-octanol-water partition coefficient, kPa: kilopascal (1 atom 101.3kPa).








#### [12] Chlordecone (reference) Molecular formula: C<sub>10</sub>Cl<sub>10</sub>O CI CI CAS: 143-50-0 -CI ENCS: No pertinence MW: 490.64 CI mp: 350°C<sup>2)</sup> bp: Not specified CI-Cl sw: 7.6mg/L (24°C) 5) Specific CI CI gravity: 1.61 (25°C) 1) logPow: 3.45 <sup>12</sup>) [13] Hexabromobiphenyls (reference) Molecular formula: C<sub>12</sub>H<sub>4</sub>Br<sub>6</sub> CAS: 36355-01-8 ENCS: No pertinence MW: 627.58 $Br_n$ mp: Not specified bp: Not specified sw: Not specified Specific m+n=6gravity: Not specified logPow: Not specified [14] Polybromodiphenyl ethers ( $Br_4 \sim Br_{10}$ ) Molecular formula: $C_{12}H_{(10-i)}Br_iO$ (i = m+n =4 ~ 10) CAS: 40088-47-9 (Br<sub>4</sub>), 32534-81-9 (Br<sub>5</sub>), 36483-60-0 (Br<sub>6</sub>), 68928-80-3 (Br<sub>7</sub>), 0 32536-52-0 (Br<sub>8</sub>), 63936-56-1 (Br<sub>9</sub>), 1163-19-5 (Br<sub>10)</sub> ENCS: 3-61 (Br<sub>4</sub>), 3-2845 (Br<sub>6</sub>) $Br_m$ $Br_n$ MW: 485.79 ~ 959.17 mp: Not specified bp: Not specified sw: Not specified Specific $i = m + n = 4 \sim 10$ gravity: Not specified logPow: Not specified [15] Perfluorooctane sulfonic acid (PFOS) Molecular formula: C<sub>8</sub>HF<sub>17</sub>O<sub>3</sub>S CAS: 1763-23-1 ENCS: 2-1595 MW: 500.13 OH >400°C (potassium salt) <sup>13)</sup> mp: bp: Uncertain sw: 519mg/L (20°C, potassium salt) 13) Specific gravity: Uncertain logPow: Uncertain [16] Perfluorooctanoic acid(PFOA) Molecular formula: C<sub>8</sub>HF<sub>15</sub>O<sub>2</sub> CAS: 335-67-1 ENCS: 2-1182, 2-2659 MW: 414.07 mp: 54.3°C 1) OH bp: 192.4°C 1) sw: 9.5g/L (20°C) 14) Specific gravity: 1.79g/cm<sup>3</sup> 15) logPow: $6.3^{15}$ )





#### References

- 1) Haynes, CRC Handbook of Chemistry and Physics, 92nd Edition, CRC Press LLC (2011)
- 2) O'Neil, The Merck Index An Encyclopedia of Chemicals, Drugs, and Biologicals 14th Edition, Merck Co. Inc. (2006)
- 3) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 4) IPCS, International Chemical Safety Cards, Aldrin, ICSC0774 (1998)
- 5) Howard et al., Handbook of Physical Properties of Organic Chemicals, CRC Press Inc. (1996)
- 6) IPCS, International Chemical Safety Cards, Endrin, ICSC1023 (2000)

- 7) IPCS, International Chemical Safety Cards, DDT, ICSC0034 (2004)
- 8) Biggar et al., Apparent solubility of organochlorine insecticides in water at various temperatures, Hilgardia, 42, 383-391 (1974)
- 9) IPCS, International Chemical Safety Cards, alpha-Hexachlorocyclohexane, ICSC0795 (1998)
- 10) ATSDR, Toxicological Profile for alpha-, beta-, gamma- and delta-Hexachlorocyclohexane (2005)
- 11) IPCS, International Chemical Safety Cards, beta-Hexachlorocyclohexane, ICSC0796 (1998)
- 12) IPCS, International Chemical Safety Cards, Chlordecone ICSC1432 (2003)
- 13) United Nations Environment Programme (UNEP), Risk profile on perfluorooctane sulfonate, Report of the Persistent Organic Pollutants Review Committee on the work of its second meeting (2006)
- 14) OECD, Perfluorooctanoic Acid & Ammonium Perfluorooctanoate, SIDS Initial Assessment Profile for 26th SIAM (2008)
- 15) IPCS, International Chemical Safety Cards, Perfkuorooctanoic acid, ICSC1613 (2005)
- 16) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on endosulfan, Report of the Persistent Organic Pollutants Review Committee on the work of its fifth meeting (2009)
- 17) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on hexabromocyclododecane, Report of the Persistent Organic Pollutants Review Committee on the work of its sixth meeting (2010)
- 18) Judi Rosevear et al., Australian Journal of Chemistry, 38, 8, 1163-1176 (1985)

# 3. Monitored site and procedure

In the Environmental Monitoring (of surface water, sediment, wildlife, and air), the sampling of specimens was entrusted to prefectural governments and government-designated cities across Japan and the specimens sampled were analysed by private analytical laboratories.

# (1) Organisations responsible for sampling

| т 1               |                                                                                                                                                                  | Monitored media  |          |            |     |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|------------|-----|
| Local communities | Organisations responsible for sampling                                                                                                                           | Surface<br>water | Sediment | Wildlife   | Air |
| Hokkaido          | Hokkaido Research Organization Environmental and Geological Research Department Institute of Environmental Sciences                                              | 0                | 0        | 0          | 0   |
| Sapporo City      | Sapporo City Institute of Public Health                                                                                                                          |                  |          |            | 0   |
| Aomori Pref.      | Aomori Prefectural Government Sanpachi District Administration<br>Office Management and Local Coordination Division Hachinohe<br>Environmental Management Office |                  |          | o <b>*</b> |     |
| Iwate Pref.       | Research Institute for Environmental Sciences and Public Health of Iwate Prefecture                                                                              | 0                | 0        | 0          | 0   |
| Miyagi Pref.      | Miyagi Prefectural Institute of Public Health and Environment                                                                                                    | 0                | 0        | 0          | 0   |
| Sendai City       | Sendai City Institute of Public Health                                                                                                                           |                  | 0        |            |     |
| Akita Pref.       | Akita Research Center for Public Health and Environment                                                                                                          | 0                | 0        |            |     |
| Yamagata Pref.    | Yamagata Institute of Environmental Sciences                                                                                                                     | 0                | 0        |            |     |
| Fukushima Pref.   | Fukushima Prefectural Institute of Environmental Research                                                                                                        | 0                | 0        |            |     |
| Ibaraki Pref.     | Ibaraki Kasumigaura Environmental Science Center                                                                                                                 | 0                | 0        | 0          | 0   |
| Tochigi Pref.     | Tochigi Prefectural Institute of Public Health and Environmental Science                                                                                         | 0                | 0        |            |     |
| Gunma Pref.       | Gunma Prefectural Institute of Public Health and Environmental Sciences                                                                                          |                  |          |            | 0   |
| Saitama Pref.     | Center for Environmental Science in Saitama                                                                                                                      | 0                |          |            |     |
| Chiba Pref.       | Chiba Prefectural Environmental Research Center                                                                                                                  |                  | 0        |            | 0   |
| Chiba City        | Chiba City Institute of Health and Environment                                                                                                                   | 0                | 0        |            |     |
| Tokyo Met.        | Tokyo Metropolitan Research Institute for Environmental Protection                                                                                               | 0                | 0        | 0          | 0   |
| Kanagawa Pref.    | Kanagawa Environmental Research Center                                                                                                                           |                  |          |            | 0   |
| Yokohama City     | Yokohama Environmental Science Research Institute                                                                                                                | 0                | 0        | 0          | 0   |
| Kawasaki City     | Kawasaki Environmental Research Institute                                                                                                                        | 0                | 0        | 0          |     |
| Niigata Pref.     | Niigata Prefectural Institute of Public Health and Environmental Sciences                                                                                        | 0                | 0        |            | 0   |
| Toyama Pref.      | Toyama Prefectural Environmental Science Research Center                                                                                                         | 0                | 0        |            | 0   |
| Ishikawa Pref.    | Ishikawa Prefectural Institute of Public Health and Environmental Science                                                                                        | 0                | 0        | 0          | 0   |
| Fukui Pref.       | Fukui Prefectural Institute of Public Health and Environmental Science                                                                                           | 0                | 0        |            |     |
| Yamanashi Pref.   | Yamanashi Prefectural Institute of Public Health and Environment                                                                                                 |                  | 0        |            | 0   |
| Nagano Pref.      | Nagano Environmental Conservation Research Institute                                                                                                             | 0                | 0        |            | 0   |
| Gifu Pref.        | Gifu Prefectural Research Institute for Health and Environmental Sciences                                                                                        |                  |          |            | 0   |
| Shizuoka Pref.    | Shizuoka Institute of Environment and Hygiene                                                                                                                    | 0                | 0        |            |     |
| Aichi Pref.       | Aichi Environmental Research Center                                                                                                                              | 0                | 0        |            |     |
| Nagoya City       | Nagoya City Environmental Science Research Institute                                                                                                             |                  |          | 0          | 0   |
| Mie Pref.         | Mie Prefecture Health and Environment Research Institute                                                                                                         | 0                | 0        |            | 0   |
| Shiga Pref.       | Lake Biwa Environmental Research Institute                                                                                                                       | 0                | 0        | 0          |     |
| Kyoto Pref.       | Kyoto Prefectural Institute of Public Health and Environment                                                                                                     | 0                | 0        |            |     |
| Kyoto City        | Kyoto City Prefectural Institute of Public Health and Environment                                                                                                | 0                | 0        |            |     |
| Osaka Pref.       | Research Institute of Environment, Agriculture and Fisheries, Osaka<br>Prefectural Government                                                                    | 0                | 0        | 0          | 0   |
| Osaka City        | Osaka City Institute of Public Health and Environmental Sciences                                                                                                 | 0                | 0        |            |     |
| Hyogo Pref.       | Hyogo Prefectural Agricultural Administration and Environment Division, Environment Bureau                                                                       | 0                | 0        |            | 0   |
| Kobe City         | Environmental Conservation and Guidance Division, Environment Bureau                                                                                             | 0                | 0        |            | 0   |
| Nara Pref.        | Nara Prefectural Institute for Hygiene and Environment                                                                                                           |                  | 0        |            | 0   |
| Wakayama Pref.    | Wakayama Prefectural Research Center of Environment and Public<br>Health                                                                                         | 0                | 0        |            |     |
| Tottori Pref.     | Tottori Prefectural Institute of Public Health and Environment                                                                                                   |                  |          | 0          |     |
|                   |                                                                                                                                                                  | •                | •        |            |     |

| Local              |                                                                                                               | Monitored media  |          |          |     |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------|------------------|----------|----------|-----|--|--|
| communities        | Organisations responsible for sampling                                                                        | Surface<br>water | Sediment | Wildlife | Air |  |  |
| Shimane Pref.      | Shimane Prefectural Institute of Public Health and Environmental Science                                      |                  |          | 0        | 0   |  |  |
| Okayama Pref.      | Okayama Prefectural Institute for Environmental Science and Public Health                                     | 0                | 0        |          |     |  |  |
| Hiroshima Pref.    | Hiroshima Prefectural Technology Research Institute Health and<br>Environment Center                          | 0                | 0        |          |     |  |  |
| Hiroshima City     | Hiroshima City Institute of Public Health                                                                     |                  |          | 0        | 0   |  |  |
| Yamaguchi<br>Pref. | Yamaguchi Prefectural Public Health and Environment                                                           | 0                | 0        |          | 0   |  |  |
| Tokushima Pref.    | Tokushima Prefectural Pablic Health, Pharmaceutical and Environmental Science Center                          | 0                | 0        |          | 0   |  |  |
| Kagawa Pref.       | Kagawa Prefectural Research Institute for Environmental Sciences and Public Health                            | 0                | 0        | 0        | 0   |  |  |
| Ehime Pref.        | Ehime Prefectural Institute of Public Health and Environmental Science                                        |                  | 0        |          | 0   |  |  |
| Kochi Pref.        | Kochi Prefectural Environmental Research Center                                                               | 0                | 0        | 0        |     |  |  |
| Fukuoka Pref.      | Fukuoka Institute of Health and Environmental Science                                                         |                  |          |          | 0   |  |  |
| Kitakyushu City    | Kitakyushu City Institute of Environmental Sciences                                                           | 0                | 0        | 0        |     |  |  |
| Fukuoka City       | Fukuoka City Institute for Hygiene and the Environment                                                        |                  | 0        |          |     |  |  |
| Saga Pref.         | Saga Prefectural Environmental Research Center                                                                | 0                | 0        |          | 0   |  |  |
| Nagasaki Pref.     | Public Relations and Public Hearing Division, Policy Planning and<br>Coordination Bureau, Nagasaki Prefecture | 0                | 0        |          |     |  |  |
| Kumamoto Pref.     | Kumamoto Prefectural Institute of Public Health and Environmental Science                                     | 0                |          |          | 0   |  |  |
| Oita Pref.         | Oita Prefectural Environmental Preservation Division, Life and Environment Department                         |                  | 0        | 0        |     |  |  |
| Miyazaki Pref.     | Miyazaki Prefectural Institute for Public Health and Environment                                              | 0                | 0        |          | 0   |  |  |
| Kagoshima Pref.    | Kagoshima Prefectural Institute for Environmental Research and Public Health                                  | 0                | 0        | 0        | 0   |  |  |
| Okinawa Pref.      | Okinawa Prefectural Institute of Health and Environment                                                       | 0                | 0        | 0        | 0   |  |  |

(Note1) Organisations responsible for sampling are described by their official names in FY 2012.

(Note2) "\*": A public interest incorporated foundation collected specimens because local public organizations could not take samples .

# (2) Monitored sites (areas)

Monitored sites (areas) are shown in Table 3-1-1 and Figure 3-1-1 for surface water, Table 3-1-2 and Figure 3-1-2 for sediment, Table 3-1-3 and Figure 3-1-3 for wildlife and Table 3-1-4 and Figure 3-1-4 for air. The breakdown is summarized as follows.

| Monitored media        | Numbers of local communities | Numbers of target chemicals (groups) | Numbers of monitored sites (or areas) | Numbers of samples at a monitored site (or area) |
|------------------------|------------------------------|--------------------------------------|---------------------------------------|--------------------------------------------------|
| Surface water          | 42                           | 10                                   | 48                                    | 1                                                |
| Sediment               | 47                           | 11                                   | 63                                    | 1 or 3 *                                         |
| Wildlife<br>(bivalves) | 5                            | 12                                   | 5                                     | 1 or 3 **                                        |
| Wildlife (fish)        | 17                           | 12                                   | 19                                    | 1 or 3 **                                        |
| Wildlife (birds)       | 2                            | 12                                   | 2                                     | 1 or 3 **                                        |
| Air (warm season)      | 34                           | 11                                   | 36                                    | 1                                                |
| Air (cold season)      | 34                           | 11                                   | 36                                    | 1                                                |
| All media              | 59                           | 12                                   | 119                                   |                                                  |

(Note 1) "\*": For bottom/sediment cover, t at each monitoring point, three(3) specimen samples were collected. The target substances [20] 2-(2H-1,2,3-Benzotriazol-2-yl)-4,6-di-tert-butylphenol were analysed with the three(3) specimen samples for each place. The other substances were analysed for each place with one(1) specimen sample that is a mixture of equal parts of the three(3) specimen samples.

substances were analysed for each place with one(1) specimen sample that is a mixture of equal parts of the three(3) specimen samples.

(Note 2) "\*\*": For biological species, at each monitoring point, three(3) specimen samples were collected. The target substance 2-(2H-1,2,3-Benzotriazol-2-yl)-4,6-di-tert-butylphenol was analysed with the three(3) specimen samples for each place. The other substances were analysed for each place with one(1) specimen sample that is a mixture of equal parts of the three(3) specimen samples.

Table 3-1-1 List of monitored sites (surface water) in the Environmental Monitoring in FY 2012

| Table 3-1-1 List of | f monitored sites (surface water) in the Environmental Monitoring in F | Y 2012               |
|---------------------|------------------------------------------------------------------------|----------------------|
| Local communities   | Monitored sites                                                        | Sampling dates       |
| Hokkaido            | Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City)                       | October 19, 2012     |
|                     | Ishikarikakokyo Bridge, Mouth of Riv. Ishikari(Ishikari City)          | November 16, 2012    |
| Iwate Pref.         | Riv. Toyosawa(Hanamaki City)                                           | October 10, 2012     |
| Miyagi Pref.        | Sendai Bay(Matsushima Bay)                                             | November 1, 2012     |
| Akita Pref.         | Lake Hachiro                                                           | October 17, 2012     |
| Yamagata Pref.      | Mouth of Riv. Mogami(Sakata City)                                      | October 18, 2012     |
| Fukushima Pref.     | Onahama Port                                                           | October 31, 2012     |
| Ibaraki Pref.       | Tonekamome-ohasi Bridge, Mouth of Riv. Tone(Kamisu City)               | November 14, 2012    |
| Tochigi Pref.       | Riv. Tagawa(Utsunomiya City)                                           | November 1, 2012     |
| Saitama Pref.       | Akigaseshusui of Riv. Arakawa                                          | November 18, 2012    |
| Chiba City          | Mouth of Riv. Hanami(Chiba City)                                       | October 30, 2012     |
| Tokyo Met.          | Mouth of Riv. Arakawa(Koto Ward)                                       | November 5, 2012     |
| Tokyo Wict.         | Mouth of Riv. Sumida(Minato Ward)                                      | November 5, 2012     |
| Yokohama City       | Yokohama Port                                                          | October 22, 2012     |
| Kawasaki City       | Keihin Canal, Port of Kawasaki                                         | November 7, 2012     |
| Niigata Pref.       | Lower Riv. Shinano(Niigata City)                                       | October 25, 2012     |
|                     | Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City)                | November 8, 2012     |
| Toyama Pref.        |                                                                        |                      |
| Ishikawa Pref.      | Mouth of Riv. Sai(Kanazawa City)                                       | October 31, 2012     |
| Fukui Pref.         | Mishima-bashi Bridge, Riv. Shono(Tsuruga City)                         | November 1, 2012     |
| Nagano Pref.        | Lake Suwa(center)                                                      | November 1, 2012     |
| Shizuoka Pref.      | Riv. Tenryu(Iwata City)                                                | October 16, 2012     |
| Aichi Pref.         | Nagoya Port                                                            | October 29, 2012     |
| Mie Pref.           | Yokkaichi Port                                                         | October 24, 2012     |
| Shiga Pref.         | Lake Biwa(center, offshore of Karasaki)                                | November 13, 2012    |
| Kyoto Pref.         | Miyazu Port                                                            | October 31, 2012     |
| Kyoto City          | Miyamae-bashi Bridge, Riv. Katsura(Kyoto City)                         | November 1, 2012     |
| Osaka Pref.         | Mouth of Riv. Yamato(Sakai City)                                       | November 28, 2012    |
| Osaka City          | Osaka Port                                                             | October 30, 2012     |
| Hyogo Pref.         | Offshore of Himeji                                                     | October 17, 2012     |
| Kobe City           | Kobe Port(center)                                                      | October 30, 2012     |
| Wakayama Pref.      | Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City)          | October 31, 2012     |
| Okayama Pref.       | Offshore of Mizushima                                                  | October 10, 2012     |
| Hiroshima Pref.     | Kure Port                                                              | November 7, 2012     |
|                     | Hiroshima Bay                                                          | November 7, 2012     |
| Yamaguchi Pref.     | Tokuyama Bay                                                           | November 15, 2012    |
|                     | Offshore of Ube                                                        | November 19, 2012    |
|                     | Offshore of Hagi                                                       | October 25, 2012     |
| Tokushima Pref.     | Mouth of Riv. Yoshino(Tokushima City)                                  | October 31, 2012     |
| Kagawa Pref.        | Takamatsu Port                                                         | October 2, 2012      |
| Kochi Pref.         | Mouth of Riv. Shimanto(Shimanto City)                                  | November 25, 2012    |
| Kitakyushu City     | Dokai Bay                                                              | October 29, 2012     |
| Saga Pref.          | Imari Bay                                                              | October 9, 2012      |
| Nagasaki Pref.      | Omura Bay                                                              | November 19, 2012    |
| Kumamoto Pref.      | Hiraki-bashi Bridge, Riv. Midori(Uto City)                             | October 10, 2012     |
| Miyazaki Pref.      | Mouth of Riv. Oyodo(Miyazaki City)                                     | October 31, 2012     |
| Kagoshima Pref.     | Riv. Amori(Kirishima City)                                             | November 13, 2012    |
| 5                   | Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City)               | November 12, 2012    |
| Okinawa Pref.       | Naha Port                                                              | November 20, 2012    |
| OKIIIAWA FICI.      | ivana i oit                                                            | 11016111061 20, 2012 |



Figure 3-1-1 Monitored sites (surface water) in the Environmental Monitoring in FY 2012

Table 3-1-2 List of monitored sites (sediment) in the Environmental Monitoring in FY 2012

|                                                                                                                                                                                          | monitored sites (sediment) in the Environmental Monitoring in FY 201                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Local communities                                                                                                                                                                        | Monitored sites                                                                                                                                                                                                                                                                         | Sampling dates                                                                                                                                                                                                                                                                     |
| Hokkaido                                                                                                                                                                                 | Onnenai-ohashi Bridge, Riv. Teshio(Bifuka Town) Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City)                                                                                                                                                                                        | October 16, 2012<br>October 19, 2012                                                                                                                                                                                                                                               |
|                                                                                                                                                                                          | Ishikarikakokyo Bridge, Mouth of Riv. Ishikari(Ishikari City)                                                                                                                                                                                                                           | November 6, 2012                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                          | Tomakomai Port                                                                                                                                                                                                                                                                          | ,                                                                                                                                                                                                                                                                                  |
| t- D£                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         | September 20, 2012                                                                                                                                                                                                                                                                 |
| wate Pref.                                                                                                                                                                               | Riv. Toyosawa(Hanamaki City)                                                                                                                                                                                                                                                            | October 10, 2012<br>November 1, 2012                                                                                                                                                                                                                                               |
| Miyagi Pref.                                                                                                                                                                             | Sendai Bay(Matsushima Bay) Hirose-ohashi Bridge, Riv. Hirose(Sendai City)                                                                                                                                                                                                               | November 1, 2012<br>November 19, 2012                                                                                                                                                                                                                                              |
| Sendai City<br>Akita Pref.                                                                                                                                                               |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                          | Lake Hachiro                                                                                                                                                                                                                                                                            | October 17, 2012                                                                                                                                                                                                                                                                   |
| Yamagata Pref.                                                                                                                                                                           | Mouth of Riv. Mogami(Sakata City)                                                                                                                                                                                                                                                       | October 18, 2012                                                                                                                                                                                                                                                                   |
| Fukushima Pref.                                                                                                                                                                          | Onahama Port                                                                                                                                                                                                                                                                            | October 31, 2012                                                                                                                                                                                                                                                                   |
| baraki Pref.                                                                                                                                                                             | Tonekamome-ohasi Bridge, Mouth of Riv. Tone(Kamisu City)                                                                                                                                                                                                                                | November 14, 2012                                                                                                                                                                                                                                                                  |
| Tochigi Pref.                                                                                                                                                                            | Riv. Tagawa(Utsunomiya City)                                                                                                                                                                                                                                                            | November 1, 2012                                                                                                                                                                                                                                                                   |
| Chiba Pref.                                                                                                                                                                              | Coast of Ichihara and Anegasaki                                                                                                                                                                                                                                                         | October 25, 2012                                                                                                                                                                                                                                                                   |
| Chiba City                                                                                                                                                                               | Mouth of Riv. Hanami(Chiba City)                                                                                                                                                                                                                                                        | October 30, 2012                                                                                                                                                                                                                                                                   |
| Гокуо Met.                                                                                                                                                                               | Mouth of Riv. Arakawa(Koto Ward)                                                                                                                                                                                                                                                        | November 5, 2012                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                          | Mouth of Riv. Sumida(Minato Ward)                                                                                                                                                                                                                                                       | November 5, 2012                                                                                                                                                                                                                                                                   |
| Yokohama City                                                                                                                                                                            | Yokohama Port                                                                                                                                                                                                                                                                           | October 22, 2012                                                                                                                                                                                                                                                                   |
| Kawasaki City                                                                                                                                                                            | Mouth of Riv. Tama(Kawasaki City)                                                                                                                                                                                                                                                       | November 7, 2012                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                          | Keihin Canal, Port of Kawasaki                                                                                                                                                                                                                                                          | November 7, 2012                                                                                                                                                                                                                                                                   |
| Niigata Pref.                                                                                                                                                                            | Lower Riv. Shinano(Niigata City)                                                                                                                                                                                                                                                        | October 25, 2012                                                                                                                                                                                                                                                                   |
| Гоуата Pref.                                                                                                                                                                             | Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City)                                                                                                                                                                                                                                 | November 1, 2012                                                                                                                                                                                                                                                                   |
| shikawa Pref.                                                                                                                                                                            | Mouth of Riv. Sai(Kanazawa City)                                                                                                                                                                                                                                                        | October 31, 2012                                                                                                                                                                                                                                                                   |
| Fukui Pref.                                                                                                                                                                              | Mishima-bashi Bridge, Riv. Shono(Tsuruga City)                                                                                                                                                                                                                                          | November 1, 2012                                                                                                                                                                                                                                                                   |
| Yamanashi Pref.                                                                                                                                                                          | Senshu-bashi Bridge, Riv. Arakawa(Kofu City)                                                                                                                                                                                                                                            | October 25, 2012                                                                                                                                                                                                                                                                   |
| Nagano Pref.                                                                                                                                                                             | Lake Suwa(center)                                                                                                                                                                                                                                                                       | November 1, 2012                                                                                                                                                                                                                                                                   |
| Shizuoka Pref.                                                                                                                                                                           | Shimizu Port                                                                                                                                                                                                                                                                            | October 10, 2012                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                          | Riv. Tenryu(Iwata City)                                                                                                                                                                                                                                                                 | October 16, 2012                                                                                                                                                                                                                                                                   |
| Aichi Pref.                                                                                                                                                                              | Kinuura Port                                                                                                                                                                                                                                                                            | October 29, 2012                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                          | Nagoya Port                                                                                                                                                                                                                                                                             | October 29, 2012                                                                                                                                                                                                                                                                   |
| Mie Pref.                                                                                                                                                                                | Yokkaichi Port                                                                                                                                                                                                                                                                          | October 24, 2012                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                          | Toba Port                                                                                                                                                                                                                                                                               | October 16, 2012                                                                                                                                                                                                                                                                   |
| Shiga Pref.                                                                                                                                                                              | Lake Biwa(center, offshore of Minamihira)                                                                                                                                                                                                                                               | November 13, 2012                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                          | Lake Biwa(center, offshore of Karasaki)                                                                                                                                                                                                                                                 | November 13, 2012                                                                                                                                                                                                                                                                  |
| Kyoto Pref.                                                                                                                                                                              | Miyazu Port                                                                                                                                                                                                                                                                             | October 31, 2012                                                                                                                                                                                                                                                                   |
| Kyoto City                                                                                                                                                                               | Miyamae-bashi Bridge, Riv. Katsura(Kyoto City)                                                                                                                                                                                                                                          | December 1, 2012                                                                                                                                                                                                                                                                   |
| Osaka Pref.                                                                                                                                                                              | Mouth of Riv. Yamato(Sakai City)                                                                                                                                                                                                                                                        | December 28, 2012                                                                                                                                                                                                                                                                  |
| Osaka City                                                                                                                                                                               | Osaka Port                                                                                                                                                                                                                                                                              | October 30, 2012                                                                                                                                                                                                                                                                   |
| •                                                                                                                                                                                        | Outside Osaka Port                                                                                                                                                                                                                                                                      | October 30, 2012                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                          | Mouth of Riv. Yodo(Osaka City)                                                                                                                                                                                                                                                          | October 30, 2012                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                          | Riv. Yodo(Osaka City)                                                                                                                                                                                                                                                                   | October 31, 2012                                                                                                                                                                                                                                                                   |
| Hyogo Pref.                                                                                                                                                                              | Offshore of Himeji                                                                                                                                                                                                                                                                      | October 17, 2012                                                                                                                                                                                                                                                                   |
| Kobe City                                                                                                                                                                                | Kobe Port(center)                                                                                                                                                                                                                                                                       | October 30, 2012                                                                                                                                                                                                                                                                   |
| Vara Pref.                                                                                                                                                                               | Riv. Yamato(Ooji Town)                                                                                                                                                                                                                                                                  | November 13, 2012                                                                                                                                                                                                                                                                  |
| Wakayama Pref.                                                                                                                                                                           | Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City)                                                                                                                                                                                                                           | October 31, 2012                                                                                                                                                                                                                                                                   |
| Okayama Pref.                                                                                                                                                                            | Offshore of Mizushima                                                                                                                                                                                                                                                                   | October 10, 2012                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                          | Kure Port                                                                                                                                                                                                                                                                               | November 7, 2012                                                                                                                                                                                                                                                                   |
| Hiroshima Pref.                                                                                                                                                                          | Kure Port<br>Hiroshima Bay                                                                                                                                                                                                                                                              | November 7, 2012<br>November 7, 2012                                                                                                                                                                                                                                               |
| Hiroshima Pref.                                                                                                                                                                          | Kure Port Hiroshima Bay Tokuyama Bay                                                                                                                                                                                                                                                    | November 7, 2012<br>November 7, 2012<br>November 15, 2012                                                                                                                                                                                                                          |
| Hiroshima Pref.                                                                                                                                                                          | Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube                                                                                                                                                                                                                                    | November 7, 2012<br>November 7, 2012<br>November 15, 2012<br>November 19, 2012                                                                                                                                                                                                     |
| Hiroshima Pref. Yamaguchi Pref.                                                                                                                                                          | Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi                                                                                                                                                                                                                   | November 7, 2012<br>November 7, 2012<br>November 15, 2012<br>November 19, 2012<br>October 25, 2012                                                                                                                                                                                 |
| Tiroshima Pref.  Yamaguchi Pref.  Tokushima Pref.                                                                                                                                        | Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi Mouth of Riv. Yoshino(Tokushima City)                                                                                                                                                                             | November 7, 2012 November 7, 2012 November 15, 2012 November 19, 2012 October 25, 2012 October 31, 2012                                                                                                                                                                            |
| Tiroshima Pref.  Yamaguchi Pref.  Yokushima Pref.  Kagawa Pref.                                                                                                                          | Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi Mouth of Riv. Yoshino(Tokushima City) Takamatsu Port                                                                                                                                                              | November 7, 2012 November 7, 2012 November 15, 2012 November 19, 2012 October 25, 2012 October 31, 2012 October 2, 2012                                                                                                                                                            |
| Tokushima Pref.  Cokushima Pref.  Kagawa Pref.  Ehime Pref.                                                                                                                              | Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi Mouth of Riv. Yoshino(Tokushima City) Takamatsu Port Niihama Port                                                                                                                                                 | November 7, 2012 November 7, 2012 November 15, 2012 November 19, 2012 October 25, 2012 October 31, 2012 October 2, 2012 October 29, 2012                                                                                                                                           |
| Tokushima Pref.  Cagawa Pref.  Chime Pref.  Kochi Pref.                                                                                                                                  | Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi Mouth of Riv. Yoshino(Tokushima City) Takamatsu Port Niihama Port Mouth of Riv. Shimanto(Shimanto City)                                                                                                           | November 7, 2012  November 7, 2012  November 15, 2012  November 19, 2012  October 25, 2012  October 31, 2012  October 2, 2012  October 29, 2012  November 25, 2012                                                                                                                 |
| Tokushima Pref.  Yamaguchi Pref.  Yokushima Pref.  Kagawa Pref.  Ehime Pref.  Kochi Pref.  Kitakyushu City                                                                               | Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi Mouth of Riv. Yoshino(Tokushima City) Takamatsu Port Niihama Port Mouth of Riv. Shimanto(Shimanto City) Dokai Bay                                                                                                 | November 7, 2012  November 7, 2012  November 15, 2012  November 19, 2012  October 25, 2012  October 31, 2012  October 2, 2012  October 29, 2012  November 25, 2012  October 29, 2012  October 29, 2012                                                                             |
| Tokushima Pref.  Yamaguchi Pref.  Yamaguchi Pref.  Kagawa Pref.  Ehime Pref.  Kochi Pref.  Kitakyushu City  Fukuoka City                                                                 | Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi Mouth of Riv. Yoshino(Tokushima City) Takamatsu Port Niihama Port Mouth of Riv. Shimanto(Shimanto City) Dokai Bay Hakata Bay                                                                                      | November 7, 2012 November 7, 2012 November 15, 2012 November 19, 2012 October 25, 2012 October 31, 2012 October 2, 2012 October 29, 2012 November 25, 2012 October 29, 2012 October 29, 2012 October 29, 2012 October 16, 2012                                                     |
| Tokushima Pref.  Yamaguchi Pref.  Yamaguchi Pref.  Kagawa Pref.  Ehime Pref.  Kochi Pref.  Kitakyushu City  Fukuoka City  Saga Pref.                                                     | Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi Mouth of Riv. Yoshino(Tokushima City) Takamatsu Port Niihama Port Mouth of Riv. Shimanto(Shimanto City) Dokai Bay Hakata Bay Imari Bay                                                                            | November 7, 2012 November 7, 2012 November 15, 2012 November 19, 2012 October 25, 2012 October 31, 2012 October 2, 2012 October 29, 2012 November 25, 2012 October 29, 2012 October 29, 2012 October 29, 2012 October 16, 2012 October 9, 2012                                     |
| Hiroshima Pref.  Yamaguchi Pref.  Yamaguchi Pref.  Kagawa Pref.  Ehime Pref.  Kochi Pref.  Kitakyushu City  Fukuoka City  Saga Pref.  Nagasaki Pref.                                     | Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi Mouth of Riv. Yoshino(Tokushima City) Takamatsu Port Niihama Port Mouth of Riv. Shimanto(Shimanto City) Dokai Bay Hakata Bay Imari Bay Omura Bay                                                                  | November 7, 2012 November 7, 2012 November 15, 2012 November 19, 2012 October 25, 2012 October 31, 2012 October 2, 2012 October 29, 2012 November 25, 2012 October 29, 2012 October 29, 2012 October 29, 2012 October 16, 2012 October 9, 2012 November 19, 2012                   |
| Hiroshima Pref. Yamaguchi Pref. Yamaguchi Pref. Kagawa Pref. Ehime Pref. Kochi Pref. Kitakyushu City Fukuoka City Saga Pref. Nagasaki Pref. Dita Pref.                                   | Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi Mouth of Riv. Yoshino(Tokushima City) Takamatsu Port Niihama Port Mouth of Riv. Shimanto(Shimanto City) Dokai Bay Hakata Bay Imari Bay Omura Bay Mouth of Riv. Oita(Oita City)                                    | November 7, 2012 November 7, 2012 November 15, 2012 November 19, 2012 October 25, 2012 October 31, 2012 October 2, 2012 October 29, 2012 November 25, 2012 October 29, 2012 November 25, 2012 October 16, 2012 October 9, 2012 November 19, 2012 December 10, 2012                 |
| Hiroshima Pref.  Yamaguchi Pref.  Yamaguchi Pref.  Kagawa Pref.  Ehime Pref.  Kochi Pref.  Kitakyushu City  Fukuoka City  Saga Pref.  Nagasaki Pref.  Oita Pref.  Miyazaki Pref.         | Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi Mouth of Riv. Yoshino(Tokushima City) Takamatsu Port Niihama Port Mouth of Riv. Shimanto(Shimanto City) Dokai Bay Hakata Bay Imari Bay Omura Bay Mouth of Riv. Oita(Oita City) Mouth of Riv. Oyodo(Miyazaki City) | November 7, 2012 November 7, 2012 November 15, 2012 November 19, 2012 October 25, 2012 October 31, 2012 October 2, 2012 October 29, 2012 November 25, 2012 October 29, 2012 October 29, 2012 October 16, 2012 October 9, 2012 November 19, 2012 December 10, 2012 October 31, 2012 |
| Hiroshima Pref.  Yamaguchi Pref.  Yamaguchi Pref.  Kagawa Pref. Ehime Pref. Kochi Pref. Kitakyushu City Fukuoka City Saga Pref. Nagasaki Pref. Oita Pref. Miyazaki Pref. Kagoshima Pref. | Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi Mouth of Riv. Yoshino(Tokushima City) Takamatsu Port Niihama Port Mouth of Riv. Shimanto(Shimanto City) Dokai Bay Hakata Bay Imari Bay Omura Bay Mouth of Riv. Oita(Oita City)                                    | November 7, 2012 November 7, 2012 November 15, 2012 November 19, 2012 October 25, 2012 October 31, 2012 October 2, 2012 October 29, 2012 November 25, 2012 October 29, 2012 November 25, 2012 October 16, 2012 October 9, 2012 November 19, 2012 December 10, 2012                 |



Figure 3-1-2 Monitored sites (sediment) in the Environmental Monitoring in FY 2012

Table 3-1-3 List of monitored areas (wildlife) in the Environmental Monitoring in FY 2012

| Local           | Monitored sites                                  | Sampling dates                    |          | Wildlife species                          |
|-----------------|--------------------------------------------------|-----------------------------------|----------|-------------------------------------------|
| communities     | Monitored sites                                  | Sampling dates                    |          | <u> </u>                                  |
| Hokkaido        | Offshore of Kushiro                              | October 27, 2012                  | Fish     | Rock greenling (Hexagrammos lagocephalus) |
|                 | Offshore of Kushiro                              | October 31, 2012                  | Fish     | Chum salmon (Oncorhynchus keta)           |
|                 | Offshore of Japan Sea (offshore of Iwanai)       | October 26, 2012                  | Fish     | Greenling (Hexagrammos otakii)            |
| Aomori Pref.    | Kabu Is.(Hachinohe City)                         | June 4~ July 14, 2012             | Birds    | Black-taild gull (Larus crassirostris)    |
| Iwate Pref.     | Yamada Bay                                       | October 3 and<br>November 4, 2012 | Bibalves | Blue mussel (Mytilus galloprovincialis)   |
|                 | Yamada Bay                                       | October 29~<br>November 1, 2012   | Fish     | Greenling (Hexagrammos otakii)            |
|                 | Suburb of Morioka City                           | August 10~<br>September 24, 2012  | Birds    | Gray starling (Sturnus cineraceus)        |
| Miyagi Pref.    | Sendai Bay(Matsushima Bay)                       | December 10, 2012                 | Fish     | Greenling (Hexagrammos otakii)            |
| Ibaraki Pref.   | Offshore of Joban                                | November 28, 2012                 | Fish     | Pacific saury (Cololabis saira)           |
| Tokyo Met.      | Tokyo Bay                                        | August 30, 2012                   | Fish     | Sea bass (Lateolabrax japonicus)          |
| Yokohama City   | Yokohama Port                                    | November 12, 2012                 | Bibalves | Blue mussel (Mytilus galloprovincialis)   |
| Kawasaki City   | Offshore of Ogishima Island,<br>Port of Kawasaki | October 9, 2012                   | Fish     | Sea bass<br>(Lateolabrax japonicus)       |
| Ishikawa Pref.  | Coast of Noto Peninsula                          | January 8, 2013                   | Bibalves | Blue mussel (Mytilus galloprovincialis)   |
| Nagoya City     | Nagoya Port                                      | September 3, 2012                 | Fish     | Striped mullet (Mugil cephalus)           |
| Shiga Pref.     | Lake Biwa, Riv. Azumi<br>(Takashima City)        | April 5, 2012                     | Fish     | Dace<br>(Tribolodon hakonensis)           |
| Osaka Pref.     | Osaka Bay                                        | October 30, 2012                  | Fish     | Sea bass<br>(Lateolabrax japonicus)       |
| Hyogo Pref.     | Offshore of Himeji                               | November 22, 2012                 | Fish     | Sea bass (Lateolabrax japonicus)          |
| Tottori Pref.   | Nakaumi                                          | October 22, 2012                  | Fish     | Sea bass<br>(Lateolabrax japonicus)       |
| Shimane Pref.   | Shichirui Bay, Shimane Peninsula                 | September 23, 2012                | Bibalves | Blue mussel (Mytilus galloprovincialis)   |
| Hiroshima City  | Hiroshima Bay                                    | November 20, 2012                 | Fish     | Sea bass (Lateolabrax japonicus)          |
| Kagawa Pref.    | Takamatsu Port                                   | October 25, 2012                  | Fish     | Striped mullet (Mugil cephalus)           |
| Kochi Pref.     | Mouth of Riv. Shimanto (Shimanto City)           | October ~ November, 2012*         | Fish     | Sea bass (Lateolabrax aponicas)           |
| Kitakyushu City | Dokai Bay                                        | July 2, 2012                      | Bibalves | Blue mussel (Mytilus galloprovincialis)   |
| Oita Pref.      | Mouth of Riv. Oita(Oita City)                    | December 20, 2012                 | Fish     | Sea bass (Lateolabrax aponicas)           |
| Kagoshima Pref. | West Coast of Satsuma Peninsula                  | November 16 and 28, 2012          | Fish     | Sea bass (Lateolabrax aponicas)           |
| Okinawa Pref.   | Nakagusuku Bay                                   | January 17, 2013                  | Fish     | Okinawa seabeam (Acanthopagrus sivicolus) |
|                 | •                                                | •                                 |          |                                           |

(Note 1) "\*" means details of the sampling date unknown.



Figure 3-1-3 Monitored areas (wildlife) in the Environmental Monitoring in FY 2012

| Local communities  | Monitored sites                                                                                              | Sampling dates<br>(Warm season) | Sampling dates (Cold season) |
|--------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------|
| Hokkaido           | Oshima Subprefectural Office Building (Hakodate City)                                                        | October 16 ~ 23, 2012           | December 10 ~ 17, 2012       |
| Sapporo<br>City    | Sapporo Art Park(Sapporo City)                                                                               | September 24 ~ 27, 2012         | November 19 ~ 22, 2012       |
| Iwate Pref.        | Amihari Ski Area(Shizukuishi Town)                                                                           | September 4 ~ 7, 2012           | November 5 ~ 8, 2012         |
| Miyagi Pref.       | Miyagi Prefectural Fire Fighting Academy(Sendai City)                                                        | September 20 ~ 27, 2012         | November 29 ~ December 2012  |
| Ibaraki Pref.      | Ibaraki Kasumigaura Environmental Science Center(Tsuchiura City)                                             | October 5 ~ 12, 2012            | December 6 ~ 13, 2012        |
| Gunma Pref.        | Gunma Prefectural Institute of Public<br>Health and Environmental<br>Sciences(Maebashi City)                 | September 19 ~ 26, 2012         | November 6 ~ 13, 2012        |
| Chiba Pref.        | Ichihara-Matsuzaki Air Quality<br>Monitoring Station(Ichihara City)                                          | September 24 ~ 27, 2012         | December 4 ~ 7, 2012         |
| Tokyo Met.         | Tokyo Metropolitan Research Institute for Environmental Protection(Koto Ward)                                | September 5 ~ 12, 2012          | December 6 ~ 13, 2012        |
|                    | Chichijima Island                                                                                            | September 23 ~ 30, 2012         | November 22 ~ 29, 2012       |
| Kanagawa<br>Pref.  | Kanagawa Environmental Research<br>Center(Hiratsuka City)                                                    | September 10 ~ 13, 2012         | November 12 ~ 15, 2012       |
| Yokohama<br>City   | Yokohama Environmental Science<br>Research Institute(Yokohama City)                                          | September 7 ~ 14, 2012          | November 15 ~ 22, 2012       |
| Niigata Pref.      | Oyama Air Quality Monitoring<br>Station(Niigata City)                                                        | September 25 ~ 28, 2012         | December 10 ~ 13, 2012       |
| Toyama<br>Pref.    | Tonami Air Quality Monitoring Station(Tonami City)                                                           | September 24 ~ 27, 2012         | November 26 ~ 29, 2012       |
| Ishikawa<br>Pref.  | Ishikawa Prefectural Institute of Public<br>Health and Environmental<br>Science(Kanazawa City)               | September 11 ~ 14, 2012         | December 4 ~ 7, 2012         |
| Yamanashi<br>Pref. | Yamanashi Prefectural Institute of Public<br>Health and Environment(Kofu City)                               | September 18 ~ 21, 2012         | November 26 ~ 29, 2012       |
| Nagano<br>Pref.    | Nagano Environmental Conservation<br>Research Institute(Nagano City)                                         | September 26 ~ October 3, 2012  | December 3 ~ 10, 2012        |
| Gifu Pref.         | Gifu Prefectural Research Institute for<br>Health and Environmental<br>Sciences(Kakamigahara City)           | September 24 ~ 27, 2012         | December 11 ~ 14, 2012       |
| Nagoya City        | Chikusa Ward Heiwa Park(Nagoya City)                                                                         | September 18 ~ 25, 2012         | December 4 ~ 11, 2012        |
| Mie Pref.          | Mie Prefecture Health and Environment<br>Research Institute(Yokkaichi City)                                  | September 3 ~ 6, 2012           | December 10 ~ 13, 2012       |
| Osaka Pref.        | Research Institute of Environment,<br>Agriculture and Fisheries, Osaka<br>Prefectural Government(Osaka City) | September 10 ~ 13, 2012         | December 10 ~ 13, 2012       |
| Hyogo Pref.        | Hyogo Prefectural Environmental Research Center(Kobe City)                                                   | September 10 ~ 13, 2012         | November 19 ~ 22, 2012       |
| Kobe City          | Kobe City Government Building (Kobe City)                                                                    | September 24 ~ 27, 2012         | November 26 ~ 29, 2012       |
| Nara Pref.         | Tenri Air Quality Monitoring<br>Station(Tenri City)                                                          | September 24 ~ 27, 2012         | November 26 ~ 29, 2012       |
| Shimane<br>Pref.   | Oki National Acid Rain<br>Observatory(Okinoshima Town)                                                       | September 25 ~ 28, 2012         | November 27 ~ 30, 2012       |
| Hiroshima<br>City  | Hiroshima City Kokutaiji Junior High<br>School(Hiroshima City)                                               | September 10 ~ 13, 2012         | November 12 ~ 15, 2012       |
| Yamaguchi<br>Pref. | Yamaguchi Prefectural Public Health and<br>Environment(Yamaguchi City)                                       | September 6 ~ 13, 2012          | November 14 ~ 21, 2012       |
| m 1 11             | Mishima Community Center(Hagi City)                                                                          | September 6 ~ 13, 2012          | November 21 ~ 28, 2012       |
| Tokushima<br>Pref. | Tokushima Prefectural Pablic Health,<br>Pharmaceutical and Environmental<br>Science Center(Tokushima City)   | September 10 ~ 13, 2012         | November 5 ~ 8, 2012         |
| Kagawa<br>Pref.    | Takamatsu Joint Prefectural Government<br>Building(Takamatsu City)                                           | September 26 ~ October 3, 2012  | November 7 ~ 14, 2012        |
|                    | Kagawa Prefectural Public Swimming Pool(Takamatsu City) as a reference site                                  |                                 |                              |
| Ehime Pref.        | Ehime Prefectural Government Nanyo<br>Regional Office(Uwajima City)                                          | September 3 ~ 6, 2012           | December 3 ~ 6, 2012         |
| Fukuoka<br>Pref.   | Omuta City Government Building(Omuta City)                                                                   | September 24 ~ 27, 2012         | November 26 ~ 29, 2012       |

| Local communities  | Monitored sites                                                                                   | Sampling dates<br>(Warm season) | Sampling dates<br>(Cold season) |
|--------------------|---------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|
| Saga Pref.         | Saga Prefectural Environmental Research<br>Center(Saga City)                                      | September 10 ~ 17, 2012         | November 6 ~ 13, 2012           |
| Kumamoto<br>Pref.  | Kumamoto Prefectural Institute of Public<br>Health and Environmental Science(Udo<br>City)         | September 24 ~ 27, 2012         | December 17 ~ 20, 2012          |
| Miyazaki<br>Pref.  | Miyazaki Prefectural Institute for Public<br>Healthand Environment(Miyazaki City)                 | September 11 ~ 18, 2012         | November 28 ~ December 5, 2012  |
| Kagoshima<br>Pref. | Kagoshima Prefectural Institute<br>forEnvironmental Research and Public<br>Health(Kagoshima City) | September 3 ~ 6, 2012           | November 19 ~ 22, 2012          |
| Okinawa<br>Pref.   | Cape Hedo(Kunigami Village)                                                                       | September 24 ~ 27, 2012         | December 17 ~ 20, 2012          |



Figure 3-1-4 Monitored sites (air) in the Environmental Monitoring in FY 2012

# (3) Target species

The species to be monitored among the wildlife media were selected considering the possibility of international comparison, as well as their significance and practicality as indicators: 1 bivalve (blue mussel), 8 fishes (predominantly sea bass), and 2 bird, namely, 11 species in total.

The properties of the species determined as targets in the FY 2012 monitoring are shown in Table 3-2. Moreover, Table 3-3 summarizes the outline of the samples used for analysis.

# (4) Sampling method of specimens

The sampling of specimens and the preparation of samples were carried out following the "Environmental Monitoring Instruction Manual" (No. 040309001, published on March 9th, 2004) by the Environment Health and Safety Division, Environmental Health Department, Ministry of the Environment of Japan (MOE).

Table 3-2 Properties of target species

|          |                                                 | Dramartias                                                                                                                                                                                                                                                                                                                          | Manitanadanasa                                                                                                                                                                                                                                       | Aim of monitoring                                                                                  | Notes                                                                        |
|----------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Bibalves | Species Blue mussel (Mytilus galloprovincialis) | Properties  Distributed worldwide, excluding tropical zones  Adheres to rocks in inner bays and to bridge piers                                                                                                                                                                                                                     | Monitored areas  • Yokohama port  • Coast of Noto Peninsula  • Shitirui Bay  • Dokai Bay                                                                                                                                                             | Aim of monitoring Follow-up of the environmental fate and persistency in specific areas            | Notes  Monitored in the 4 areas with different levels of persistency         |
|          | Greenling<br>(Hexagrammos<br>otakki)            | Distributed from Hokkaido to<br>southern Japan, the Korean Peninsula,<br>and China<br>Lives in shallow seas of 5-50 m<br>depth from sea level                                                                                                                                                                                       | Offshore of Iwanai     Sendai Bay                                                                                                                                                                                                                    | Follow-up of the<br>environmental fate<br>and persistency in<br>specific areas                     | persuancy                                                                    |
|          | Rock greenling<br>(Hexagrammos<br>lagocephalus) | Lives in cold-current areas of<br>Hidaka and eastward (Hokkaido)<br>Larger than the greenling and eats<br>fish smaller than its mouth size at the<br>sea bottom                                                                                                                                                                     | Offshore of Kushiro                                                                                                                                                                                                                                  | Follow-up of the<br>environmental fate<br>and persistency in<br>specific areas                     |                                                                              |
|          | Pacific saury<br>(Cololabis saira)              | Distributed widely in northern Pacific Ocean Migrates around Japanese Archipelago; in Chishima in autumn and northern Kyushu in winter Bioaccumulation of chemicals is said to be moderate                                                                                                                                          | Offshore of Joban                                                                                                                                                                                                                                    | Follow-up of the<br>environmental fate<br>and persistency<br>around the<br>Japanese<br>archipelago |                                                                              |
| Fish     | Chum salmon<br>(Oncorhynchus<br>keta)           | Distributed in northern Pacific Ocean, Sea of Japan, Bering Sea, Sea of Okhotsk, the whole of the Gulf of Alaska, and part of the Arctic Ocean Runs the Tone River on the Pacific Ocean side and rivers in Yamaguchi Prefecture and northward on the Sea of Japan side in Japan Bioaccumulation of chemicals is said to be moderate | Offshore of Kushiro                                                                                                                                                                                                                                  | Follow-up of the<br>environmental fate<br>and persistency on<br>a global scale                     |                                                                              |
|          | Sea bass<br>(Lateolabrax<br>japonicus)          | Distributed around the shores of various areas in Japan, the Korean Peninsula, and the coastal areas of China Sometimes lives in a freshwater environment and brackish-water regions during its life cycle Bioaccumulation of chemicals is said to be high                                                                          | <ul> <li>Tokyo Bay</li> <li>Kawasaki Port</li> <li>Osaka Bay</li> <li>Offshore of Himeji</li> <li>Nakaumi</li> <li>Hiroshima Bay</li> <li>Mouth of Riv. Shimanto</li> <li>Mouth of Riv. Oita</li> <li>West Coast of Satsuma<br/>Peninsula</li> </ul> | Follow-up of the<br>environmental fate<br>and persistency in<br>specific areas                     | Monitored<br>in the 9<br>areas with<br>different<br>levels of<br>persistency |
|          | Striped mullet (Mugil cephalus)                 | Distributed widely in the worldwide<br>tropical zones and subtropical zones<br>Sometimes lives in a freshwater<br>environment and brackish-water<br>regions during its life cycle                                                                                                                                                   | Nagoya Port     Takamatsu Port                                                                                                                                                                                                                       | Follow-up of the<br>environmental fate<br>and persistency in<br>specific areas                     |                                                                              |
|          | Okinawa seabeam (Acanthopagrus sivicolus)       | Distributed around Nansei Shoto (Ryukyu Islands) Lives in coral reefs and in bays into which rivers flow                                                                                                                                                                                                                            | Kanagusuku Bay                                                                                                                                                                                                                                       | Follow-up of the<br>environmental fate<br>and persistency in<br>specific areas                     |                                                                              |
|          | Dace<br>(Tribolodon<br>hakonensis)              | Distributed widely in freshwater<br>environments throughout Japan<br>Preys mainly on insects                                                                                                                                                                                                                                        | • Lake Biwa, Riv. Azumi<br>(Takashima City)                                                                                                                                                                                                          | Follow-up of the<br>environmental fate<br>and persistency in<br>specific areas                     |                                                                              |
| Birds    | Gray starling (Sturnus cineraceus)              | Distributed widely in the Far East (Related species are distributed worldwide)  East primarily insects                                                                                                                                                                                                                              | Morioka City                                                                                                                                                                                                                                         | Follow-up of the environmental fate and persistency in northern Japan                              |                                                                              |
| B        | Black-taild gull (Larus crassirostris)          | Breeds mainly in the Sea of Japan<br>Breeds in groups at shore reefs and<br>in grassy fields                                                                                                                                                                                                                                        | Kabu Is.(Hachinohe City)                                                                                                                                                                                                                             | Follow-up of the<br>environmental fate<br>and persistency in<br>specific areas                     |                                                                              |

Table 3-3-1 Basic data of specimens (bivalves as wildlife) in the Environmental Monitoring in FY 2012

| Table 3-3-1 Basic data of specimens (bivarves as winding) in the Environmental Monitoring in F4 2012 |     |                  |           |                   |       |                        |       |        |                       |       |               |                       |
|------------------------------------------------------------------------------------------------------|-----|------------------|-----------|-------------------|-------|------------------------|-------|--------|-----------------------|-------|---------------|-----------------------|
| Bivalve species (Area)                                                                               | No. | Sampling month   | Sex       | Number of animals |       | Veight (g)<br>Average) |       |        | ngth (cm)<br>average) |       | Water content | Lipid<br>content<br>% |
| Blue mussel                                                                                          | 1   | November         | Uncertain | 284               | 6.6 ~ | 7.8 (                  | 7.2)  | 19.4 ~ | 37.4 (                | 27.2) | 84.2          | 1.9                   |
| (Mytilus                                                                                             | 2   | ~<br>December.   | Uncertain | 397               | 6.2 ~ | 7.1 (                  | 6.6)  | 14.4 ~ | 24.0 (                | 20.7) | 84.6          | 1.9                   |
| galloprovincialis)<br>Yamada Bay                                                                     | 3   | 2012             | Uncertain | 316               | 6.0 ~ | 7.8 (                  | 6.7)  | 11.3 ~ | 40.5 (                | 24.2) | 85.8          | 1.6                   |
| Blue mussel                                                                                          | 1   |                  | Mixed     | 445               | 2.7 ~ | 4.0 (                  | 3.1 ) | 1.6 ~  | 4.3 (                 | 2.5)  | 90            | 0.7                   |
| (Mytilus<br>galloprovincialis)                                                                       | 2   | November, 2012   | Mixed     | 408               | 2.4 ~ | 3.7 (                  | 2.9)  | 1.3 ~  | 4.6 (                 | 2.7)  | 90            | 0.8                   |
| Yokohama Port                                                                                        | 3   | 2012             | Mixed     | 535               | 2.4 ~ | 3.3 (                  | 2.8)  | 1.4 ~  | 3.9 (                 | 2.3)  | 89            | 0.8                   |
| Blue mussel (Mytilus galloprovincialis) Coast of Noto Peninsula                                      | 1   | January,<br>2013 | Uncertain | 35                | 3.7 ~ | 10.6 (                 | 6.7)  | 5.9 ~  | 167 (                 | 41.8) | 75.7          | 1.4                   |
| Blue mussel (Mytilus                                                                                 | 1   |                  | Uncertain | 290               | 5.2 ~ | 11.7 (                 | 7.0)  | 13.9 ~ | 121 (                 | 36.3) | 77.4          | 2.2                   |
| galloprovincialis)                                                                                   | 2   | September, 2012  | Uncertain | 400               | 4.4 ~ | 6.8 (                  | 5.1 ) | 8.6 ~  | 19.5 (                | 11.9) | 78.1          | 2.6                   |
| Shichirui Bay,<br>Shimane Peninsula                                                                  | 3   |                  | Uncertain | 450               | 4.4 ~ | 5.6 (                  | 5.1 ) | 8.3 ~  | 14.1 (                | 11.6) | 79.5          | 2.4                   |
| Blue mussel (Mytilus galloprovincialis) Dokai Bay                                                    | 1   | July,<br>2012    | Uncertain | 253               | 3.9 ~ | 8.0 (                  | 5.4 ) | 6.0 ~  | 46.0 (                | 17.0) | 50            | 2.8                   |

Table 3-3-2 Basic data of specimens (fish as wildlife) in the Environmental Monitoring in FY 2012 (Part 1)

| Table 3-3-2 Basic data of specimens (fish as wildlife) in the Environmental Monitoring in FY 2012 (Part 1) |     |                   |                        |               |                  |                  |                |                                      |              |              |
|------------------------------------------------------------------------------------------------------------|-----|-------------------|------------------------|---------------|------------------|------------------|----------------|--------------------------------------|--------------|--------------|
| Figh ori (A                                                                                                | NΤ  | Sampling          | C                      | Number        | V                | Veight (g)       |                | Length (cm)                          | Water        | Lipid        |
| Fish species (Area)                                                                                        | No. | month             | Sex                    | of<br>animals |                  | Average)         |                | (Average)                            | content<br>% | content<br>% |
| Rock greenling                                                                                             | 1   |                   | Mixed                  | 6             | 36 ~             | 43 (             | 40             | 580 ~ 940 ( 820                      | 76.1         | 2.3          |
| (Hexagrammos                                                                                               | 2   | October,          | Mixed                  | 6             | 36 ~             | 41 (             | 39             | 600 ~ 930 ( 780                      | 75.8         | 2.3          |
| lagocephalus) Offshore of Kushiro                                                                          | 3   | 2012              | Mixed                  | 6             | 38 ~             | 43 (             | 41             | 780 ~ 1,040 ( 900                    | 75.2         | 1.7          |
| Chum salmon                                                                                                | 1   |                   | Female                 | 1             |                  | 73               |                | 3,400                                | 74.8         | 1.3          |
| (Oncorhynchus keta)                                                                                        | 2   | October,<br>2012  | Male                   | 1             |                  | 72               |                | 3,300                                | 74.0         | 1.5          |
| Offshore of Kushiro                                                                                        | 3   | 2012              | Male                   | 1             |                  | 72               |                | 3,300                                | 73.7         | 1.7          |
| Greenling                                                                                                  | 1   | 0-4-1             | Mixed                  | 6             | 38 ~             | 41 (             | 40             | 720 ~ 950 ( 870 )                    | 76.2         | 1.6          |
| (Hexagrammos otakii) Offshore of Japan                                                                     | 2   | October,<br>2012  | Mixed                  | 6             | 40 ~             | 73 (             | 41             | 800 ~ 1,140 ( 900 )                  | 75.2         | 1.4          |
| Sea(offshore of Iwanai)                                                                                    | 3   | 2012              | Mixed                  | 6             | 38 ~             | 45 (             | 41             | 740 ~ 1,200 ( 880 )                  | 76.9         | 1.8          |
| Greenling                                                                                                  | 1   | Oataban           | Uncertain              | 11            | 25.6 ~           | 35.9 (           | 31.5           | 208 ~ 688 ( 444 )                    | 73.2         | 3.8          |
| (Hexagrammos otakii)                                                                                       | 2   | October,<br>2012  | Uncertain              | 6             | 36.5 ~           | 40.2 (           | 38.4           | 643 ~ 862 ( 783 )                    | 71.6         | 4.3          |
| Yamada Bay                                                                                                 | 3   | 2012              | Female                 | 4             | 37.8 ~           | 41.2 (           | 39.8           | 816 ~ 1,033 ( 963 )                  | 72.4         | 5.4          |
| Greenling                                                                                                  | 1   | D                 | Mixed                  | 11            | 15.1 ~           | 19.5 (           | 17.4           | 58.4 ~ 125 ( 88.9)                   | )            |              |
| (Hexagrammos otakii)<br>Sendai Bay                                                                         | 2   | December,<br>2012 | Mixed                  | 6             | 19.8 ~           | 22.2 (           | 21.6           | 150 ~ 182 ( 171 )                    | -            | -            |
| (Matsushima Bay)                                                                                           | 3   |                   | Mixed                  | 4             | 23.0 ~           | 25.4 (           | 24.2           | 229 ~ 286 ( 252 )                    | )            |              |
| Pacific saury                                                                                              | 1   | N                 | Uncertain              | 68            | 17 ~             | 26 (             | 23             | 29.5 ~ 74.7 ( 59.9)                  | 1            | 6.0          |
| (Cololabis saira)                                                                                          | 2   | November,<br>2012 | Uncertain              | 45            | 23 ~             | 27 (             | 26             | 76.0 ~ 90.0 ( 83.5)                  | 69           | 6.9          |
| Offshore of Joban                                                                                          | 3   |                   | Uncertain              | 58            | 26 ~             | 30 (             | 27             | 90.1 ~ 146 ( 108 )                   | 67           | 9.0          |
| Sea bass                                                                                                   | 1   | August            | Mixed                  | 4             | 51.0 ~           | 66.0 (           | 57.1           | 2,055 ~ 3,525 (2,525)                | 75.2         | 4.5          |
| (Lateolabrax japonicus)                                                                                    | 2   | August,<br>2012   | Mixed                  | 7             | 45.6 ~           | 55.1 (           | 49.4           | 1,370 ~ 2,030 (1,616)                | 75.6         | 3.8          |
| Tokyo Bay                                                                                                  | 3   |                   | Mixed                  | 9             | 39.0 ~           | 46.1 (           | 42.9           | 960 ~ 1,305 (1,157)                  | 72.8         | 2.6          |
| Sea bass (Lateolabrax japonicus)                                                                           | 1   | October,          | Female                 | 14            | 30.0 ~           | 33.5 (           | 30.9           | 324 ~ 444 ( 391 )                    | )            |              |
| Offshore of Ogishima                                                                                       | 2   | 2012              | Male                   | 15            | 28.9 ~           | 30.2 (           | 29.7           | 344 ~ 405 ( 367 )                    | -            | -            |
| Island, Port of Kawasaki                                                                                   | 3   |                   | Female                 | 16            | 28.4 ~           | 29.8 (           | 29.2           | 315 ~ 382 ( 345 )                    | )            |              |
| Striped mullet                                                                                             | 1   | September,        | Female                 | 10            | 45.5 ~           | 50.0 (           | 47.6           | 935 ~ 1,208 (1,084)                  | )            |              |
| (Mugil cephalus)                                                                                           | 2   | 2012              | Male                   | 10            | 46.1 ~           | 53.3 (           | 48.7           | 954 ~ 1,697 (1,164)                  | -            | -            |
| Nagoya Port                                                                                                | 3   |                   | Female                 | 10            | 45.5 ~           | 52.3 (           | 48.3           | 965 ~ 1,719 (1,135)                  | )            |              |
| Dace (Tribolodon hakonensis)                                                                               | 1   | April,            | Female                 | 21            | 23.0 ~           | 27.2 (           | 24.5           | 162 ~ 277 ( 204 )                    | 73.5         | 3.7          |
| Lake Biwa, Riv. Azumi                                                                                      | 2   | 2012              | Male                   | 23            | 23.0 ~           | 25.3 (           | 24.3           | 161 ~ 232 ( 194 )                    | 72.8         | 4.0          |
| (Takashima City)                                                                                           | 3   |                   | Female                 | 23            | 23.2 ~           | 25.7 (           | 24.8           | 168 ~ 244 ( 208 )                    | 73.2         | 4.1          |
| Sea bass                                                                                                   | 1   | October,          | Uncertain              | 12            | 36 ~             | 41 (             | 38             | 710 ~ 1,011 ( 862 )                  | )            |              |
| (Lateolabrax japonicus)                                                                                    | 2   | 2012              | Uncertain              | 12            | 30 ~             | 39 (             | 36             | 674 ~ 903 ( 773 )                    | -            | -            |
| Osaka Bay                                                                                                  | 3   |                   | Uncertain              | 12            | 34 ~             | 40 (             | 36             | 619 ~ 951 ( 785 )                    | )            |              |
| Sea bass                                                                                                   | 1   | November,         | Uncertain              | 4             | 50 ~             | 53 (             | 52             | 1,799 ~ 2,272 (2,022)                | )            |              |
| (Lateolabrax japonicus) Offshore of Himeji                                                                 | 2   | 2012              | Uncertain              | 3             | 56 ~             | 62 (             | 59             | 2,502 ~ 2,685 (2,611)                | -            | -            |
| Offshore of Thinlegi                                                                                       | 3   |                   | Uncertain              | 3             | 55 ~             | 57 (             | 56             | 2,250 ~ 2,793 (2,452)                | 70.5         | 0.0          |
| Sea bass                                                                                                   | 1   | October,          | Mixed                  | 10            | 40.0 ~           | 46.6 (           | 42.6           | 785 ~ 1,450 ( 935 )                  | 79.5         | 0.8          |
| (Lateolabrax japonicus)<br>Nakaumi                                                                         | 2   | 2012              | Mixed                  | 12            | 37.7 ~           | 41.6 (           | 39.2           | 625 ~ 855 ( 716 )                    | 79.6         | 0.7          |
|                                                                                                            | 3   |                   | Mixed                  | 18<br>12      | 31.6 ~           | 37.8 (           | 34.6           | 405 ~ 640 ( 499 )                    | 78.9         | 0.9          |
| Sea bass (Lateolabrax japonicus)                                                                           |     | November,         | Mixed                  |               | 31.8 ~           | 33.8 (           | 33.2           |                                      | 76.9         | 1.4          |
| Hiroshima Bay                                                                                              | 2 3 | 2012              | Mixed                  | 11<br>8       | 34.0 ~<br>35.0 ~ | 34.8 (<br>36.8 ( | 34.4 )<br>35.5 | 481 ~ 613 ( 526 )<br>556 ~ 623 ( 587 | 78.1<br>77.6 | 1.0<br>1.2   |
|                                                                                                            | 1   |                   | Female                 | 3             | 38 ~             | 42 (             | 40             | 1,020 ~ 1,400 (1,250                 | 68.6         | 4.1          |
| Striped mullet (Mugil cephalus)                                                                            | 2   | October,          | Uncertain<br>Uncertain | 2             | 40 ~             | 45 (             | 43             | 1,500 ~ 1,700 (1,600                 | 68.4         | 6.1          |
| Takamatsu Port                                                                                             | 3   | 2012              | Uncertain              | 2             | 43 ~             | 44 (             | 44             | 1,540 ~ 1,720 (1,630)                | 70.2         | 2.7          |
| Sea bass                                                                                                   | 1   |                   | Mixed                  | 21            | 16.2 ~           | 35.0 (           | 22.4           | 38.9 ~ 470 ( 163                     | 70.2         | 0.9          |
| (Lateolabrax japonicus)                                                                                    | 2   | October,          | Mixed                  | 22            | 16.2 ~           | 31.2 (           | 21.8           | 37.4 ~ 439 ( 147                     | 68.7         | 0.9          |
| Mouth of Riv. Shimanto                                                                                     | 3   | 2012              |                        | 24            | 15.6 ~           | 34.0 (           | 21.8           | 37.8 ~ 488 ( 142                     | 71.3         | 1.0          |
| (Shimanto City)<br>Sea bass                                                                                | 1   |                   | Mixed                  | 2             | 59 ~             | 60 (             | 60             | 2,320 ~ 2,660 (2,490                 | 76.4         | 2.5          |
| (Lateolabrax japonicus)                                                                                    | 2   | December,         | Mixed                  | 2             | 55 ~             | 63 (             | 59             | 2,460 ~ 2,980 (2,720)                | 79.3         | 1.4          |
| Mouth of Riv. Oita                                                                                         | 3   | 2012              | Female                 | 2             |                  | ,                | 59             |                                      |              | 3.8          |
| (Oita City)<br>Sea bass                                                                                    | 1   |                   | Male                   |               |                  | 62 (             |                |                                      | 73.6         | <b>-</b>     |
| (Lateolabrax japonicus)                                                                                    | 2   | November,         | Mixed                  | 10<br>17      | 20.0 ~<br>19.0 ~ | 30.0 (           | 23.7 )<br>19.4 | 136 ~ 379 ( 228 )<br>116 ~ 143 ( 130 | 79.6<br>80.7 | 1.3          |
| West Coast of Satsuma                                                                                      | 3   | 2012              | Mixed                  |               |                  | 30.0 (           |                | ` '                                  |              | 1.5          |
| Peninsula                                                                                                  | 5   |                   | Mixed                  | 20            | 16.7 ~           | 18.9 (           | 17.8           | 75.6 ~ 140 ( 108 )                   | 79.9         | 1.3          |

Table 3-3-2 Basic data of specimens (fish as wildlife) in the Environmental Monitoring in FY 2012 (Part 2)

| Fish species (Area)       | No. | Sampling<br>month | Sex    | Number<br>of<br>animals |        | Weight (g)<br>(Average) |       |       | Length (c | ,       | Water content % | Lipid content % |
|---------------------------|-----|-------------------|--------|-------------------------|--------|-------------------------|-------|-------|-----------|---------|-----------------|-----------------|
| Okinawa seabeam           | 1   |                   | Male   | 6                       | 25.5 ~ | 30.9 (                  | 28.0  | 553   | ~ 810     | ( 689 ) | 80              | 1.7             |
| (Acanthopagrus sivicolus) | 2   | January,<br>2013  | Female | 4                       | 29.8 ~ | 32.4 (                  | 31.0  | 857   | ~ 1,116   | ( 977   | 78              | 1.5             |
| Nakagusuku Bay            | 3   | 2013              | Female | 3                       | 34.8 ~ | 35.5 (                  | 35.2) | 1,204 | ~ 1,530   | (1,367) | 78              | 1.7             |

<sup>(</sup>Note) "Average." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

Table 3-3-3 Basic data of specimens (birds as wildlife) in the Environmental Monitoring in FY 2012

| Bird species (Area)                        | No. | Sampling<br>month | Sex       | Number<br>of<br>animals |        | Veight (g)<br>Average) |       |        | ngth (cm)<br>Average) |       | Water content % | Lipid content % |
|--------------------------------------------|-----|-------------------|-----------|-------------------------|--------|------------------------|-------|--------|-----------------------|-------|-----------------|-----------------|
| Black-taild gull                           | 1   |                   | Uncertain | 95                      | 3.0 ~  | 23.0 (                 | 14.6) | 112 ~  | 700 (                 | 361)  |                 |                 |
| ( <i>Larus crassirostris</i> )<br>Kabu Is. | 2   | June,<br>2012     | Uncertain | 35                      | 23.1 ~ | 28.4 (                 | 26.1) | 330 ~  | 620 (                 | 452 ) | -               | -               |
| (Hachinohe City)                           | 3   | 2012              | Uncertain | 29                      | 28.6 ~ | 34.5 (                 | 30.8) | 370 ~  | 700 (                 | 480)  |                 |                 |
| Gray starling                              | 1   |                   | Male      | 61                      | 12.0 ~ | 14.0 (                 | 13.0) | 73.8 ~ | 98.4 (                | 85.8) | 70.7            | 2.6             |
| (Sturnus cineraceus) Suburb of Morioka     | 2   | August,<br>2012   | Female    | 61                      | 11.5 ~ | 13.8 (                 | 12.9) | 71.3 ~ | 102 (                 | 85.5) | 72.0            | 2.7             |
| City                                       | 3   | 2012              | Uncertain | 58                      | 11.4 ~ | 11.4 (                 | 12.8) | 71.3 ~ | 95.5 (                | 86.0) | 72.2            | 2.2             |

<sup>(</sup>Note) "Average." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

# 4. Summary of monitoring results

The detection ranges are shown in Table 3-4, and the detection limits are shown in Table 3-5.

The monitoring results in FY 2012 were statistically analysed together with the previous monitoring results, accumulated over the past 11 years (or 10 years) as a result of successive measurements at the same site or area from FY 2002 (FY 2003 for some substances and media), in order to detect inter-annual trends of increase or decrease over the 11 years (or 10 years). The results of the analyses are shown in Table 3-6

Additionally, the scope of monitoring for bioaccumulate in avian biologicals (birds) was adjusted as of the FY 2010 program to include additions of target substances listed under the Stockholm Convention. Target samplings taken from black tailed gulls and starlings were reduced from five (5) to one each. In considering that the subsequent reduction in available data could negatively impact the tracking of changes, these two (2) species were excluded from the statistical analysis for the present fiscal year. Table 3-6 summarizes year by year findings.

OData were carefully handled on the basis of following points.

#### · For sediment

At each monitoring point, three (3) specimen samples were collected. The target substance [20] 2-(2*H*-1,2,3-Benzotriazol-2-yl)-4,6-di-*tert*-butylphenol was analysed with the three (3) specimen samples for each place. The other substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples.

#### · For wildlife

At each monitoring point, three (3) specimen samples were collected. The target substance [20] 2-(2*H*-1,2,3-Benzotriazol-2-yl)-4,6-di-*tert*-butylphenol was analysed with the three (3) specimen samples for each place. The other substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples.

#### • For air

At each monitored site, the first sampling was for the monitoring in the warm season (September 3, 2012 ~ October 23, 2012) and the second was for that in the cold season (November 5, 2012 ~ December 20, 2012).

In Kagawa Pref., monitoring was carried out at not only the Takamatsu Joint Prefectural Government Building but also at the location of the Kagawa Prefectural Public Swimming Pool (Takamatsu City) as a reference site.

#### OMethod for regression analysis and testing

The procedures described below were applied in an attempt to analyse and test the monitoring results obtained since FY 2002 (FY 2003 for air) in order to identify statistically significant differences which indicate inter-annual trends.

Before FY2002, three (3) specimen samples were collected at each monitoring place and respectively analysed for water monitoring; after FY2003, the substances were analysed for each place with one specimen sample. For this reason, one specimen sample were taken at the point which one specimen sample continually collected after FY2002 was used analysis.

Before FY2009, three (3) specimen samples were collected at each monitoring place and respectively analysed for sediment monitoring; after FY2010, the substances were analysed for each place with one specimen sample that is a

mixture of equal parts of the three (3) specimen samples collected at the location. For this reason, the arithmetic mean value of the three (3) specimen samples at each monitoring place was used for the analysis before FY2009.

Before FY2009, five (5) specimen samples were collected at each monitoring place and respectively analysed for wildlife monitoring; after FY2010, the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) or five (5) specimen samples collected at the location. For this reason, the arithmetic mean value of the three (3) specimen samples at each monitoring place was used for the analysis before FY2009.

Assessments done in past years applied nonparametric analysis to findings that diverged from norm. However, since such methods cannot support quantitative analysis, the procedures were deemed inadequate to properly track year by year changes. Therefore, as a means of evaluation that could be appropriately applied to findings out of the norm, regression lines with maximum probability estimates were used to analyse and track year by year changes, with boot strap methods being applied to test the mean differences.

- (1) For successive samplings taken from the same point: if, in any fiscal year, concentrations in one-third or more samples failed to reach detectible limits (i.e., were Non-Detected or 'nd'), it was then judged inappropriate to apply linear regression analysis to year by year changes, since the most frequent findings came below detection limits. Therefore, year by year trend analysis is provided only when less than one third of the samples show "nd" or non-detected readings.
- (2) In the inter-annual trend analyses, the increase or decrease was evaluated by examining a slope obtained from simple linear regression analysis (simple log-linear regression model). To obtain the proper regression line, the line was selected using methods to maximize the product of the probability density of each measured value according to the distribution of population obtained by each measurement result (maximum likelihood estimation). Where the total of samples at each point differed from others, the data were weighted so that the overall impact of data from different points was leveled. Also, the agreement between the linear regression model (primary expression) results and measurement results was evaluated in accord with Akaike's Information Criterion (AIC). AICs were calculated for both "slope model (simple log-linear regression model)" and "non-slope model (residuals from the mean value model)". These AIC data were used to calculate posteriori probability. When probability was 95% or greater, measurement results were deemed to be in agreement with the simple log-linear regression model.
- (3) When agreement was found as per (2) above, concentrations were deemed to sufficient to demonstrate inter-annual increase or decrease trends, based on the (positive or negative) slope of the regression line obtained via (1) above. The results are indicated as " or " in Table 3-6.
- (4) As addressed in (1) above, where concentrations found in one third or more samples failed to demonstrate detection, (i.e., were 'nd'), linear regression analysis was deemed inappropriate to track year by year changes. Instead, we employed mean difference derived using the boot strap method. This method helps verify differences in mean distribution between two (2) samples obtained from repeated calculations of mean values of randomly extracted data for these samples. This method was employed in the initial half-period period (FY 2002 FY 2004) and the second-half period (FY2010 2012) for results where more than 50% of samples failed to evidence detection (nd) in any fiscal year.
- (5) The second-half period indicated a lower concentration when it was deemed by the testing of differences in average values using the boot strap method (p-value: more than 5%) that there is a significant difference between the first-half and second-half periods and the average concentration in the second-half period was lower than the

first half. These results are indicated as " \_\_ " (or"\_\_| ") in Table 3-6.

When findings did not clearly demonstrate a year by year or inter-annual decrease (or increase) in (3), or when there was no difference in (5), this is indicated in Table 3-6 as " - ." When concentrations found in 50% or more samples failed to demonstrate detection, (i.e., were nd), this is indicated as "X" in Table 3-6 because that method is insufficient to analyse year by year trends.

Table 3-4-1 List of the detection ranges in the Environmental Monitoring in FY 2012 (Part 1)

|      |                                           | Surface wate               | r ( pg/L ) | Sediment ( pg/g-dry )       |         |  |  |
|------|-------------------------------------------|----------------------------|------------|-----------------------------|---------|--|--|
| No.  | Target chemicals                          | Range<br>(Frepuency)       | Av.        | Range<br>(Frepuency)        | Av.     |  |  |
| [1]  | PCBs                                      | 72 ~ 6,500<br>(48/48)      | 400        | tr(32) ~ 640,000<br>(63/63) | 5,700   |  |  |
| [2]  | НСВ                                       | 8.1 ~ 330<br>(48/48)       | 29         | 3 ~ 12,000<br>(63/63)       | 100     |  |  |
| [3]  | Aldrin (reference)                        |                            |            |                             |         |  |  |
| [4]  | Dieldrin (reference)                      |                            |            |                             |         |  |  |
| [5]  | Endrin (reference)                        |                            |            |                             |         |  |  |
|      | DDTs (reference)                          |                            |            |                             |         |  |  |
|      | [6-1] p,p'-DDT (reference)                |                            |            |                             |         |  |  |
|      | [6-2] p,p'-DDE (reference)                |                            |            |                             |         |  |  |
| [6]  | [6-3] <i>p,p</i> '-DDD (reference)        |                            |            |                             |         |  |  |
|      | [6-4] o,p'-DDT (reference)                |                            |            |                             |         |  |  |
|      | [6-5] o,p'-DDE (reference)                |                            |            |                             |         |  |  |
|      | [6-6] o,p'-DDD (reference)                |                            |            |                             |         |  |  |
|      | Chlordanes                                | 31 ~ 930                   | 120        | tr(13) ~ 39,000             | 270     |  |  |
|      | Cinordanes                                | (48/48)                    | 120        | (63/63)                     | 270     |  |  |
|      | [7-1] <i>cis-</i> chlordane               | 10 ~ 350<br>(48/48)        | 43         | tr(2.6) ~ 11,000<br>(63/63) | 69      |  |  |
|      | [7-2] <i>trans-</i> chlordane             | 12 ~ 300<br>(48/48)        | 41         | tr(2.9) ~ 13,000<br>(63/63) | 80      |  |  |
| [7]  | [7-3] Oxychlordane                        | nd ~ 17<br>(44/48)         | 2.2        | nd ~ 75<br>(38/63)          | tr(1.4) |  |  |
|      | [7-4] <i>cis</i> -Nonachlor               | 1.1 ~ 58<br>(48/48)        | 6.4        | tr(1) ~ 4,900<br>(63/63)    | 44      |  |  |
|      | [7-5] <i>trans</i> -Nonachlor             | 7.9 ~ 210<br>(48/48)       | 30         | 2.5 ~ 10,000<br>(63/63)     | 69      |  |  |
|      | Heptachlors<br>[8-1] heptachlor           |                            |            |                             |         |  |  |
| [8]  | [8-2] <i>cis</i> -heptachlor              |                            |            |                             |         |  |  |
|      | epoxide                                   |                            |            |                             |         |  |  |
|      | [8-3] <i>trans</i> -heptachlor<br>Epoxide |                            |            |                             |         |  |  |
|      | Toxaphenes (reference)                    |                            |            |                             |         |  |  |
|      | [9-1] Parlar-26<br>(reference)            |                            |            |                             |         |  |  |
| [9]  | [9-2] Parlar-50                           |                            |            |                             |         |  |  |
|      | (reference)                               |                            |            |                             |         |  |  |
|      | [9-3] Parlar-62<br>(reference)            |                            |            |                             |         |  |  |
| [10] | Mirex (reference)                         |                            |            |                             |         |  |  |
|      | HCHs                                      |                            |            |                             |         |  |  |
|      | [11-1] α-HCH                              | 9.5 ~ 2,200<br>(48/48)     | 65         | tr(1.1) ~ 3,900<br>(63/63)  | 100     |  |  |
| [11] | [11-2] <i>β</i> -HCH                      | 17 ~ 820<br>(48/48)        | 150        | 3.7 ~ 8,300<br>(63/63)      | 160     |  |  |
| []   | [11-3] γ-HCH<br>( synonym:Lindane )       | 3.0 ~ 440<br>(48/48)       | 22         | nd ~ 3,500<br>(61/63)       | 30      |  |  |
|      | [11-4] δ-HCH                              | $tr(0.5) \sim 220$ (48/48) | 7.9        | nd ~ 3,100<br>(62/63)       | 28      |  |  |

<sup>(</sup>Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

<sup>(</sup>Note 2) "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas. Therefore "Range" can be shown as "nd  $\sim$ " even if a target chemical is detected in all sites or areas.

<sup>(</sup>Note 3) "means the medium was not monitored.

Table 3-4-2 List of the detection ranges in the Environmental Monitoring in FY 2012 (Part 2)

|      |                                                                                         | Surface water           | er ( pg/L ) | Sediment ( pg/g-dry )    |        |  |  |
|------|-----------------------------------------------------------------------------------------|-------------------------|-------------|--------------------------|--------|--|--|
| No.  | Target chemicals                                                                        | Range<br>(Frepuency)    | Av.         | Range<br>(Frepuency)     | Av.    |  |  |
| [12] | Chlordecone (reference)                                                                 |                         |             |                          |        |  |  |
| [13] | Hexabromobiphenyls<br>(reference)                                                       |                         |             |                          |        |  |  |
|      | Polybromodiphenyl ethers $(Br_4 \sim Br_{10})$                                          | nd ~ 12,000<br>(32/48)  | tr(430)     | nd ~ 870,000<br>(60/63)  | 6,400  |  |  |
|      | [14-1] Tetrabromodiphenyl ethers                                                        | nd ~ 22<br>(47/48)      | tr(3)       | nd ~ 4,500<br>(60/63)    | 27     |  |  |
|      | [14-2] Pentabromodiphenyl ethers                                                        | nd ~ 20<br>(32/48)      | tr(1)       | nd ~ 2,900<br>(62/63)    | 21     |  |  |
| [14] | [14-3] Hexabromodiphenyl ethers                                                         | nd ~ 7<br>(6/48)        | nd          | nd ~ 1,700<br>(48/63)    | 15     |  |  |
|      | [14-4] Heptabromodiphenyl<br>ethers                                                     | nd ~ 10<br>(9/48)       | nd          | nd ~ 4,400<br>(48/63)    | 34     |  |  |
|      | [14-5] Octabromodiphenyl ethers                                                         | nd ~ 35<br>(16/48)      | tr(2)       | nd ~ 15,000<br>(47/63)   | 78     |  |  |
|      | [14-6] Nonabromodiphenyl ethers                                                         | nd ~ 320<br>(30/48)     | tr(21)      | nd ~ 84,000<br>(52/63)   | 360    |  |  |
|      | [14-7] Decabromodiphenyl ether                                                          | nd ~ 12,000<br>(31/48)  | tr(400)     | nd ~ 760,000<br>(60/63)  | 5,700  |  |  |
| [15] | Perfluorooctane sulfonic acid (PFOS)                                                    | 39 ~ 14,000<br>(48/48)  | 550         | tr(7) ~ 1,200<br>(63/63) | 68     |  |  |
| [16] | Perfluorooctanoic acid<br>(PFOA)                                                        | 240 ~ 26,000<br>(48/48) | 1,400       | 12 ~ 280<br>(63/63)      | 51     |  |  |
| [17] | Pentachlorobenzene                                                                      | 3 ~ 170<br>(48/48)      | 14          | nd ~ 1,100<br>(62/63)    | 33     |  |  |
|      | Endosulfans                                                                             | nd ~ tr(32)<br>(2/48)   | nd          | nd ~ 690<br>(12/63)      | nd     |  |  |
| [18] | α-Endosulfan                                                                            | nd ~ 30<br>(3/48)       | nd<br>      | nd ~ 480<br>(19/63)      | nd     |  |  |
|      | β-Endosulfan                                                                            | nd ~ tr(12)<br>(1/48)   | nd          | nd ~ 250<br>(8/63)       | nd     |  |  |
|      | 1,2,5,6,9,10-Hexabromo<br>cyclododecanes                                                |                         |             | nd ~ 75,000<br>(39/63)   | 960    |  |  |
|      | [19-1]<br>α-1,2,5,6,9,10-Hexabromo<br>cyclododecane                                     |                         |             | nd ~ 22,000<br>(47/63)   | 310    |  |  |
|      | [19-2]<br>β-1,2,5,6,9,10-Hexabromo                                                      |                         |             | nd ~ 8,900<br>(29/63)    | tr(93) |  |  |
|      | cyclododecane<br>[19-3]<br>γ-1,2,5,6,9,10-Hexabromo                                     |                         |             | nd ~ 55,000              | 420    |  |  |
|      | cyclododecane                                                                           |                         |             | (52/63)<br>nd ~ 680      | nd     |  |  |
|      | δ-1,2,5,6,9,10-Hexabromo cyclododecane                                                  |                         |             | (5/63)                   |        |  |  |
|      | [19-5]<br>ε-1,2,5,6,9,10-Hexabromo                                                      |                         |             | nd ~ 310<br>(7/63)       | nd     |  |  |
| [20] | cyclododecane 2-(2 <i>H</i> -1,2,3-Benzotriazol-2-yl) -4,6-di- <i>tert</i> -butylphenol | nd ~ tr(49)<br>(1/48)   | nd          | nd ~ 4,500<br>(52/63)    | 59     |  |  |

<sup>(</sup>Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

<sup>(</sup>Note 2) "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas. Therefore "Range" can be shown as "nd ~" even if a target chemical is detected in all sites or areas.

<sup>(</sup>Note 3) "means the medium was not monitored."

<sup>(</sup>Note 4) The target chemicals of the Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) monitoring survey were *n*-Perfluorooctane sulfonic acid and *n*-Perfluorooctanoic acid.

Table 3-4-3 List of the detection ranges in the Environmental Monitoring in FY 2012 (Part 3)

|      |                                               |                           |       | Wildlife ( pg/g             | -wet )    |                          |        | ,                          | Air ( p    | o/m³ )                         |      |
|------|-----------------------------------------------|---------------------------|-------|-----------------------------|-----------|--------------------------|--------|----------------------------|------------|--------------------------------|------|
|      |                                               | Bibalves                  |       | Fish                        |           | Birds                    |        | First                      |            | Second                         |      |
| No.  | Target chemicals                              |                           | •     | Range                       |           |                          |        | (Warm seas                 | on)        | (Cold seas                     | on)  |
|      |                                               | Range<br>(Frepuency)      | Av.   | (Frepuency)                 | Av.       | Range<br>(Frepuency)     | Av.    | Range<br>(Frepuency)       | Av.        | Range<br>(Frepuency)           | Av.  |
| [1]  | PCBs                                          | 680 ~ 34,000<br>(5/5)     | 6,600 | 920 ~ 130,000<br>(19/19)    | 13,000    | 5,600 ~ 6,200<br>(2/2)   | 5,900  | 27 ~ 840<br>(35/35)        | 130        | $tr(16) \sim 280$ (35/35)      | 54   |
| [2]  | НСВ                                           | 10 ~ 340                  | 39    | 33 ~ 1,100                  | 200       | 470 ~ 1,500              | 840    | 84 ~ 150                   | 120        | 68 ~ 150                       | 97   |
| [2]  | neb                                           | (5/5)                     | _     | (19/19)                     |           | (2/2)                    |        | (36/36)                    |            | (36/36)                        |      |
| [3]  | Aldrin (reference)                            |                           |       |                             |           |                          |        |                            |            |                                |      |
| [4]  | Dieldrin (reference)                          |                           |       |                             |           |                          |        |                            |            |                                |      |
| [5]  | Endrin (reference)                            |                           |       |                             |           |                          |        |                            |            |                                |      |
|      | DDTs (reference)                              |                           |       |                             |           |                          |        |                            |            |                                |      |
|      | [6-1] <i>p,p</i> '-DDT (reference)            |                           |       |                             |           |                          |        |                            |            |                                |      |
|      | [6-2] <i>p,p</i> '-DDE (reference)            |                           |       |                             |           |                          |        |                            |            |                                |      |
| [6]  | [6-3] p,p'-DDD (reference)                    |                           |       |                             |           |                          |        |                            |            |                                |      |
|      | [6-4] o,p'-DDT (reference)                    |                           |       |                             |           |                          |        |                            |            |                                |      |
|      | [6-5] o,p'-DDE (reference)                    |                           |       |                             |           |                          |        |                            |            |                                |      |
|      | [6-6] o,p'-DDD (reference)                    | 660 ~ 7,700               | 2,000 | 330 ~ 10,000                | 2,500     | 690 ~ 870                | 770    | 9.0 ~ 2,000                | 190        | nd ~ 240                       | 32   |
|      | Chlordanes                                    | (5/5)                     |       | (19/19)                     |           | (2/2)                    |        | (36/36)                    |            | (35/36)                        |      |
|      | [7-1] <i>cis-</i> chlordane                   | 180 ~ 3,500<br>(5/5)      | 710   | 98 ~ 3,100<br>(19/19)       | 580       | 5 ~ 110<br>(2/2)         | 23     | 2.9 ~ 650<br>(36/36)       | 61         | nd ~ 74<br>(35/36)             | 10   |
| [7]  | [7-2] trans-chlordane                         | 140 ~ 1,300<br>(5/5)      | 390   | 19 ~ 1,100<br>(19/19)       | 170       | $tr(4) \sim 10$ (2/2)    | tr(6)  | 2.8 ~ 780<br>(36/36)       | 70         | nd ~ 95<br>(35/36)             | 12   |
| [7]  | [7-3] Oxychlordane                            | 12 ~ 450<br>(5/5)         | 66    | 28 ~ 390<br>(19/19)         | 140       | 170 ~ 360<br>(2/2)       | 250    | 0.34 ~ 6.7<br>(36/36)      | 1.4        | 0.22 ~ 1.0<br>(36/36)          | 0.41 |
|      | [7-4] <i>cis</i> -Nonachlor                   | 52 ~ 670<br>(5/5)         | 200   | 33 ~ 2,200<br>(19/19)       | 420       | 56 ~ 100<br>(2/2)        | 75     | 0.29 ~ 89<br>(36/36)       | 6.9        | $tr(0.05) \sim 10$<br>(36/36)  | 0.98 |
|      | [7-5] <i>trans</i> -Nonachlor                 | 190 ~ 1,800               | 530   | 140 ~ 4,200                 | 1,100     | 270 ~ 480                | 360    | 2.5 ~ 510                  | 49         | tr(0.50) ~ 61                  | 8.1  |
|      | Heptachlors                                   | (5/5)<br>$tr(7) \sim 190$ | 53    | (19/19)<br>$tr(8) \sim 120$ | 44        | (2/2)<br>150 ~ 170       | 160    | (36/36)<br>1.1 ~ 61        | 16         | (36/36)<br>$tr(0.40) \sim 21$  | 4.2  |
|      | [8-1] heptachlor                              | (5/5)<br>nd ~ 13          | tr(3) | (19/19)<br>nd ~ 5           | nd        | (2/2)<br>nd              | nd     | (36/36)<br>0.46 ~ 58       | 13         | (36/36)<br>nd ~ 20             | 3.2  |
| [8]  | [o 1] nepatemor                               | (4/5)                     |       | (10/19)                     |           | (0/2)                    |        | (36/36)                    |            | (35/36)                        |      |
|      | [8-2] cis-heptachlor epoxide                  | 6.2 ~ 180<br>(5/5)        | 48    | 6.9 ~ 120<br>(19/19)        | 41        | $150 \sim 170$ (2/2)     | 160    | $0.37 \sim 6.3$ (36/36)    | 2.0        | 0.30 ~ 1.9<br>(36/36)          | 0.62 |
|      | [8-3] trans-heptachlor epoxide                |                           | nd    | nd<br>(0/19)                | nd        | nd<br>(0/2)              | nd     | nd ~ tr(0.08) (8/36)       | nd         | nd<br>(0/36)                   | nd   |
|      | Toxaphenes (reference)                        | (1,0)                     |       | (0,15)                      |           | (0.2)                    |        | (6,20)                     |            | (0.50)                         |      |
| [0]  | [9-1] Parlar-26 (reference)                   |                           |       |                             |           |                          |        |                            |            |                                |      |
| [9]  | [9-2] Parlar-50 (reference)                   |                           |       |                             |           |                          |        |                            |            |                                |      |
| [10] | [9-3] Parlar-62 (reference) Mirex (reference) |                           |       |                             |           |                          |        |                            |            |                                |      |
|      | , , , , , , , , , , , , , , , , , , ,         |                           |       |                             |           |                          |        |                            |            |                                |      |
|      | HCHs                                          | 4.0 ~ 340                 | 23    | nd ~ 170                    | 24        | 32 ~ 39                  | 35     | 15 ~ 250                   | 37         | 4.4 ~ 120                      | 12   |
|      | [11-1] α-HCH                                  | (5/5)<br>15 ~ 980         | 65    | (18/19)<br>6.5 ~ 510        | 72        | $(2/2)$ $730 \sim 2,600$ | 1,400  | (36/36)<br>0.65 ~ 32       | 5.0        | (36/36)<br>$tr(0.26) \sim 8.5$ | 0.93 |
| [11] |                                               | (5/5)                     |       | (19/19)                     |           | (2/2)                    | 1,400  | (36/36)                    | 5.0        | (36/36)                        |      |
|      | [11-3] γ-HCH<br>(synonym:Lindane)             | 3.0 ~ 68<br>(5/5)         | 8.1   | nd ~ 43<br>(18/19)          | 7.8       | 6.3 ~ 19<br>(2/2)        | 11     | 2.3 ~ 55<br>(36/36)        | 13         | tr(0.63) ~ 19<br>(36/36)       | 3.1  |
|      | [11-4] δ-HCH                                  | nd ~ 580<br>(3/5)         | 3     | nd ~ 12<br>(14/19)          | tr(2)     | $tr(2) \sim 7$ (2/2)     | 4      | $tr(0.06) \sim 20$ (36/36) | 1.0        | nd ~ 7.3<br>(35/36)            | 0.18 |
| (NI  | ote 1) "Av." indicates the g                  |                           |       |                             | in a nd i |                          | antina |                            | 1f +la a v |                                |      |

<sup>(</sup>Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

<sup>(</sup>Note 2) "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas. Therefore "Range" can be shown as "nd ~" even if a target chemical is detected in all sites or areas.

<sup>(</sup>Note 3) "means the medium was not monitored.

Table 3-4-4 List of the detection ranges in the Environmental Monitoring in FY 2012 (Part 4)

|       |                                                                          |                               |        | Wildlife ( pg/g                  | -wet ) |                                                                       |         |                                | Air ( p  | g/m <sup>3</sup> )                  |          |  |  |  |
|-------|--------------------------------------------------------------------------|-------------------------------|--------|----------------------------------|--------|-----------------------------------------------------------------------|---------|--------------------------------|----------|-------------------------------------|----------|--|--|--|
| NI-   | T                                                                        | Bibalve                       | s      | Fish                             |        | Birds                                                                 |         | First                          | `        | Second                              |          |  |  |  |
| No.   | Target chemicals                                                         | Renge                         |        | Renge                            |        | Renge                                                                 |         | (Warm sea<br>Renge             |          | (Cold sear                          |          |  |  |  |
|       |                                                                          | (Frepuency)                   | Av.    | (Frepuency)                      | Av.    | (Frepuency)                                                           | Av.     | (Frepuency)                    | Av.      | (Frepuency)                         | Av.      |  |  |  |
| [12]  | Chlordecone (reference)                                                  |                               |        |                                  |        |                                                                       |         |                                |          |                                     |          |  |  |  |
| [13]  | Hexabromobiphenyls (reference)                                           |                               |        |                                  |        |                                                                       |         |                                |          |                                     |          |  |  |  |
|       | Polybromodiphenyl ethers(Br <sub>4</sub> $\sim$ Br <sub>10</sub> )       | tr(100) ~ 850<br>(5/5)        |        | tr(110) ~ 1,400<br>(19/19)       | 380    | 630 ~ 1,600<br>(2/2)                                                  | 1,000   | nd ~ 44<br>(22/36)             | tr(7)    | nd ~ 79<br>(29/36)                  | tr(12)   |  |  |  |
|       | [14-1] Tetrabromodiphenyl ethers                                         | 24 ~ 190<br>(5/5)             | 59     | tr(10) ~ 650<br>(19/19)          | 120    | 49 ~ 110<br>(2/2)                                                     | 73      | nd ~ 5.7<br>(35/36)            | 0.7      | nd ~ 1.7<br>(25/36)                 | tr(0.2)  |  |  |  |
|       | [14-2] Pentabromodiphenyl ethers                                         | $tr(8) \sim 67$ (5/5)         | 28     | nd ~ 180<br>(17/19)              | 37     | 66 ~ 110<br>(2/2)                                                     | 85      | nd ~ 2.4<br>(30/36)            | tr(0.13) | nd ~ 0.77<br>(26/36)                | tr(0.09) |  |  |  |
| 54.43 | [14-3] Hexabromodiphenyl ethers                                          | tr(6) ~ 130<br>(5/5)          | 21     | nd ~ 320<br>(18/19)              | 55     | 72 ~ 320<br>(2/2)                                                     | 150     | nd ~ 3.1<br>(9/36)             | nd       | nd ~ 0.5<br>(22/36)                 | tr(0.1)  |  |  |  |
| [14]  | [14-4] Heptabromodiphenyl ethers                                         | nd ~ 59<br>(3/5)              | tr(8)  | nd ~ 120<br>(11/19)              | tr(11) | $14 \sim 280$ (2/2)                                                   | 63      | nd ~ 1.8<br>(6/36)             | nd       | nd ~ 0.7<br>(8/36)                  | nd       |  |  |  |
|       | [14-5] Octabromodiphenyl ethers                                          | nd ~ 25<br>(4/5)              | 8      | nd ~ 160<br>(12/19)              | tr(7)  | $40 \sim 420$ (2/2)                                                   | 130     | nd ~ 1.2<br>(29/36)            | tr(0.2)  | nd ~ 1.2<br>(30/36)                 | 0.3      |  |  |  |
|       | [14-6] Nonabromodiphenyl ethers                                          | $nd \sim 45$ (3/5)            | tr(15) | nd ~ 54<br>(9/19)                | nd     | $67 \sim 150$ (2/2)                                                   | 100     | $nd \sim 5.1$ (24/36)          | tr(0.5)  | $nd \sim 4.7$ (30/36)               | tr(0.9)  |  |  |  |
|       | [14-7] Decabromodiphenyl                                                 | nd ~ 480<br>(4/5)             | 120    | $nd \sim 380$ (11/19)            | tr(59) | $240 \sim 260$ (2/2)                                                  | 250     | nd ~ 31<br>(17/36)             | nd       | nd ~ 73<br>(28/36)                  | tr(10)   |  |  |  |
| [15]  | Perfluorooctane sulfonic acid (PFOS)                                     | $tr(4) \sim 160$ (5/5)        | 27     | $tr(5) \sim 7,300$<br>(19/19)    | 110    | $63 \sim 410$ (2/2)                                                   | 160     | 1.3 ~ 8.9<br>(36/36)           | 3.6      | 1.0 ~ 5.9<br>(36/36)                | 2.7      |  |  |  |
| [16]  | Perfluoroactanoic acid                                                   | $nd \sim 46$ (4/5)            | tr(21) | nd ~ 86<br>(18/19)               | tr(35) | $tr(26) \sim tr(28)$ (2/2)                                            | tr(27)  | 1.9 ~ 120<br>(36/36)           | 11       | 1.6 ~ 48<br>(36/36)                 | 6.9      |  |  |  |
| [17]  | Pentachlorobenzene                                                       | tr(5.8) ~ 110                 | 16     | tr(5.0) ~ 190                    | 29     | 46 ~ 130                                                              | 77      | 31 ~ 150                       | 58       | 27 ~ 120                            | 55       |  |  |  |
|       | Endosulfans                                                              | (5/5)<br>nd ~ 230             | tr(68) | (19/19)<br>nd ~ tr(57)           | nd     | (2/2)<br>nd ~ tr(29)                                                  | nd      | (36/36)<br>$tr(6.5) \sim 100$  | 25       | (36/36)<br>nd ~ 21                  | nd       |  |  |  |
| [18]  | α-Endosulfan                                                             | (4/5)<br>nd ~ 200             | tr(54) | (8/19)<br>nd ~ tr(54)            | nd     | (1/2)<br>nd                                                           | nd      | (36/36)<br>$tr(6.0) \sim 98$   | 23       | (16/36)<br>nd ~ 19                  | nd       |  |  |  |
|       | β-Endosulfan                                                             | (4/5)<br>nd ~ 43              | 15     | (6/19)<br>nd ~ 15                | nd     | $ \begin{array}{c} (0/2) \\ \text{nd} \sim \text{tr}(7) \end{array} $ | nd      | (36/36)<br>nd ~ 18             | 1.3      | (15/36)<br>nd ~ 1.7                 | nd       |  |  |  |
|       | 1,2,5,6,9,10-Hexabromo cyclododecanes                                    | (4/5)<br>230 ~ 3,200<br>(5/5) | 800    | (6/19)<br>nd ~ 10,000<br>(16/19) | 630    | (1/2)<br>$nd \sim 1,600$<br>(1/2)                                     | 250     | (33/36)<br>nd ~ 440<br>(31/36) | 4.5      | (17/36)<br>$nd \sim 170$<br>(33/36) | 5.8      |  |  |  |
|       | [19-1]<br>\alpha -1,2,5,6,9,10-Hexabromo<br>cyclododecane                | 190 ~ 2,500<br>(5/5)          | 530    | nd ~ 8,700<br>(18/19)            | 510    | nd ~ 1,400<br>(1/2)                                                   | 120     | nd ~ 130<br>(31/36)            | 1.7      | nd ~ 63<br>(35/36)                  | 2.9      |  |  |  |
|       | [19-2] $\beta$ -1,2,5,6,9,10-Hexabromo cyclododecane                     | nd ~ 90<br>(4/5)              | tr(25) | nd ~ 40<br>(8/19)                | nd     | nd<br>(0/2)                                                           | nd      | nd ~ 29<br>(30/36)             | 0.5      | nd ~ 18<br>(35/36)                  | 0.8      |  |  |  |
| [19]  | [19-3]<br>γ-1,2,5,6,9,10-Hexabromo<br>cyclododecane                      | 30 ~ 910<br>(5/5)             | 170    | nd ~ 1,600<br>(16/19)            | 75     | nd ~ 190<br>(1/2)                                                     | 31      | nd ~ 280<br>(31/36)            | 1.6      | nd ~ 84<br>(35/36)                  | 2.1      |  |  |  |
|       | [19-4] $\delta$ -1,2,5,6,9,10-Hexabromo cyclododecane                    | nd<br>(0/5)                   | nd     | nd<br>(0/19)                     | nd     | nd<br>(0/2)                                                           | nd      | nd ~ 0.8<br>(1/36)             | nd       | nd ~ 1.1<br>(1/36)                  | nd       |  |  |  |
|       | [19-5] $\varepsilon$ -1,2,5,6,9,10-Hexabromo cyclododecane               | $nd \sim tr(30)$ (1/5)        | nd     | nd ~ tr(30)<br>(3/19)            | nd     | nd<br>(0/2)                                                           | nd      | nd<br>(0/36)                   | nd       | nd ~ tr(0.5)<br>(1/36)              | nd       |  |  |  |
| [20]  | 2-(2 <i>H</i> -1,2,3-Benzotriazol-2-yl)-4,6-di- <i>tert</i> -butylphenol | 5.5 ~ 26<br>(5/5)             | 12     | nd ~ 1,700<br>(17/19)            | 26     | nd ~ 12<br>(1/2)                                                      | tr(2.9) |                                |          |                                     |          |  |  |  |

<sup>(</sup>Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

<sup>(</sup>Note 2) "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas. Therefore "Range" can be shown as "nd ~" even if a target chemical is detected in all sites or areas.

<sup>(</sup>Note 3) "means the medium was not monitored.

<sup>(</sup>Note 4) The target chemicals of the Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) monitoring survey were *n*-Perfluorooctane sulfonic acid and *n*-Perfluorooctanoic acid. However, the possibility cannot be ruled out that the concentration of branched Perfluorooctanoic acid, which has a branched carbon chain, was included in measured concentration as *n*-Perfluorooctanoic acid in a survey of wildlife.

Table 3-5-1 List of the quantification [detection] limits in the Environmental Monitoring in FY 2012 (Part 1)

|      |                                    |                        |                           | ntal Monitoring in FY 20 |                          |
|------|------------------------------------|------------------------|---------------------------|--------------------------|--------------------------|
| No.  | Target chemicals                   | Surface water ( pg/L ) | Sediment ( pg/g-dry )     | Wildlife ( pg/g-wet )    | Air (pg/m <sup>3</sup> ) |
| [1]  | PCBs                               | *44                    | *51                       | *34                      | *26                      |
| . ,  |                                    | [*15]                  | [*18]                     | [*11]                    | [*8.5]                   |
| [2]  | HCB                                | 2.2                    | 3                         | 8.4                      | 4.3                      |
|      |                                    | [0.7]                  | [1]                       | [2.8]                    | [1.4]                    |
| [3]  | Aldrin (reference)                 |                        |                           |                          |                          |
|      | ( 2 )                              |                        |                           |                          |                          |
| [4]  | Dieldrin (reference)               |                        |                           |                          |                          |
| [5]  | Endrin (reference)                 |                        |                           |                          |                          |
|      | DDTs (reference)                   |                        |                           |                          |                          |
|      | [6-1] p,p'-DDT (reference)         |                        |                           |                          |                          |
|      | [6-2] p,p'-DDE (reference)         |                        |                           |                          |                          |
| [6]  | [6-3] <i>p,p'</i> -DDD (reference) |                        | ·                         |                          |                          |
|      | [6-4] <i>o,p'</i> -DDT (reference) |                        |                           |                          |                          |
|      | [6-5] o,p'-DDE (reference)         |                        |                           |                          |                          |
| -    | [6-6] o,p'-DDD (reference)         | 4.7.0                  | 41.4                      | h1 C                     | 450                      |
|      | Chlordanes                         | *7.3                   | *14                       | *16                      | *5.0                     |
|      |                                    | [*2.7]<br>1.6          | [* 5]<br>2.9              | [*5.4]                   | [*1.7]<br>1.5            |
|      | [7-1] cis-chlordane                | [0.6]                  | [1.0]                     | [2]                      | [0.51]                   |
|      |                                    | 2.5                    | 4.0                       | 7                        | 2.1                      |
|      | [7-2] trans-chlordane              | [0.8]                  | [1.3]                     | [2]                      | [0.7]                    |
| [7]  | F 43 0 11 1                        | 0.9                    | 1.7                       | 3                        | 0.08                     |
|      | [7-3] Oxychlordane                 | [0.4]                  | [0.7]                     | [1]                      | [0.03]                   |
|      | [7-4] cis-Nonachlor                | 0.8                    | 3                         | 2                        | 0.12                     |
|      | [/-4] CIS-NOHACHIOI                | [0.3]                  | [1]                       | [1]                      | [0.05]                   |
|      | [7-5] trans-Nonachlor              | 1.5                    | 2.4                       | 4                        | 1.2                      |
|      | [/ b] www.b 1 tellarines           | [0.6]                  | [0.8]                     | [1]                      | [0.41]                   |
|      | Heptachlors                        |                        |                           | *14                      | *0.58                    |
|      |                                    |                        |                           | [*5]                     | [*0.21]<br>0.41          |
|      | [8-1] heptachlor                   | •                      | •                         | [1]                      | [0.14]                   |
| [8]  | [8-2] cis-heptachlor               |                        |                           | 1.5                      | 0.05                     |
|      | epoxide                            | •                      | '                         | [0.6]                    | [0.02]                   |
|      | [8-3] trans-heptachlor             |                        |                           | 8                        | 0.12                     |
|      | epoxide                            |                        |                           | [3]                      | [0.05]                   |
|      | Toxaphenes (reference)             |                        |                           |                          |                          |
|      | [9-1] Parlar-26 (reference)        |                        |                           |                          |                          |
| F03  | [5-1]1 anai-20 (1616161106)        |                        |                           |                          |                          |
| [9]  | [9-2] Parlar-50 (reference)        |                        |                           |                          |                          |
|      | [9-3] Parlar-62 (reference)        |                        |                           |                          |                          |
| [10] | Mirex (reference)                  |                        |                           |                          |                          |
|      | HCHs                               |                        |                           |                          |                          |
|      | [11-1] α-HCH                       | 1.4                    | 1.6                       | 3.7                      | 2.1                      |
|      | [11 1]W-1IC11                      | [0.5]                  | [0.5]                     | [1.2]                    | [0.7]                    |
|      | [11-2] <i>β</i> -HCH               | 1.4                    | 1.5                       | 2                        | 0.36                     |
| [11] |                                    | [0.5]                  | [0.6]                     | [0.8]                    | [0.12]                   |
|      | [11-3] y-HCH                       | 1.3                    | 1.3                       | 2.3                      | 0.95                     |
|      | (synonym:Lindane)                  | [0.4]                  | [0.4]                     | [0.9]                    | [0.32]                   |
|      | [11-4] δ-HCH                       | 1.1<br>[0.4]           | 0.8<br>[0.3]              | 3<br>[1]                 | 0.07<br>[0.03]           |
|      | 1) F 1                             |                        | rresponding [detection li |                          | [0.03]                   |

<sup>(</sup>Note 1) Each quantification limit is shown above the corresponding [detection limit].
(Note 2) "\*" means the quantification [detection] limit is the sum value of congeners.
(Note 3) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical.

<sup>(</sup>Note 4) The quantification [detection] limit for surface water offshore of Himeji was different from the value shown in the table. (Note 5) "means the medium was not monitored."

Table 3-5-1 List of the quantification [detection] limits in the Environmental Monitoring in FY 2012 (Part 2)

| No.           | Target chemicals                                                           | Surface water (pg/L)   | mits in the Environmer<br>Sediment (pg/g-dry) | Wildlife ( pg/g-wet ) | 012 (Part 2)<br>Air (pg/m <sup>3</sup> ) |
|---------------|----------------------------------------------------------------------------|------------------------|-----------------------------------------------|-----------------------|------------------------------------------|
|               |                                                                            | Surface water ( pg/L ) | seament (pg/g-ary)                            | whame (pg/g-wet)      | Au ( pg/III )                            |
| [12]          | Chlordecone (reference)                                                    |                        |                                               |                       |                                          |
| [13]          | Hexabromobiphenyls (reference)                                             |                        |                                               |                       |                                          |
|               | Polybromodiphenyl                                                          | *710                   | *330                                          | *210                  | *18                                      |
|               | ethers( $Br_4 \sim Br_{10}$ )                                              | [*240]                 | [*110]                                        | [*83]                 | [*6]                                     |
|               | [14-1]                                                                     | 4                      | 2                                             | 19                    | 0.3                                      |
|               | Tetrabromodiphenyl ethers                                                  | [1]                    | [1]                                           | [7]                   | [0.1]                                    |
|               | [14-2]                                                                     | 2                      | 2.4                                           | 18                    | 0.14                                     |
|               | Pentabromodiphenyl ethers                                                  | [1]                    | [0.9]                                         | [6]                   | [0.06]                                   |
|               | [14-3]                                                                     | 3                      | 3                                             | 10                    | 0.3                                      |
| [14]          | Harrahmana dimbanyil athana                                                | [1]                    | [1]                                           | [4]                   | [0.1]                                    |
| [14]          | [14-4]                                                                     | 4                      | 4                                             | 12                    | 0.5                                      |
|               | Heptabromodiphenyl                                                         | [1]                    | [2]                                           | [5]                   | [0.2]                                    |
|               | ethers                                                                     |                        |                                               |                       |                                          |
|               | [14-5] Octabromodiphenyl ethers                                            | 4<br>[2]               | 19<br>[6]                                     | 8<br>[3]              | 0.3<br>[0.1]                             |
|               | [14-6]                                                                     | L <del>2</del> 1<br>40 | 34                                            | 24                    | 1.2                                      |
|               | Nonabromodiphenyl ethers                                                   | [13]                   | [11]                                          | [9]                   | [0.4]                                    |
|               | [14-7] Decabromodiphenyl                                                   | 660                    | 270                                           | 120                   | 16                                       |
|               | ether                                                                      | [220]                  | [89]                                          | [50]                  | [5]                                      |
| £1.53         | Perfluorooctane sulfonic                                                   | 31                     | 9                                             | 7                     | 0.5                                      |
| [15]          | acid (PFOS)                                                                | [12]                   | [4]                                           | [3]                   | [0.2]                                    |
| F1.63         | Perfluorooctanoic acid                                                     | 170                    | 4                                             | 38                    | 0.7                                      |
| [16]          | (PFOA)                                                                     | [55]                   | [2]                                           | [13]                  | [0.2]                                    |
| [1 <i>7</i> ] | Pentachlorobenzene                                                         | 3                      | 2.5                                           | 8.1                   | 1.8                                      |
| [1/]          | 1 chachiorocchizene                                                        | [1]                    | [0.8]                                         | [2.7]                 | [0.6]                                    |
|               | Endosulfans                                                                | *51<br>[*19]           | *26<br>[*10]                                  | *85<br>[*28]          | *17<br>[*5.7]                            |
|               |                                                                            | 27                     | 13                                            | 71                    | 16                                       |
| [18]          | α-Endosulfan                                                               | [10]                   | [5]                                           | [24]                  | [5.3]                                    |
|               | 0 = 4 40                                                                   | 24                     | 13                                            | 14                    | 1.2                                      |
|               | β-Endosulfan                                                               | [9]                    | [5]                                           | [5]                   | [0.4]                                    |
|               | 1,2,5,6,9,10-Hexabromo                                                     |                        | *940                                          | *210                  | *2.2                                     |
|               | cyclododecanes                                                             |                        | [*350]                                        | [*80]                 | [*0.8]                                   |
|               | [19-1]                                                                     |                        | 180                                           | 50                    | 0.6                                      |
|               | α-1,2,5,6,9,10-Hexabromo cyclododecane                                     |                        | [70]                                          | [20]                  | [0.2]                                    |
|               | [19-2]                                                                     |                        |                                               | 4^                    |                                          |
|               | $\beta$ -1,2,5,6,9,10-Hexabromo                                            |                        | 150                                           | 40                    | 0.3                                      |
|               | cyclododecane                                                              |                        | [60]                                          | [10]                  | [0.1]                                    |
| [19]          | [19-3]                                                                     |                        | 160                                           | 30                    | 0.3                                      |
|               | γ-1,2,5,6,9,10-Hexabromo                                                   |                        | [60]                                          | [10]                  | [0.1]                                    |
|               | cyclododecane<br>[19-4]                                                    |                        |                                               |                       |                                          |
|               | $\delta$ -1,2,5,6,9,10-Hexabromo                                           |                        | 300                                           | 50                    | 0.4                                      |
|               | cyclododecane                                                              |                        | [100]                                         | [20]                  | [0.2]                                    |
|               | [19-5]                                                                     |                        | 150                                           | 40                    | 0.6                                      |
|               | $\varepsilon$ -1,2,5,6,9,10-Hexabromo                                      |                        | [60]                                          | [20]                  | [0.2]                                    |
|               | cyclododecane                                                              |                        | [ ۵ م                                         | [-0]                  | [0.2]                                    |
| [20]          | 2-(2 <i>H</i> -1,2,3-Benzotriazol-<br>2-yl)-4,6-di- <i>tert</i> -butylphen | 100                    | 20                                            | 4.6                   |                                          |
| [20]          | ol                                                                         | [39]                   | [8]                                           | [1.8]                 |                                          |
| <u> </u>      | 1                                                                          |                        |                                               |                       |                                          |

<sup>(</sup>Note 1) Each quantification limit is shown above the corresponding [detection limit]. (Note 2) "\*" means the quantification [detection] limit is the sum value of congeners.

<sup>(</sup>Note 3) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical. (Note 4) "means the medium was not monitored.

Table 3-6-1 Results of inter-annual trend analysis from FY2002 to FY2012 (surface water)

| NI.  | Nama                           | Surface water |            |           |            |          |  |  |  |  |
|------|--------------------------------|---------------|------------|-----------|------------|----------|--|--|--|--|
| No   | Name                           |               | River area | Lake area | Mouth area | Sea area |  |  |  |  |
| [1]  | PCBs                           |               |            |           |            | -        |  |  |  |  |
| [2]  | НСВ                            |               | -          | -         |            | L        |  |  |  |  |
| [3]  | Aldrin (reference)             |               |            |           |            |          |  |  |  |  |
| [4]  | Dieldrin (reference)           |               |            |           |            |          |  |  |  |  |
| [5]  | Endrin (reference)             |               |            |           |            |          |  |  |  |  |
|      | DDTs (reference)               |               |            |           |            |          |  |  |  |  |
|      | [6-1] p,p'-DDT (reference)     |               |            |           |            |          |  |  |  |  |
|      | [6-2] p,p'-DDE (reference)     |               |            |           |            |          |  |  |  |  |
| [6]  | [6-3] p,p'-DDD (reference)     |               |            |           |            |          |  |  |  |  |
|      | [6-4] o,p'-DDT (reference)     |               |            |           |            |          |  |  |  |  |
|      | [6-5] o,p'-DDE (reference)     |               |            |           |            |          |  |  |  |  |
|      | [6-6] o,p'-DDD (reference)     |               |            |           |            |          |  |  |  |  |
|      | Chlordanes                     |               |            |           |            |          |  |  |  |  |
|      | [7-1] cis-chlordane            | -             | -          | -         | -          |          |  |  |  |  |
| [7]  | [7-2] trans-chlordane          | -             | -          | -         | -          | _        |  |  |  |  |
| [7]  | [7-3] Oxychlordane             | _ *           | - *        | X         | -          | X        |  |  |  |  |
|      | [7-4] cis-Nonachlor            | -             | -          | -         | -          | -        |  |  |  |  |
|      | [7-5] trans-Nonachlor          | -             |            | -         | -          | -        |  |  |  |  |
|      | Heptachlors                    |               |            |           |            |          |  |  |  |  |
| F03  | [8-1] heptachlor               | _             | -          | -         | -          | -        |  |  |  |  |
| [8]  | [8-2] cis-heptachlor epoxide   | _ *           | _ *        | X         | -          | X        |  |  |  |  |
|      | [8-3] trans-heptachlor epoxide | -             | -          | -         | -          | -        |  |  |  |  |
|      | Toxaphenes (reference)         |               |            |           |            |          |  |  |  |  |
|      | [9-1] Parlar-26 (reference)    |               |            |           |            |          |  |  |  |  |
| [9]  | [9-2] Parlar-50 (reference)    |               |            |           |            |          |  |  |  |  |
|      | [9-3] Parlar-62 (reference)    |               |            |           |            |          |  |  |  |  |
| [10] | Mirex (reference)              |               |            |           |            |          |  |  |  |  |
|      | HCHs                           |               |            |           |            |          |  |  |  |  |
|      | [11-1] α-HCH                   | -             | -          | -         | -          | -        |  |  |  |  |
| [11] | [11-2] <i>β</i> -HCH           | -             | -          |           | -          | _        |  |  |  |  |
|      | [11-3] γ-HCH (synonym:Lindane) |               |            |           |            |          |  |  |  |  |
|      | [11-4] δ-HCH                   | _ *           | -          | -         | - *        | X        |  |  |  |  |

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

<sup>(</sup>Note 2) " \( \sqrt{} \) ": An inter-annual trend of decrease was found.

<sup>&</sup>quot; ": Statistically significant differences between the first-half and second-half periods were found.

<sup>&</sup>quot; - ": An inter-annual trend was not found.

<sup>&</sup>quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

<sup>&</sup>quot;\*":In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.

<sup>(</sup>Note 3) The classification of monitored sites with area are shown in Table 3-7

<sup>(</sup>Note 4)" ": The inter-annual trend analysis was not analysed because not conducted the survey in FY 2012.

Table 3-6-2 Results of inter-annual trend analysis from FY2002 to FY2012 (sediment)

| <b>.</b> | N.                             | Sediment |            |           |             |          |  |  |  |  |
|----------|--------------------------------|----------|------------|-----------|-------------|----------|--|--|--|--|
| No       | Name                           |          | River area | Lake area | Mouth area  | Sea area |  |  |  |  |
| [1]      | PCBs                           | -        | _ *        | -         | _           | -        |  |  |  |  |
| [2]      | НСВ                            | -        | -          | -         | _           | -        |  |  |  |  |
| [3]      | Aldrin (reference)             |          |            |           |             |          |  |  |  |  |
| [4]      | Dieldrin (reference)           |          |            |           |             |          |  |  |  |  |
| [5]      | Endrin (reference)             |          |            |           |             |          |  |  |  |  |
|          | DDTs (reference)               |          | :          |           | 1           | :        |  |  |  |  |
|          | [6-1] p,p'-DDT (reference)     |          |            |           |             |          |  |  |  |  |
|          | [6-2] p,p'-DDE (reference)     |          |            |           |             |          |  |  |  |  |
| [6]      | [6-3] p,p'-DDD (reference)     |          |            |           |             |          |  |  |  |  |
|          | [6-4] o,p'-DDT (reference)     |          |            |           |             |          |  |  |  |  |
|          | [6-5] o,p'-DDE (reference)     |          |            |           |             |          |  |  |  |  |
|          | [6-6] o,p'-DDD (reference)     |          |            |           |             |          |  |  |  |  |
|          | Chlordanes                     | ······   | ,          | ,         | ,           | <b>y</b> |  |  |  |  |
|          | [7-1] cis-chlordane            |          |            |           | <u> </u>    |          |  |  |  |  |
| [7]      | [7-2] trans-chlordane          |          |            | _         | -           | -        |  |  |  |  |
| [7]      | [7-3] Oxychlordane             | <u> </u> | _ *        | X         | _ *         | X        |  |  |  |  |
|          | [7-4] cis-Nonachlor            | -        |            | -         |             |          |  |  |  |  |
|          | [7-5] trans-Nonachlor          |          | -          | -         | -           |          |  |  |  |  |
|          | Heptachlors                    |          |            |           |             |          |  |  |  |  |
|          | [8-1] heptachlor               |          |            |           | :<br>:<br>: |          |  |  |  |  |
| [8]      | [8-2] cis-heptachlor epoxide   |          |            |           |             | :        |  |  |  |  |
|          | [8-3] trans-heptachlor epoxide |          |            |           |             |          |  |  |  |  |
|          | Toxaphenes (reference)         |          |            |           |             |          |  |  |  |  |
|          | [9-1] Parlar-26 (reference)    |          |            |           |             |          |  |  |  |  |
| [9]      | [9-2] Parlar-50 (reference)    |          |            |           |             |          |  |  |  |  |
|          | [9-3] Parlar-62 (reference)    |          |            |           |             |          |  |  |  |  |
| [10]     | Mirex (reference)              |          |            |           |             |          |  |  |  |  |
|          | HCHs                           |          |            |           |             |          |  |  |  |  |
|          | [11-1] α-HCH                   | -        | -          | -         | <u> </u>    | -        |  |  |  |  |
| [11]     | [11-2] <i>β</i> -HCH           | -        | -          | -         | -           | _        |  |  |  |  |
|          | [11-3] γ-HCH (synonym:Lindane) | -        | -          | -         | -           | -        |  |  |  |  |
|          | [11-4] δ-HCH                   | -        | -          | -         | -           | _        |  |  |  |  |

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

<sup>(</sup>Note 2) " → ": An inter-annual trend of decrease was found.
" ¬ ": Statistically significant differences between the first-half and second-half periods were found.

<sup>&</sup>quot; - ": An inter-annual trend was not found.

<sup>&</sup>quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

<sup>&</sup>quot;\*": In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.

<sup>(</sup>Note 3) The classification of monitored sites with area are shown in Table 3-7

<sup>(</sup>Note 4)": The inter-annual trend analysis was not analysed because not conducted the survey in FY 2012

Table 3-6-3 Results of inter-annual trend analysis from FY2002 to FY2012 (wildlife)

| No   | Name                                                                                                                                   | Bivalves                                    | Fish |
|------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| [1]  | PCBs                                                                                                                                   | -                                           | -    |
| [2]  | НСВ                                                                                                                                    | -                                           | -    |
| [3]  | Aldrin (reference)                                                                                                                     |                                             |      |
| [4]  | Dieldrin (reference)                                                                                                                   |                                             |      |
| [5]  | Endrin (reference)                                                                                                                     |                                             |      |
|      | DDTs (reference)                                                                                                                       |                                             |      |
| [6]  | [6-1] p,p'-DDT (reference) [6-2] p,p'-DDE (reference) [6-3] p,p'-DDD (reference) [6-4] o,p'-DDT (reference) [6-5] o,p'-DDE (reference) |                                             |      |
|      | [6-6] o,p'-DDD (reference)                                                                                                             |                                             |      |
|      | Chlordanes                                                                                                                             | <b>7</b>                                    |      |
|      | [7-1] cis-chlordane                                                                                                                    | _                                           | -    |
| [7]  | [7-2] trans-chlordane                                                                                                                  | -                                           | -    |
| [7]  | [7-3] Oxychlordane                                                                                                                     | -                                           | -    |
|      | [7-4] cis-Nonachlor                                                                                                                    | -                                           | -    |
|      | [7-5] trans-Nonachlor                                                                                                                  | -                                           | -    |
|      | Heptachlors                                                                                                                            |                                             |      |
|      | [8-1] heptachlor                                                                                                                       | _ *                                         | X    |
| [8]  | [8-2] cis-heptachlor epoxide                                                                                                           | -                                           | -    |
|      | [8-3] trans-heptachlor epoxide                                                                                                         | X                                           | X    |
|      | Toxaphenes (reference)                                                                                                                 |                                             |      |
|      | [9-1] Parlar-26 (reference)                                                                                                            |                                             |      |
| [9]  | [9-2] Parlar-50 (reference)                                                                                                            |                                             |      |
|      | [9-3] Parlar-62 (reference)                                                                                                            |                                             |      |
| [10] | Mirex (reference)                                                                                                                      |                                             |      |
|      | HCHs                                                                                                                                   |                                             |      |
|      | [11-1] α-HCH                                                                                                                           |                                             | -    |
| [11] | [11-2] <i>β</i> -HCH                                                                                                                   | -                                           | -    |
|      | [11-3] γ-HCH (synonym:Lindane)                                                                                                         | -                                           |      |
| (N   | [11-4] δ-HCH                                                                                                                           | X from AICs was more than 95%, the measurer | _ *  |

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 3) ": The inter-annual trend analysis was not analyzed because not conducted the survey in FY 2012.

<sup>(</sup>Note 2) " \square ": An inter-annual trend of decrease was found.

<sup>&</sup>quot;: Statistically significant differences between the first-half and second-half periods were found.

<sup>&</sup>quot; - ": An inter-annual trend was not found.

<sup>&</sup>quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more." "In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.

Table 3-6-4 Results of inter-annual trend analysis from FY2002 to FY2012 (air)

| N    | N                                  | A           | Air         |
|------|------------------------------------|-------------|-------------|
| No   | Name                               | Warm season | Cold season |
| [1]  | PCBs                               | -           | -           |
| [2]  | НСВ                                | -           | -           |
| [3]  | Aldrin (reference)                 |             |             |
| [4]  | Dieldrin (reference)               |             |             |
| [5]  | Endrin (reference)                 |             |             |
|      | DDTs (reference)                   |             |             |
|      | [6-1] p,p'-DDT (reference)         |             |             |
|      | [6-2] p,p'-DDE (reference)         |             |             |
| [6]  | [6-3] <i>p,p'</i> -DDD (reference) |             |             |
|      | [6-4] o,p'-DDT (reference)         |             |             |
|      | [6-5] o,p'-DDE (reference)         |             |             |
|      | [6-6] o,p'-DDD (reference)         |             |             |
|      | Chlordanes                         |             |             |
|      | [7-1] cis-chlordane                |             |             |
|      | [7-2] trans-chlordane              |             | -           |
| [7]  | [7-3] Oxychlordane                 |             | -           |
|      | [7-4] cis-Nonachlor                |             | -           |
|      | [7-5] trans-Nonachlor              |             | -           |
|      | Heptachlors                        | ·           |             |
|      | [8-1] heptachlor                   |             |             |
| [8]  | [8-2] cis-heptachlor epoxide       | -           | -           |
|      | [8-3] trans-heptachlor epoxide     | X           | X           |
|      | Toxaphenes (reference)             | '           |             |
|      | [9-1] Parlar-26 (reference)        |             |             |
| [9]  | [9-2] Parlar-50 (reference)        |             |             |
|      | [9-3] Parlar-62 (reference)        |             |             |
| [10] | Mirex (reference)                  |             |             |

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 3) ": The inter-annual trend analysis was not analyzed because not conducted the survey in FY 2012.

<sup>(</sup>Note 2) " \( \sigma \)": An inter-annual trend of decrease was found.

"\( \sigma \)": Statistically significant differences between the first-half and second-half periods were found.

<sup>&</sup>quot; - ": An inter-annual trend was not found.

<sup>&</sup>quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

Table 3-7 The classification of monitored sites with area at inter-annual trend analysis from FY2002 to FY2012

| Classification | Local                                                                                        | Monitored sites                                                                                                                                                  | Monitore                   | d media                         |
|----------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------|
|                | Communities                                                                                  |                                                                                                                                                                  | Surface water              | Sediment                        |
| River area     | Hokkaido                                                                                     | Onnenai-ohashi Bridge, Riv. Teshio(Bifuka Town) Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City)                                                                 | 0                          | 0                               |
|                |                                                                                              | Ishikarikakokyo Bridge, Mouth of Riv. Ishikari(Ishikari City)                                                                                                    | 0                          | 0                               |
| ŀ              | Iwate Pref.                                                                                  | Riv. Toyosawa(Hanamaki City)                                                                                                                                     | 0                          | 0                               |
|                | Sendai City                                                                                  | Hirose-ohashi Bridge, Riv. Hirose(Sendai City)                                                                                                                   | Ů                          | 0                               |
| İ              | Yamagata Pref.                                                                               | Mouth of Riv. Mogami(Sakata City)                                                                                                                                | 0                          | 0                               |
| İ              | Ibaraki Pref.                                                                                | Tonekamome-ohasi Bridge, Mouth of Riv. Tone(Kamisu City)                                                                                                         | 0                          | 0                               |
| İ              | Tochigi Pref.                                                                                | Riv. Tagawa(Utsunomiya City)                                                                                                                                     | 0                          | 0                               |
| İ              | Saitama Pref.                                                                                | Akigaseshusui of Riv. Arakawa                                                                                                                                    | 0                          |                                 |
|                | Niigata Pref.                                                                                | Lower Riv. Shinano(Niigata City)                                                                                                                                 | 0                          | 0                               |
|                | Toyama Pref.                                                                                 | Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City)                                                                                                          | 0                          | 0                               |
| Ī              | Fukui Pref.                                                                                  | Mishima-bashi Bridge, Riv. Shono(Tsuruga City)                                                                                                                   | 0                          | 0                               |
|                | Yamanashi Pref.                                                                              | Senshu-bashi Bridge, Riv. Arakawa(Kofu City)                                                                                                                     |                            | 0                               |
|                | Shizuoka Pref.                                                                               | Riv. Tenryu(Iwata City)                                                                                                                                          | 0                          | 0                               |
|                | Kyoto City                                                                                   | Miyamae-bashi Bridge, Riv. Katsura(Kyoto City)                                                                                                                   | 0                          | 0                               |
|                | Osaka City                                                                                   | Osaka Port                                                                                                                                                       | 0                          | 0                               |
|                |                                                                                              | Riv. Yodo(Osaka City)                                                                                                                                            |                            | 0                               |
|                | Nara Pref.                                                                                   | Riv. Yamato(Ooji Town)                                                                                                                                           |                            | 0                               |
|                | Wakayama Pref.                                                                               | Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City)                                                                                                    | 0                          | 0                               |
| ſ              | Kochi Pref.                                                                                  | Mouth of Riv. Shimanto(Shimanto City)                                                                                                                            | 0                          | 0                               |
| ſ              | Kumamoto Pref.                                                                               | Hiraki-bashi Bridge, Riv. Midori(Uto City)                                                                                                                       | 0                          |                                 |
|                | Miyazaki Pref.                                                                               | Mouth of Riv. Oyodo(Miyazaki City)                                                                                                                               | 0                          | 0                               |
|                | Kagoshima Pref.                                                                              | Riv. Amori(Kirishima City)                                                                                                                                       | 0                          | 0                               |
|                |                                                                                              | Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City)                                                                                                         | 0                          | 0                               |
| Lake area      | Akita Pref.                                                                                  | Lake Hachiro                                                                                                                                                     | 0                          | 0                               |
|                | Nagano Pref.                                                                                 | Lake Suwa(center)                                                                                                                                                | 0                          | 0                               |
|                | Shiga Pref.                                                                                  | Lake Biwa(center, offshore of Minamihira)                                                                                                                        |                            | 0                               |
|                |                                                                                              | Lake Biwa(center, offshore of Karasaki)                                                                                                                          | 0                          | 0                               |
| River          | Hokkaido                                                                                     | Tomakomai Port                                                                                                                                                   |                            | 0                               |
| mouth area     | Chiba City                                                                                   | Mouth of Riv. Hanami(Chiba City)                                                                                                                                 | 0                          | 0                               |
|                | Tokyo Met.                                                                                   | Mouth of Riv. Arakawa(Koto Ward)                                                                                                                                 | 0                          | 0                               |
|                |                                                                                              | Mouth of Riv. Sumida(Minato Ward)                                                                                                                                | 0                          | 0                               |
|                | Kawasaki City                                                                                | Mouth of Riv. Tama(Kawasaki City)                                                                                                                                |                            | 0                               |
|                | Ishikawa Pref.                                                                               | Mouth of Riv. Sai(Kanazawa City)                                                                                                                                 | 0                          | 0                               |
|                | Aichi Pref.                                                                                  | Kinuura Port                                                                                                                                                     |                            | 0                               |
|                | Mie Pref.                                                                                    | Toba Port                                                                                                                                                        |                            | 0                               |
|                | Osaka Pref.                                                                                  | Mouth of Riv. Yamato(Sakai City)                                                                                                                                 | 0                          | 0                               |
|                | Osaka City                                                                                   | Mouth of Riv. Yodo(Osaka City)                                                                                                                                   |                            | 0                               |
|                | Tokushima Pref.                                                                              | Mouth of Riv. Yoshino(Tokushima City)                                                                                                                            | 0                          | 0                               |
|                | Kagawa Pref.                                                                                 | Takamatsu Port                                                                                                                                                   | 0                          | 0                               |
|                | Kitakyushu City                                                                              | Dokai Bay                                                                                                                                                        | 0                          | 0                               |
|                | Oita Pref.                                                                                   | Mouth of Riv. Oita(Oita City)                                                                                                                                    |                            | 0                               |
| _              | Okinawa Pref.                                                                                | Naha Port                                                                                                                                                        | 0                          | 0                               |
| Sea area       | Miyagi Pref.                                                                                 | Sendai Bay(Matsushima Bay)                                                                                                                                       | 0                          | 0                               |
| ļ              | Fukushima Pref.                                                                              | Onahama Port                                                                                                                                                     | 0                          | 0                               |
| ļ              | Chiba Pref.                                                                                  | Coast of Ichihara and Anegasaki                                                                                                                                  |                            | 0                               |
| ļ              | Yokohama City                                                                                | Yokohama Port                                                                                                                                                    | 0                          | 0                               |
| ļ              | Kawasaki City                                                                                | Keihin Canal, Port of Kawasaki                                                                                                                                   | 0                          | 0                               |
| ļ              | Shizuoka Pref.                                                                               | Shimizu Port                                                                                                                                                     | 1                          | 0                               |
|                | Aichi Pref.                                                                                  | Nagoya Port                                                                                                                                                      | 0                          | 0                               |
| l              | Mie Pref.                                                                                    | Yokkaichi Port                                                                                                                                                   | 0                          | 0                               |
|                |                                                                                              |                                                                                                                                                                  |                            |                                 |
|                | Kyoto Pref.                                                                                  | Miyazu Port                                                                                                                                                      | 0                          | 0                               |
|                | Osaka City                                                                                   | Outside Osaka Port                                                                                                                                               |                            | 0                               |
|                | Osaka City<br>Hyogo Pref.                                                                    | Outside Osaka Port<br>Offshore of Himeji                                                                                                                         | 0                          | 0                               |
|                | Osaka City<br>Hyogo Pref.<br>Kobe City                                                       | Outside Osaka Port Offshore of Himeji Kobe Port(center)                                                                                                          | 0                          | 0 0                             |
|                | Osaka City<br>Hyogo Pref.<br>Kobe City<br>Okayama Pref.                                      | Outside Osaka Port Offshore of Himeji Kobe Port(center) Offshore of Mizushima                                                                                    | 0 0                        | 0 0 0                           |
|                | Osaka City<br>Hyogo Pref.<br>Kobe City                                                       | Outside Osaka Port Offshore of Himeji Kobe Port(center) Offshore of Mizushima Kure Port                                                                          | 0 0 0                      | 0<br>0<br>0<br>0                |
|                | Osaka City<br>Hyogo Pref.<br>Kobe City<br>Okayama Pref.<br>Hiroshima Pref.                   | Outside Osaka Port Offshore of Himeji Kobe Port(center) Offshore of Mizushima Kure Port Hiroshima Bay                                                            | 0 0 0 0 0 0 0              | 0<br>0<br>0<br>0                |
|                | Osaka City<br>Hyogo Pref.<br>Kobe City<br>Okayama Pref.                                      | Outside Osaka Port Offshore of Himeji Kobe Port(center) Offshore of Mizushima Kure Port Hiroshima Bay Tokuyama Bay                                               | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0           |
|                | Osaka City<br>Hyogo Pref.<br>Kobe City<br>Okayama Pref.<br>Hiroshima Pref.                   | Outside Osaka Port Offshore of Himeji Kobe Port(center) Offshore of Mizushima Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube                               | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0           |
|                | Osaka City Hyogo Pref. Kobe City Okayama Pref. Hiroshima Pref.  Yamaguchi Pref.              | Outside Osaka Port Offshore of Himeji Kobe Port(center) Offshore of Mizushima Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi              | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0      |
|                | Osaka City Hyogo Pref. Kobe City Okayama Pref. Hiroshima Pref.  Yamaguchi Pref.  Ehime Pref. | Outside Osaka Port Offshore of Himeji Kobe Port(center) Offshore of Mizushima Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi Niihama Port | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0 |
|                | Osaka City Hyogo Pref. Kobe City Okayama Pref. Hiroshima Pref.  Yamaguchi Pref.              | Outside Osaka Port Offshore of Himeji Kobe Port(center) Offshore of Mizushima Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi              | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0      |

(Note) There are monitored sites which were classified in the area unlike these names by the situations

In the wake of the monitoring surveys of FYs 2002~2011, FY 2012 saw a high sensitivity analysis covering four (4) of ten (10) POPs treaty substances and HCHs. All these chemicals were found, excepting heptachlors (heptachlor) in wildlife (birds) and heptachlors (trans-heptachlor epoxide) in wildlife (fish and birds) and in air (cold season).

A high sensitivity analysis also surveyed for Polybromodiphenyl ethers (Br<sub>4</sub>~Br<sub>10</sub>), Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acid (PFOA), Pentachlorobenzene, Endosulfans, 1,2,5,6,9,10-Hexabromocyclododecanes and 2-(2H-1,2,3-Benzotriazol-2-yl)-4,6-di-tert-butylphenol. All these chemicals were detected excepting  $\delta$ -1,2,5,6,9,10-Hexabromocyclododecane in wildlife ,  $\varepsilon$ -1,2,5,6,9,10-Hexabromocyclododecane in wildlife and in the air (warm season). 2-(2H-1,2,3-Benzotriazol-2-yl)-4,6-di-tert-butylphenol was detected in surface water, in sediment and in wildlife.

The monitoring results for each chemical (group) are described below.

### [1] PCBs

#### · History and state of monitoring

Polychlorinated biphenyls (PCBs) had been used as insulating oil, etc. and were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in June 1974, since the substances are persistent, highly accumulative in living organisms, and chronically toxic.

In previous monitoring series, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY 1978 ~ 2001 under the framework of "the Wildlife Monitoring." Under the framework of "The Follow-up Survey of the Status of Pollution by Unintentionally Formed Chemicals," sediment and wildlife (fish) were the monitored media in FY 1996 and FY 1997, and surface water, sediment, wildlife (fish) and air were the monitored media in FY 2000 and FY 2001.

Under the framework of the Environmental Monitoring, the substances in surface water, sediment, wildlife (bivalves, fish and birds) and air have been monitored since FY 2002.

### · Monitoring results

# <Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of \*\*15 pg/L, and the detection range was 72 ~ 6,500pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2012, reduction tendency in specimens from river areas, lake areas and river mouth areas identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

Stocktaking of the detection of PCBs (total amount) in surface water during FY2002~2012

| PCBs           | Monitored | Geometric |        |         |         | Quantification         | Detection l | Frequency |
|----------------|-----------|-----------|--------|---------|---------|------------------------|-------------|-----------|
| (total amount) | year      | Mean*     | Median | Maximum | Minimum | [Detection]<br>Limit** | Sample      | Site      |
|                | 2002      | 470       | 330    | 11,000  | 60      | 7.4 [2.5]              | 114/114     | 38/38     |
|                | 2003      | 530       | 450    | 3,100   | 230     | 9.4 [2.5]              | 36/36       | 36/36     |
|                | 2004      | 630       | 540    | 4,400   | 140     | 14 [5.0]               | 38/38       | 38/38     |
|                | 2005      | 520       | 370    | 7,800   | 140     | 10 [3.2]               | 47/47       | 47/47     |
| CC             | 2006      | 240       | 200    | 4,300   | 15      | 9 [3]                  | 48/48       | 48/48     |
| Surface water  | 2007      | 180       | 140    | 2,700   | 12      | 7.6 [2.9]              | 48/48       | 48/48     |
| (pg/L)         | 2008      | 260       | 250    | 4,300   | 27      | 7.8 [3.0]              | 48/48       | 48/48     |
|                | 2009      | 210       | 170    | 3,900   | 14      | 10 [4]                 | 48/48       | 48/48     |
|                | 2010      | 120       | 99     | 2,200   | nd      | 73 [24]                | 41/49       | 41/49     |
|                | 2011      | 150       | 130    | 2,100   | 16      | 4.5 [1.7]              | 49/49       | 49/49     |
|                | 2012      | 400       | 280    | 6,500   | 72      | 44 [15]                | 48/48       | 48/48     |

<sup>(</sup>Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

### < Sediment>

The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of \*\*18pg/g-dry, and the detection range was  $tr(32) \sim 640,000 \text{ pg/g}$ .

<sup>(</sup>Note 2) " \*\* " indicates the sum value of the Quantification [Detection] limits of each congener.

Stocktaking of the detection of PCBs (total amount) in sediment during FY2002~2012

| PCBs           | Monitored | Geometric<br>Mean* |        |           | Minimum | Quantification         | Detection l | Frequency |
|----------------|-----------|--------------------|--------|-----------|---------|------------------------|-------------|-----------|
| (total amount) | year      |                    | Median | Maximum   |         | [Detection]<br>Limit** | Sample      | Site      |
|                | 2002      | 11,000             | 11,000 | 630,000   | 39      | 10 [3.5]               | 189/189     | 63/63     |
|                | 2003      | 9,400              | 9,500  | 5,600,000 | 39      | 10 [3.2]               | 186/186     | 62/62     |
|                | 2004      | 8,400              | 7,600  | 1,300,000 | 38      | 7.9 [2.6]              | 189/189     | 63/63     |
|                | 2005      | 8,600              | 7,100  | 690,000   | 42      | 6.3 [2.1]              | 189/189     | 63/63     |
| Sediment       | 2006      | 8,800              | 6,600  | 690,000   | 36      | 4 [1]                  | 192/192     | 64/64     |
|                | 2007      | 7,400              | 6,800  | 820,000   | 19      | 4.7 [1.5]              | 192/192     | 64/64     |
| (pg/g-dry)     | 2008      | 8,700              | 8,900  | 630,000   | 22      | 3.3 [1.2]              | 192/192     | 64/64     |
|                | 2009      | 7,600              | 7,100  | 1,700,000 | 17      | 5.1 [2.1]              | 192/192     | 64/64     |
|                | 2010      | 6,500              | 7,800  | 710,000   | nd      | 660 [220]              | 56/64       | 56/64     |
|                | 2011      | 6,300              | 7,400  | 950,000   | 24      | 12 [4.5]               | 64/64       | 64/64     |
|                | 2012      | 5,700              | 6,700  | 640,000   | tr(32)  | 51 [18]                | 63/63       | 63/63     |

<sup>(</sup>Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~FY2009.

#### <Wildlife>

The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of \*\*11pg/g-wet, and the detection range was  $680 \sim 34,000$  pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of \*\*11pg/g-wet, and the detection range was  $920 \sim 130,000$  pg/g-wet. For birds, the presence of the substance was monitored in 2 area, and it was detected at all 2 valid area adopting the detection limit of \*\*11pg/g-wet, and the detection range was  $5,600 \sim 6,200$  pg/g-wet.

Stocktaking of the detection of PCBs (total amount) in wildlife (bivalves, fish and birds) during FY2002~2012

| PCBs           | Monitored | Geometric |        |         |         | Quantification         | Detection l | Frequency |
|----------------|-----------|-----------|--------|---------|---------|------------------------|-------------|-----------|
| (total amount) | year      | Mean*     | Median | Maximum | Minimum | [Detection]<br>Limit** | Sample      | Site      |
|                | 2002      | 8,800     | 28,000 | 160,000 | 200     | 25 [8.4]               | 38/38       | 8/8       |
|                | 2003      | 11,000    | 9,600  | 130,000 | 1,000   | 50 [17]                | 30/30       | 6/6       |
|                | 2004      | 11,000    | 11,000 | 150,000 | 1,500   | 85 [29]                | 31/31       | 7/7       |
|                | 2005      | 11,000    | 13,000 | 85,000  | 920     | 69 [23]                | 31/31       | 7/7       |
| Bivalves       | 2006      | 8,500     | 8,600  | 77,000  | 690     | 42 [14]                | 31/31       | 7/7       |
|                | 2007      | 9,000     | 11,000 | 66,000  | 980     | 46 [18]                | 31/31       | 7/7       |
| (pg/g-wet)     | 2008      | 8,600     | 8,600  | 69,000  | 870     | 47 [17]                | 31/31       | 7/7       |
|                | 2009      | 8,700     | 11,000 | 62,000  | 780     | 32 [11]                | 31/31       | 7/7       |
|                | 2010      | 9,200     | 11,000 | 46,000  | 1,500   | 52 [20]                | 6/6         | 6/6       |
|                | 2011      | 8,900     | 17,000 | 65,000  | 820     | 220 [74]               | 4/4         | 4/4       |
|                | 2012      | 6,600     | 12,000 | 34,000  | 680     | 34 [11]                | 5/5         | 5/5       |
|                | 2002      | 17,000    | 8,100  | 550,000 | 1,500   | 25 [8.4]               | 70/70       | 14/14     |
|                | 2003      | 11,000    | 9,600  | 150,000 | 870     | 50 [17]                | 70/70       | 14/14     |
|                | 2004      | 15,000    | 10,000 | 540,000 | 990     | 85 [29]                | 70/70       | 14/14     |
|                | 2005      | 14,000    | 8,600  | 540,000 | 800     | 69 [23]                | 80/80       | 16/16     |
| E' 1           | 2006      | 13,000    | 9,000  | 310,000 | 990     | 42 [14]                | 80/80       | 16/16     |
| Fish           | 2007      | 11,000    | 6,200  | 530,000 | 790     | 46 [18]                | 80/80       | 16/16     |
| (pg/g-wet)     | 2008      | 12,000    | 9,100  | 330,000 | 1,200   | 47 [17]                | 85/85       | 17/17     |
|                | 2009      | 12,000    | 12,000 | 290,000 | 840     | 32 [11]                | 90/90       | 18/18     |
|                | 2010      | 13,000    | 10,000 | 260,000 | 880     | 52 [20]                | 18/18       | 18/18     |
|                | 2011      | 14,000    | 12,000 | 250,000 | 900     | 220 [74]               | 18/18       | 18/18     |
|                | 2012      | 13,000    | 14,000 | 130,000 | 920     | 34 [11]                | 19/19       | 19/19     |

<sup>(</sup>Note 2) " \*\* " indicates the sum value of the Quantification [Detection] limits of each congener.

| PCBs           | Monitored<br>year | Geometric |        |         |         | Quantification         | Detection I | requency |
|----------------|-------------------|-----------|--------|---------|---------|------------------------|-------------|----------|
| (total amount) |                   | Mean*     | Median | Maximum | Minimum | [Detection]<br>Limit** | Sample      | Site     |
|                | 2002              | 12,000    | 14,000 | 22,000  | 4,800   | 25 [8.4]               | 10/10       | 2/2      |
|                | 2003              | 19,000    | 22,000 | 42,000  | 6,800   | 50 [17]                | 10/10       | 2/2      |
|                | 2004              | 9,000     | 9,400  | 13,000  | 5,900   | 85 [29]                | 10/10       | 2/2      |
|                | 2005              | 10,000    | 9,700  | 19,000  | 5,600   | 69 [23]                | 10/10       | 2/2      |
| Birds          | 2006              | 12,000    | 9,800  | 48,000  | 5,600   | 42 [14]                | 10/10       | 2/2      |
|                | 2007              | 7,600     | 7,800  | 15,000  | 3,900   | 46 [18]                | 10/10       | 2/2      |
| (pg/g-wet)     | 2008              | 9,700     | 7,400  | 56,000  | 3,000   | 47 [17]                | 10/10       | 2/2      |
|                | 2009              | 5,900     | 5,700  | 9,500   | 3,900   | 32 [11]                | 10/10       | 2/2      |
|                | 2010              | 7,700     |        | 9,100   | 6,600   | 52 [20]                | 2/2         | 2/2      |
|                | 2011              |           |        | 5,400   | 5,400   | 220 [74]               | 1/1         | 1/1      |
|                | 2012              | 5,900     |        | 6,200   | 5,600   | 34 [11]                | 2/2         | 2/2      |

<sup>(</sup>Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~FY2009.

### <Air>

The presence of the substance in air in the warm season was monitored at 36 sites and, excluding 1 sites whose concentrations were treated as invalid, it was detected at all 35 valid sites adopting the detection limit of \*\*8.5pg/m³, and the detection range was  $27 \sim 840 \text{ pg/m}^3$ . For air in the cold season, the presence of the substance was monitored at 36 sites and, excluding 1 sites whose concentrations were treated as invalid, it was detected at all 35 valid sites adopting the detection limit of \*\*8.5pg/m³, and the detection range was tr(16)  $\sim 280 \text{ pg/m}^3$ .

Stocktaking of the detection of PCBs (total amount) in air during FY2002~2012

| PCBs           |                  | Geometric |        |         |         | Quantification         | Detection I | requency |
|----------------|------------------|-----------|--------|---------|---------|------------------------|-------------|----------|
| (total amount) | Monitored year   | Mean*     | Median | Maximum | Minimum | [Detection]<br>limit** | Sample      | Site     |
|                | ***2002          | 100       | 100    | 880     | 16      | 99 [33]                | 102/102     | 34/34    |
|                | 2003 Warm season | 260       | 340    | 2,600   | 36      | 6 6 [2 2]              | 35/35       | 35/35    |
|                | 2003 Cold season | 110       | 120    | 630     | 17      | 6.6 [2.2]              | 34/34       | 34/34    |
|                | 2004 Warm season | 240       | 250    | 3,300   | 25      | 2 0 10 091             | 37/37       | 37/37    |
|                | 2004 Cold season | 130       | 130    | 1,500   | 20      | 2.9 [0.98]             | 37/37       | 37/37    |
|                | 2005 Warm season | 190       | 210    | 1,500   | 23      | 0.29 [0.14]            | 37/37       | 37/37    |
|                | 2005 Cold season | 66        | 64     | 380     | 20      | 0.38 [0.14]            | 37/37       | 37/37    |
|                | 2006 Warm season | 170       | 180    | 1,500   | 21      | 0.8 [0.3]              | 37/37       | 37/37    |
|                | 2006 Cold season | 82        | 90     | 450     | 19      |                        | 37/37       | 37/37    |
| Air            | 2007 Warm season | 250       | 290    | 980     | 37      | 0.37 [0.13]            | 24/24       | 24/24    |
|                | 2007 Cold season | 72        | 76     | 230     | 25      |                        | 22/22       | 22/22    |
| $(pg/m^3)$     | 2008 Warm season | 200       | 170    | 960     | 52      | 0.8.10.21              | 22/22       | 22/22    |
|                | 2008 Cold season | 93        | 86     | 1,500   | 21      | 0.8 [0.3]              | 36/36       | 36/36    |
|                | 2009 Warm season | 200       | 190    | 1,400   | 43      | 0.75 [0.26]            | 34/34       | 34/34    |
|                | 2009 Cold season | 85        | 78     | 380     | 20      | 0.75 [0.26]            | 34/34       | 34/34    |
|                | 2010 Warm season | 160       | 150    | 970     | 36      | 7.2 [2.5]              | 35/35       | 35/35    |
|                | 2010 Cold season | 84        | 86     | 630     | 19      | 7.3 [2.5]              | 35/35       | 35/35    |
|                | 2011 Warm season | 150       | 160    | 660     | 32      | 10 [5 0]               | 35/35       | 35/35    |
|                | 2011 Cold season | 76        | 66     | 320     | tr(17)  | 18 [5.9]               | 37/37       | 37/37    |
|                | 2012 Warm season | 130       | 130    | 840     | 27      | 26 [0 5]               | 35/35       | 35/35    |
|                | 2012 Cold season | 54        | 62     | 280     | tr(16)  | 26 [8.5]               | 35/35       | 35/35    |

<sup>(</sup>Note 1) " \* " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<sup>(</sup>Note 2) " \*\* " indicates the sum value of the Quantification [Detection] limits of each congener.

<sup>(</sup>Note 2) " \*\* ": The sum value of the Quantification [Detection] limits of each congener.

<sup>(</sup>Note 3) " \*\*\* ": In 2002, there was a technical problem in the measuring method for lowly chlorinated congeners, and therefore the values are shown just as reference.

### [2] Hexachlorobenzene

#### · History and state of monitoring

Hexachlorobenzene had been used as pesticidal material and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in August 1979.

In previous monitoring series, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY 1978 ~ 1996 and in FY 1998, FY 2000 and FY 2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY 1986 ~ 1998 and FY 1986 ~ 2001, respectively.

Under the framework of the Environmental Monitoring, the substance in surface water, sediment, wildlife (bivalves, fish and birds) and air has been monitored since FY 2002.

### · Monitoring results

### <Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.7pg/L, and the detection range was 8.1 ~ 330 pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2012, reduction tendencies in specimens from river areas and river mouth areas were identified as statistically significant, the second-half period indicated lower concentration than the first-half period in specimens from sea areas as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

Stocktaking of the detection of Hexachlorobenzene in surface water during FY2002~2011

|               | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
|---------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| НСВ           | year      | Mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|               | 2002      | 37        | 28     | 1,400   | 9.8     | 0.6 [0.2]            | 114/114     | 38/38     |
|               | 2003      | 29        | 24     | 340     | 11      | 5 [2]                | 36/36       | 36/36     |
|               | 2004      | 30        | tr(29) | 180     | tr(11)  | 30 [8]               | 38/38       | 38/38     |
|               | 2005      | 21        | 17     | 210     | tr(6)   | 15 [5]               | 47/47       | 47/47     |
| Surface water | 2006      | 16        | tr(12) | 190     | nd      | 16 [5]               | 46/48       | 46/48     |
|               | 2007      | 17        | 14     | 190     | tr(4)   | 8 [3]                | 48/48       | 48/48     |
| (pg/L)        | 2008      | 16        | 13     | 480     | 4       | 3 [1]                | 48/48       | 48/48     |
|               | 2009      | 15        | 17     | 180     | 2.4     | 0.5 [0.2]            | 49/49       | 49/49     |
|               | 2010      | tr(10)    | tr(8)  | 120     | nd      | 13 [4]               | 39/49       | 39/49     |
|               | 2011      | 13        | 12     | 140     | tr(3)   | 5 [2]                | 49/49       | 49/49     |
|               | 2012      | 29        | 23     | 330     | 8.1     | 2.2 [0.7]            | 48/48       | 48/48     |

(Note) "\*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

#### < Sediment>

The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 1pg/g-dry, and the detection range was  $3 \sim 12,000 \text{ pg/g}$ -dry.

Stocktaking of the detection of Hexachlorobenzene in sediment during FY2002~2012

|            | Monitored | Geometric |        |         |         | Quantification | Detection I | Frequency |
|------------|-----------|-----------|--------|---------|---------|----------------|-------------|-----------|
| HCB        | year      | mean      | Median | Maximum | Minimum | [Detection]    | Sample      | Site      |
|            | year      | incan     |        |         |         | limit          |             |           |
|            | 2002      | 240       | 200    | 19,000  | 7.6     | 0.9 [0.3]      | 189/189     | 63/63     |
|            | 2003      | 160       | 120    | 42,000  | 5       | 4 [2]          | 186/186     | 62/62     |
|            | 2004      | 140       | 100    | 25,000  | tr(6)   | 7 [3]          | 189/189     | 63/63     |
|            | 2005      | 170       | 130    | 22,000  | 13      | 3 [1]          | 189/189     | 63/63     |
| C - 1:4    | 2006      | 180       | 120    | 19,000  | 10      | 2.9 [1.0]      | 192/192     | 64/64     |
| Sediment   | 2007      | 140       | 110    | 65,000  | nd      | 5 [2]          | 191/192     | 64/64     |
| (pg/g-dry) | 2008      | 160       | 97     | 29,000  | 4.4     | 2.0 [0.8]      | 192/192     | 64/64     |
|            | 2009      | 150       | 120    | 34,000  | nd      | 1.8 [0.7]      | 190/192     | 64/64     |
|            | 2010      | 130       | 96     | 21,000  | 4       | 3 [1]          | 64/64       | 64/64     |
|            | 2011      | 150       | 110    | 35,000  | 11      | 7 [3]          | 64/64       | 64/64     |
|            | 2012      | 100       | 110    | 12,000  | 3       | 3 [1]          | 63/63       | 63/63     |

(Note) " \* " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

### <Wildlife>

The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 2.8pg/g-wet, and the detection range was  $10 \sim 340$  pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 2.8pg/g-wet, and the detection range was  $33 \sim 1,100$  pg/g-wet. For birds, the presence of the substance was monitored in 2 area, and it was detected at 2 valid area adopting the detection limit of 2.8pg/g-wet, and the detection range was  $470 \sim 1,500pg/g$ -wet.

Stocktaking of the detection of Hexachlorobenzene in wildlife (bivalves, fish and birds) during FY2002~2012

|            | Monitored | Geometric |        |         |         | Quantification       | Detection l | requency |
|------------|-----------|-----------|--------|---------|---------|----------------------|-------------|----------|
| НСВ        | year      | Mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
|            | 2002      | 21        | 22     | 330     | 2.4     | 0.18 [0.06]          | 38/38       | 8/8      |
|            | 2003      | 44        | 27     | 660     | tr(21)  | 23 [7.5]             | 30/30       | 6/6      |
|            | 2004      | 32        | 31     | 80      | 14      | 14 [4.6]             | 31/31       | 7/7      |
|            | 2005      | 51        | 28     | 450     | 19      | 11 [3.8]             | 31/31       | 7/7      |
| D:1        | 2006      | 46        | 28     | 340     | 11      | 3 [1]                | 31/31       | 7/7      |
| Bivalves   | 2007      | 37        | 22     | 400     | 11      | 7 [3]                | 31/31       | 7/7      |
| (pg/g-wet) | 2008      | 38        | 24     | 240     | 13      | 7 [3]                | 31/31       | 7/7      |
|            | 2009      | 34        | 32     | 200     | 12      | 4 [2]                | 31/31       | 7/7      |
|            | 2010      | 34        | 48     | 210     | tr(4)   | 5 [2]                | 6/6         | 6/6      |
|            | 2011      | 45        | 34     | 920     | 4       | 4 [1]                | 4/4         | 4/4      |
|            | 2012      | 39        | 38     | 340     | 10      | 8.4 [2.8]            | 5/5         | 5/5      |
|            | 2002      | 140       | 180    | 910     | 19      | 0.18 [0.06]          | 70/70       | 14/14    |
|            | 2003      | 180       | 170    | 1,500   | 28      | 23 [7.5]             | 70/70       | 14/14    |
|            | 2004      | 230       | 210    | 1,800   | 26      | 14 [4.6]             | 70/70       | 14/14    |
|            | 2005      | 180       | 160    | 1,700   | 29      | 11 [3.8]             | 80/80       | 16/16    |
| Fish       | 2006      | 180       | 220    | 1,400   | 25      | 3 [1]                | 80/80       | 16/16    |
|            | 2007      | 160       | 140    | 1,500   | 17      | 7 [3]                | 80/80       | 16/16    |
| (pg/g-wet) | 2008      | 170       | 210    | 1,500   | 25      | 7 [3]                | 85/85       | 17/17    |
|            | 2009      | 210       | 180    | 30,000  | 29      | 4 [2]                | 90/90       | 18/18    |
|            | 2010      | 240       | 280    | 1,700   | 36      | 5 [2]                | 18/18       | 18/18    |
|            | 2011      | 260       | 320    | 1,500   | 34      | 4 [1]                | 18/18       | 18/18    |
|            | 2012      | 200       | 300    | 1,100   | 33      | 8.4 [2.8]            | 19/19       | 19/19    |

|            | Monitored | Geometric |        |         |         | Quantification       | Detection I | requency |
|------------|-----------|-----------|--------|---------|---------|----------------------|-------------|----------|
| HCB        | year      | Mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
|            | 2002      | 1,000     | 1,200  | 1,600   | 560     | 0.18 [0.06]          | 10/10       | 2/2      |
|            | 2003      | 1,800     | 2,000  | 4,700   | 790     | 23 [7.5]             | 10/10       | 2/2      |
|            | 2004      | 980       | 1,300  | 2,200   | 410     | 14 [4.6]             | 10/10       | 2/2      |
|            | 2005      | 1,000     | 1,100  | 2,500   | 400     | 11 [3.8]             | 10/10       | 2/2      |
| D:1-       | 2006      | 970       | 1,100  | 2,100   | 490     | 3 [1]                | 10/10       | 2/2      |
| Birds      | 2007      | 960       | 1,100  | 2,000   | 420     | 7 [3]                | 10/10       | 2/2      |
| (pg/g-wet) | 2008      | 880       | 1,100  | 2,500   | 240     | 7 [3]                | 10/10       | 2/2      |
|            | 2009      | 850       | 910    | 1,500   | 400     | 4 [2]                | 10/10       | 2/2      |
|            | 2010      | 970       |        | 1,900   | 500     | 5 [2]                | 2/2         | 2/2      |
|            | 2011      |           |        | 460     | 460     | 4 [1]                | 1/1         | 1/1      |
|            | 2012      | 840       |        | 1,500   | 470     | 8.4 [2.8]            | 2/2         | 2/2      |

(Note) " \* " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

#### <Air>

The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $1.4 \text{pg/m}^3$ , and the detection range was  $84 \sim 150 \text{ pg/m}^3$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $1.4 \text{pg/m}^3$ , and the detection range was  $68 \sim 150 \text{ pg/m}^3$ .

Stocktaking of the detection of Hexachlorobenzene in air during FY2002~2012

|                        |                  | Geometric |        |         |         | Quantification        | Detection I | requency |
|------------------------|------------------|-----------|--------|---------|---------|-----------------------|-------------|----------|
| HCB                    | Monitored year   | mean      | Median | Maximum | Minimum | [Detection]<br>limit  | Sample      | Site     |
|                        | 2002             | 99        | 93     | 3,000   | 57      | 0.9 [0.3]             | 102/102     | 34/34    |
|                        | 2003 Warm season | 150       | 130    | 430     | 81      | 2.3 [0.78]            | 35/35       | 35/35    |
|                        | 2003 Cold season | 94        | 90     | 320     | 64      | 2.3 [0.76]            | 34/34       | 34/34    |
|                        | 2004 Warm season | 130       | 130    | 430     | 47      | 1.1 [0.37]            | 37/37       | 37/37    |
|                        | 2004 Cold season | 98        | 89     | 390     | 51      | 1.1 [0.37]            | 37/37       | 37/37    |
|                        | 2005 Warm season | 88        | 90     | 250     | 27      | 0.14 [0.034]          | 37/37       | 37/37    |
|                        | 2005 Cold season | 77        | 68     | 180     | 44      | <del>!4</del><br>)3   | 37/37       | 37/37    |
|                        | 2006 Warm season | 83        | 89     | 210     | 23      | 3.2 0.21 [0.07]<br>72 | 37/37       | 37/37    |
|                        | 2006 Cold season | 65        | 74     | 170     | 8.2     |                       | 37/37       | 37/37    |
| Air                    | 2007 Warm season | 110       | 100    | 230     | 72      | 0.09 [0.03]           | 24/24       | 24/24    |
| $(pg/m^3)$             | 2007 Cold season | 77        | 72     | 120     | 55      |                       | 22/22       | 22/22    |
| (pg/III <sup>*</sup> ) | 2008 Warm season | 120       | 110    | 260     | 78      | 0.22 [0.09]           | 22/22       | 22/22    |
|                        | 2008 Cold season | 87        | 83     | 160     | 58      | 0.22 [0.08]           | 36/36       | 36/36    |
|                        | 2009 Warm season | 110       | 110    | 210     | 78      | 0.6 [0.2]             | 34/34       | 34/34    |
|                        | 2009 Cold season | 87        | 87     | 150     | 59      | 0.6 [0.2]             | 34/34       | 34/34    |
|                        | 2010 Warm season | 120       | 120    | 160     | 73      | 1 9 [0 7]             | 37/37       | 37/37    |
|                        | 2010 Cold season | 100       | 96     | 380     | 56      | 1.8 [0.7]             | 37/37       | 37/37    |
|                        | 2011 Warm season | 120       | 110    | 180     | 87      | 2 2 [0 75]            | 35/35       | 35/35    |
|                        | 2011 Cold season | 96        | 96     | 160     | 75      | 2.3 [0.75]            | 37/37       | 37/37    |
|                        | 2012 Warm season | 120       | 110    | 150     | 84      | 4 2 F1 41             | 36/36       | 36/36    |
|                        | 2012 Cold season | 97        | 95     | 150     | 68      | 4.3 [1.4]             | 36/36       | 36/36    |

### [3] Aldrin (reference)

#### · History and state of monitoring

Aldrin had been used as a soil insecticide until FY 1971 when the application of the substance was substantially stopped. Its registration under the Agricultural Chemicals Regulation Law was expired in FY 1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981.

In previous monitoring series until FY 2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY 1978 ~ 1989, FY 1991 and FY 1993 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, the substance in surface water, sediment, wildlife (bivalves, fish and birds) and air had been monitored during FY  $2002 \sim FY 2009$ .

As of FY 2010, monitoring surveys are conducted every few years. No monitoring was conducted during FY  $2010 \sim FY2012$ . For reference, the monitoring results up to FY 2009 are given below.

### Monitoring results until FY 2009

<Surface Water>

Stocktaking of the detection of aldrin in surface water during FY2002~2009

| -             | Monitored | Geometric  |         |         |         | Quantification       | Detection 1 | Frequency |
|---------------|-----------|------------|---------|---------|---------|----------------------|-------------|-----------|
| Aldrin        | year      | year mean* | Median  | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|               | 2002      | 0.8        | 0.9     | 18      | nd      | 0.6 [0.2]            | 93/114      | 37/38     |
|               | 2003      | 0.9        | 0.9     | 3.8     | nd      | 0.6 [0.2]            | 34/36       | 34/36     |
|               | 2004      | tr(1.5)    | tr(1.8) | 13      | nd      | 2 [0.4]              | 33/38       | 33/38     |
| Surface water | 2005      | tr(0.6)    | tr(0.7) | 5.7     | nd      | 0.9 [0.3]            | 32/47       | 32/47     |
| (pg/L)        | 2006      | nd         | nd      | 4.4     | nd      | 1.7 [0.6]            | 18/48       | 18/48     |
|               | 2007      | tr(0.6)    | tr(0.6) | 9.5     | nd      | 1.0 [0.3]            | 34/48       | 34/48     |
|               | 2008      | tr(0.8)    | tr(0.7) | 21      | nd      | 1.4 [0.6]            | 26/48       | 26/48     |
|               | 2009      | 0.7        | 0.9     | 22      | nd      | 0.7 [0.3]            | 32/49       | 32/49     |

<sup>(</sup>Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

### <Sediment>

Stocktaking of the detection of aldrin in sediment during FY2002~2009

|                              | Monitored | Geometric |                |         | . M::    | Quantification       | Detection 1 | Frequency |
|------------------------------|-----------|-----------|----------------|---------|----------|----------------------|-------------|-----------|
| Aldrin                       | year      | Mean*     | lean* Median N | Maximum | Minimum  | [Detection]<br>limit | Sample      | Site      |
|                              | 2002      | 14        | 12             | 570     | nd       | 6 [2]                | 149/189     | 56/63     |
|                              | 2003      | 19        | 18             | 1,000   | nd       | 2 [0.6]              | 178/186     | 60/62     |
|                              | 2004      | 10        | 10             | 390     | nd       | 2 [0.6]              | 170/189     | 62/63     |
| Sediment                     | 2005      | 8.4       | 7.1            | 500     | nd       | 1.4 [0.5]            | 173/189     | 62/63     |
| (pg/g-dry)                   | 2006      | 10        | 9.3            | 330     | nd       | 1.9 [0.6]            | 184/192     | 64/64     |
|                              | 2007      | 7.5       | 6.7            | 330     | nd       | 1.8 [0.6]            | 172/192     | 60/64     |
|                              | 2008      | 6         | 6              | 370     | nd       | 3 [1]                | 153/192     | 56/64     |
|                              | 2009      | 8.9       | 7.8            | 540     | nd       | 0.5 [0.2]            | 180/192     | 64/64     |
| (3.T . 1) (/ de 22 . 1 . 1.1 |           |           | 1 . 1 .        | 1       | 1 1 1 .1 |                      | 1 C 11      | •         |

<sup>(</sup>Note 1) " \*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002  $\sim$ FY2009.

(Note 2) No monitoring was conducted from FY 2010 to FY2012.

<sup>(</sup>Note 2) No monitoring was conducted from FY 2010 to FY2012.

# <Wildlife>

Stocktaking of the detection of aldrin in wildlife (bivalves, fish and birds) during FY2002~2009

|            | Monitored | Geometric |          |         |         |            | Detection I | requency |
|------------|-----------|-----------|----------|---------|---------|------------|-------------|----------|
| Aldrin     | year      | Mean*     | Median   | Maximum | Minimum | Aldrin     | Sample      | Site     |
|            | 2002      | tr(1.6)   | nd       | 34      | nd      | 4.2 [1.4]  | 12/38       | 4/8      |
|            | 2003      | tr(1.7)   | tr(0.85) | 51      | nd      | 2.5 [0.84] | 15/30       | 3/6      |
|            | 2004      | tr(2.5)   | tr(1.6)  | 46      | nd      | 4.0 [1.3]  | 16/31       | 4/7      |
| Bivalves   | 2005      | tr(1.8)   | nd       | 84      | nd      | 3.5 [1.2]  | 11/31       | 3/7      |
| (pg/g-wet) | 2006      | tr(2)     | nd       | 19      | nd      | 4 [2]      | 11/31       | 3/7      |
|            | 2007      | tr(2)     | nd       | 26      | nd      | 5 [2]      | 5/31        | 2/7      |
|            | 2008      | tr(2)     | nd       | 20      | nd      | 5 [2]      | 5/31        | 3/7      |
|            | 2009      | tr(1.6)   | tr(0.8)  | 89      | nd      | 2.1 [0.8]  | 16/31       | 6/7      |
|            | 2002      | nd        | nd       | tr(2.0) | nd      | 4.2 [1.4]  | 1/70        | 1/14     |
|            | 2003      | nd        | nd       | tr(1.9) | nd      | 2.5 [0.84] | 16/70       | 7/14     |
|            | 2004      | nd        | nd       | tr(2.4) | nd      | 4.0 [1.3]  | 5/70        | 2/14     |
| Fish       | 2005      | nd        | nd       | 6.4     | nd      | 3.5 [1.2]  | 11/80       | 5/16     |
| (pg/g-wet) | 2006      | nd        | nd       | tr(2)   | nd      | 4 [2]      | 2/80        | 2/16     |
|            | 2007      | nd        | nd       | tr(2)   | nd      | 5 [2]      | 2/80        | 2/16     |
|            | 2008      | nd        | nd       | tr(2)   | nd      | 5 [2]      | 1/85        | 1/17     |
|            | 2009      | nd        | nd       | 3.1     | nd      | 2.1 [0.8]  | 22/90       | 7/18     |
|            | 2002      | nd        | nd       | nd      | nd      | 4.2 [1.4]  | 0/10        | 0/2      |
|            | 2003      | nd        | nd       | nd      | nd      | 2.5 [0.84] | 0/10        | 0/2      |
|            | 2004      | nd        | nd       | nd      | nd      | 4.0 [1.3]  | 0/10        | 0/2      |
| Birds      | 2005      | nd        | nd       | nd      | nd      | 3.5 [1.2]  | 0/10        | 0/2      |
| (pg/g-wet) | 2006      | nd        | nd       | nd      | nd      | 4 [2]      | 0/10        | 0/2      |
|            | 2007      | nd        | nd       | nd      | nd      | 5 [2]      | 0/10        | 0/2      |
|            | 2008      | nd        | nd       | nd      | nd      | 5 [2]      | 0/10        | 0/2      |
|            | 2009      | nd        | nd       | nd      | nd      | 2.1 [0.8]  | 0/10        | 0/2      |

<sup>(</sup>Note 1) " \* " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) No monitoring was conducted from FY 2010 to FY2012.

<Air>

Stocktaking of the detection of aldrin in air during FY2002~2009

|            |                  | Geometric |        |         |          | Quantification       | Detection 1 | Frequency |
|------------|------------------|-----------|--------|---------|----------|----------------------|-------------|-----------|
| Aldrin     | Monitored year   | mean      | Median | Maximum | Minimum  | [Detection]<br>limit | Sample      | Site      |
|            | 2002             | tr(0.030) | nd     | 3.2     | nd       | 0.060 [0.020]        | 41/102      | 19/34     |
|            | 2003 Warm season | 1.5       | 1.9    | 28      | nd       | 0.022 [0.0077]       | 34/35       | 34/35     |
|            | 2003 Cold season | 0.55      | 0.44   | 6.9     | 0.030    | 0.023 [0.0077]       | 34/34       | 34/34     |
|            | 2004 Warm season | tr(0.12)  | nd     | 14      | nd       | 0.15 [0.05]          | 15/37       | 15/37     |
|            | 2004 Cold season | tr(0.08)  | nd     | 13      | nd       | 0.15 [0.05]          | 14/37       | 14/37     |
|            | 2005 Warm season | 0.33      | 0.56   | 10      | nd       | 0.08 [0.03]          | 29/37       | 29/37     |
| Air        | 2005 Cold season | tr(0.04)  | nd     | 1.8     | nd       |                      | 9/37        | 9/37      |
| $(pg/m^3)$ | 2006 Warm season | 0.30      | 0.35   | 8.5     | nd       | 0.14 [0.05]          | 31/37       | 31/37     |
| (pg/III )  | 2006 Cold season | tr(0.05)  | nd     | 1.1     | nd       | 0.14 [0.03]          | 16/37       | 16/37     |
|            | 2007 Warm season | 0.58      | 0.48   | 19      | nd       | 0.05 [0.02]          | 35/36       | 35/36     |
|            | 2007 Cold season | 0.14      | 0.15   | 2.1     | nd       | 0.03 [0.02]          | 34/36       | 34/36     |
|            | 2008 Warm season | 0.27      | 0.30   | 9.4     | tr(0.02) | 0.04 [0.02]          | 25/25       | 25/25     |
|            | 2008 Cold season | 0.09      | 0.08   | 1.3     | nd       |                      | 22/25       | 22/25     |
|            | 2009 Warm season | 0.07      | nd     | 10      | nd       | 0.04 [0.02]          | 10/25       | 10/25     |
| 07         | 2009 Cold season | tr(0.03)  | nd     | 1.8     | nd       | 0.04 [0.02]          | 8/24        | 8/24      |

(Note) No monitoring was conducted from FY 2010 to FY2012.

### [4] Dieldrin (reference)

#### · History and state of monitoring

Dieldrin was used as a pesticide and its application culminated during the period of 1955 ~ 1964. The substance had been used as termitecides as a Soil-Residue-Prone Pesticide under the Agricultural Chemicals Regulation Law in 1971, but its registration under the Agricultural Chemicals Regulation Law was expired in FY 1975. It had been used for termite control and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981.

In previous monitoring series until FY 2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY 1978 ~ 1996, FY 1998, FY 2000 and FY 2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY 1986 ~ 1998 and FY 1986 ~ 2001, respectively.

Under the framework of the Environmental Monitoring, the substance in surface water, sediment, wildlife (bivalves, fish and birds) and air had been monitored during FY 2002 ~ FY 2009 and in FY 2011.

No monitoring was conducted in FY 2012. For reference, the monitoring results up to FY 2011 are given below.

#### · Monitoring results

<Surface Water>

Stocktaking of the detection of dieldrin in surface water during FY2002~2009,2011

|               | Monitored | Geometric |        |         |         | Quantification       | Detection l | Frequency |
|---------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| Dieldrin      | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|               | 2002      | 42        | 41     | 940     | 3.3     | 1.8 [0.6]            | 114/114     | 38/38     |
|               | 2003      | 57        | 57     | 510     | 9.7     | 0.7 [0.3]            | 36/36       | 36/36     |
|               | 2004      | 55        | 51     | 430     | 9       | 2 [0.5]              | 38/38       | 38/38     |
| C             | 2005      | 39        | 49     | 630     | 4.5     | 1.0 [0.34]           | 47/47       | 47/47     |
| Surface water | 2006      | 36        | 32     | 800     | 6       | 3 [1]                | 48/48       | 48/48     |
| (pg/L)        | 2007      | 38        | 36     | 750     | 3.1     | 2.1 [0.7]            | 48/48       | 48/48     |
|               | 2008      | 36        | 37     | 450     | 3.6     | 1.5 [0.6]            | 48/48       | 48/48     |
|               | 2009      | 36        | 32     | 650     | 2.7     | 0.6 [0.2]            | 49/49       | 49/49     |
|               | 2011      | 33        | 38     | 300     | 2.1     | 1.6 [0.6]            | 49/49       | 49/49     |

(Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY 2010 and FY2012.

< Sediment>
Stocktaking of the detection of dieldrin in sediment during FY2002~2009,2011

|            | Monitored | Geometric |        |         |         | Quantification       | Detection l | Frequency |
|------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| Dieldrin   | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|            | 2002      | 70        | 51     | 2,300   | 4       | 3 [1]                | 189/189     | 63/63     |
|            | 2003      | 66        | 56     | 9,100   | nd      | 4 [2]                | 184/186     | 62/62     |
|            | 2004      | 65        | 62     | 3,700   | tr(1.9) | 3 [0.9]              | 189/189     | 63/63     |
| Sediment   | 2005      | 61        | 55     | 4,200   | tr(2)   | 3 [1]                | 189/189     | 63/63     |
|            | 2006      | 61        | 54     | 1,500   | tr(1.7) | 2.9 [1.0]            | 192/192     | 64/64     |
| (pg/g-dry) | 2007      | 49        | 40     | 2,700   | tr(1.2) | 2.7 [0.9]            | 192/192     | 64/64     |
|            | 2008      | 48        | 43     | 2,900   | tr(0.7) | 1.2 [0.5]            | 192/192     | 64/64     |
|            | 2009      | 51        | 47     | 3,000   | 1.1     | 0.8 [0.3]            | 192/192     | 64/64     |
|            | 2011      | 47        | 44     | 2,200   | 2       | 5 [2]                | 64/64       | 64/64     |

<sup>(</sup>Note 1) " \* " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Wildlife>
Stocktaking of the detection of dieldrin in wildlife (bivalves, fish and birds) during FY2002~2009,2011

|            | Monitored | Geometric |        |         |         | Quantification       | Detection I | requency |
|------------|-----------|-----------|--------|---------|---------|----------------------|-------------|----------|
| Dieldrin   | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
|            | 2002      | 440       | 390    | 190,000 | tr(7)   | 12 [4]               | 38/38       | 8/8      |
|            | 2003      | 440       | 160    | 78,000  | 46      | 4.8 [1.6]            | 30/30       | 6/6      |
|            | 2004      | 630       | 270    | 69,000  | 42      | 31 [10]              | 31/31       | 7/7      |
| Bivalves   | 2005      | 500       | 140    | 39,000  | 34      | 9.4 [3.4]            | 31/31       | 7/7      |
|            | 2006      | 450       | 120    | 47,000  | 30      | 7 [3]                | 31/31       | 7/7      |
| (pg/g-wet) | 2007      | 380       | 110    | 77,000  | 37      | 9 [3]                | 31/31       | 7/7      |
|            | 2008      | 430       | 150    | 24,000  | 47      | 9 [3]                | 31/31       | 7/7      |
|            | 2009      | 490       | 230    | 28,000  | 48      | 7 [2]                | 31/31       | 7/7      |
|            | 2011      | 390       | 690    | 3,800   | 16      | 3 [1]                | 4/4         | 4/4      |
|            | 2002      | 290       | 270    | 2,400   | 46      | 12 [4]               | 70/70       | 14/14    |
|            | 2003      | 220       | 200    | 1,000   | 29      | 4.8 [1.6]            | 70/70       | 14/14    |
|            | 2004      | 250       | 230    | 2,800   | tr(23)  | 31 [10]              | 70/70       | 14/14    |
| Fish       | 2005      | 230       | 250    | 1,400   | 21      | 9.4 [3.4]            | 80/80       | 16/16    |
|            | 2006      | 230       | 220    | 1,400   | 19      | 7 [3]                | 80/80       | 16/16    |
| (pg/g-wet) | 2007      | 250       | 210    | 1,900   | 23      | 9 [3]                | 80/80       | 16/16    |
|            | 2008      | 240       | 240    | 1,300   | 15      | 9 [3]                | 85/85       | 17/17    |
|            | 2009      | 240       | 190    | 1,400   | 29      | 7 [2]                | 90/90       | 18/18    |
|            | 2011      | 270       | 340    | 1,100   | 17      | 3 [1]                | 18/18       | 18/18    |
|            | 2002      | 1,100     | 1,100  | 1,700   | 820     | 12 [4]               | 10/10       | 2/2      |
|            | 2003      | 1,300     | 1,400  | 2,200   | 790     | 4.8 [1.6]            | 10/10       | 2/2      |
|            | 2004      | 600       | 610    | 960     | 370     | 31 [10]              | 10/10       | 2/2      |
| Birds      | 2005      | 830       | 740    | 1,800   | 500     | 9.4 [3.4]            | 10/10       | 2/2      |
|            | 2006      | 700       | 690    | 1,300   | 440     | 7 [3]                | 10/10       | 2/2      |
| (pg/g-wet) | 2007      | 710       | 710    | 910     | 560     | 9 [3]                | 10/10       | 2/2      |
|            | 2008      | 680       | 620    | 1,300   | 260     | 9 [3]                | 10/10       | 2/2      |
|            | 2009      | 470       | 420    | 890     | 330     | 7 [2]                | 10/10       | 2/2      |
|            | 2011      |           |        | 770     | 770     | 3 [1]                | 1/1         | 1/1      |

<sup>(</sup>Note 1) " \* " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) No monitoring was conducted in FY 2010 and FY2012.

<sup>(</sup>Note 2) No monitoring was conducted in FY 2010 and FY2012.

<Air>
Stocktaking of the detection of dieldrin in air during FY2002~2009,2011

|            |                  | Geometric |        |         |          | Quantification       | Detection l | Frequency |
|------------|------------------|-----------|--------|---------|----------|----------------------|-------------|-----------|
| Dieldrin   | Monitored year   | mean      | Median | Maximum | Minimum  | [Detection]<br>limit | Sample      | Site      |
|            | 2002             | 5.6       | 5.4    | 110     | 0.73     | 0.60 [0.20]          | 102/102     | 34/34     |
|            | 2003 Warm season | 19        | 22     | 260     | 2.1      | 2 1 [0 70]           | 35/35       | 35/35     |
|            | 2003 Cold season | 5.7       | 5.2    | 110     | tr(0.82) | 2.1 [0.70]           | 34/34       | 34/34     |
|            | 2004 Warm season | 17        | 22     | 280     | 1.1      | 0.33 [0.11]          | 37/37       | 37/37     |
|            | 2004 Cold season | 5.5       | 6.9    | 76      | 0.81     | 0.33 [0.11]          | 37/37       | 37/37     |
|            | 2005 Warm season | 14        | 12     | 200     | 1.5      | 0.54.[0.24]          | 37/37       | 37/37     |
|            | 2005 Cold season | 3.9       | 3.6    | 50      | 0.88     | 0.54 [0.24]          | 37/37       | 37/37     |
| Ait        | 2006 Warm season | 15        | 14     | 290     | 1.5      | 0.3 [0.1]            | 37/37       | 37/37     |
| $(pg/m^3)$ | 2006 Cold season | 4.5       | 4.2    | 250     | 0.7      | 0.5 [0.1]            | 37/37       | 37/37     |
| (pg/III )  | 2007 Warm season | 19        | 22     | 310     | 1.3      | 0.18 [0.07]          | 36/36       | 36/36     |
|            | 2007 Cold season | 4.5       | 3.7    | 75      | 0.96     | 0.18 [0.07]          | 36/36       | 36/36     |
|            | 2008 Warm season | 14        | 16     | 220     | 1.6      | 0.24 [0.00]          | 37/37       | 37/37     |
|            | 2008 Cold season | 4.9       | 3.8    | 72      | 0.68     | 0.24 [0.09]          | 37/37       | 37/37     |
|            | 2009 Warm season | 13        | 13     | 150     | 0.91     | 0.06.00.021          | 37/37       | 37/37     |
|            | 2009 Cold season | 4.5       | 4.0    | 80      | 0.52     | 0.06 [0.02]          | 37/37       | 37/37     |
|            | 2011 Warm season | 12        | 15     | 230     | 0.80     | 0.42 [0.14]          | 35/35       | 35/35     |
|            | 2011 Cold season | 4.3       | 4.9    | 96      | 0.52     | 0.42 [0.14]          | 37/37       | 37/37     |

(Note) No monitoring was conducted in FY 2010 and FY2012.

### [5] Endrin (reference)

#### · History and state of monitoring

Endrin was used as an insecticide and a rodenticide, but its registration under the Agricultural Chemicals Regulation Law was expired in FY 1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981.

In previous monitoring series until FY 2001, the substance was monitored in wildlife (bivalves, fish and birds) during the periods of FY 1978  $\sim$  1989 and FY 1991  $\sim$  FY 1993 under the framework of "the Wildlife Monitoring".

Under the framework of the Environmental Monitoring, the substance in surface water, sediment, wildlife (bivalves, fish and birds) and air has been monitored since FY 2002.

No monitoring was conducted in FY 2012. For reference, the monitoring results up to FY 2011 are given below.

### · Monitoring results

#### <Surface Water>

Stocktaking of the detection of endrin in surface water during FY2002~2009,2011

|               | Monitored | Geometric |         |         | 3.61.1  | Quantification       | Detection I | Frequency |
|---------------|-----------|-----------|---------|---------|---------|----------------------|-------------|-----------|
| Endrin        | year      | mean*     | Median  | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|               | 2002      | tr(4.8)   | tr(5.5) | 31      | nd      | 6.0 [2.0]            | 101/114     | 36/38     |
|               | 2003      | 5.7       | 6.0     | 78      | 0.7     | 0.7 [0.3]            | 36/36       | 36/36     |
|               | 2004      | 7         | 7       | 100     | tr(0.7) | 2 [0.5]              | 38/38       | 38/38     |
| C             | 2005      | 4.0       | 4.5     | 120     | nd      | 1.1 [0.4]            | 45/47       | 45/47     |
| Surface water | 2006      | 3.1       | 3.5     | 26      | nd      | 1.3 [0.4]            | 44/48       | 44/48     |
| (pg/L)        | 2007      | 3.5       | 3.4     | 25      | nd      | 1.9 [0.6]            | 46/48       | 46/48     |
|               | 2008      | 3         | 4       | 20      | nd      | 3 [1]                | 45/48       | 45/48     |
|               | 2009      | 2.0       | 2.3     | 67      | nd      | 0.7 [0.3]            | 39/49       | 39/49     |
|               | 2011      | 3.8       | 4.6     | 71      | nd      | 1.6 [0.6]            | 47/49       | 47/49     |

<sup>(</sup>Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

### <Sediment>

Stocktaking of the detection of endrin in sediment during FY2002~2009,2011

|            | Monitored | Geometric |        |         |         | Quantification       | Detection l | requency |
|------------|-----------|-----------|--------|---------|---------|----------------------|-------------|----------|
| Endrin     | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
|            | 2002      | 10        | 10     | 19,000  | nd      | 6 [2]                | 141/189     | 54/63    |
|            | 2003      | 12        | 11     | 29,000  | nd      | 5 [2]                | 150/186     | 53/62    |
|            | 2004      | 15        | 13     | 6,900   | nd      | 3 [0.9]              | 182/189     | 63/63    |
| C - 1:4    | 2005      | 12        | 11     | 19,000  | nd      | 2.6 [0.9]            | 170/189     | 61/63    |
| Sediment   | 2006      | 12        | 10     | 61,000  | nd      | 4 [1]                | 178/192     | 63/64    |
| (pg/g-dry) | 2007      | 11        | 9      | 61,000  | nd      | 5 [2]                | 151/192     | 55/64    |
|            | 2008      | 11        | 11     | 38,000  | nd      | 1.9 [0.7]            | 168/192     | 61/64    |
|            | 2009      | 9.6       | 8.4    | 11,000  | nd      | 1.6 [0.6]            | 168/192     | 63/64    |
|            | 2011      | 8.8       | 14     | 1,100   | nd      | 1.1 [0.4]            | 59/64       | 59/64    |

<sup>(</sup>Note 1) " \*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002  $\sim$ FY2009.

<sup>(</sup>Note 2) No monitoring was conducted in FY 2010 and FY2012.

<sup>(</sup>Note 2) No monitoring was conducted in FY 2010 and FY2012.

<Wildlife>
Stocktaking of the detection of endrin in wildlife (bivalves, fish and birds) during FY2002~2009,2011

|            | Monitored | Geometric |        |         |         | Quantification       | Detection l | requen |
|------------|-----------|-----------|--------|---------|---------|----------------------|-------------|--------|
| Endrin     | year      | Mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site   |
|            | 2002      | 42        | 27     | 12,000  | nd      | 18 [6]               | 35/38       | 7/8    |
|            | 2003      | 38        | 21     | 5,000   | 6.3     | 4.8 [1.6]            | 30/30       | 6/6    |
|            | 2004      | 65        | 25     | 4,600   | tr(5.7) | 12 [4.2]             | 31/31       | 7/7    |
| D:1        | 2005      | 39        | 19     | 2,100   | nd      | 17 [5.5]             | 27/31       | 7/7    |
| Bivalves   | 2006      | 40        | 15     | 3,100   | tr(5)   | 11 [4]               | 31/31       | 7/7    |
| (pg/g-wet) | 2007      | 28        | 12     | 3,000   | tr(6)   | 9 [3]                | 31/31       | 7/7    |
|            | 2008      | 30        | 10     | 1,500   | tr(6)   | 8 [3]                | 31/31       | 7/7    |
|            | 2009      | 38        | 19     | 1,400   | tr(5)   | 7 [3]                | 31/31       | 7/7    |
|            | 2011      | 33        | 62     | 110     | tr(3)   | 4 [2]                | 4/4         | 4/4    |
|            | 2002      | 20        | 24     | 180     | nd      | 18 [6]               | 54/70       | 13/14  |
|            | 2003      | 14        | 10     | 180     | nd      | 4.8 [1.6]            | 67/70       | 14/14  |
|            | 2004      | 18        | 24     | 220     | nd      | 12 [4.2]             | 57/70       | 13/14  |
| Fish       | 2005      | 19        | tr(16) | 2,100   | nd      | 17 [5.5]             | 58/80       | 12/10  |
|            | 2006      | 13        | tr(10) | 150     | nd      | 11 [4]               | 66/80       | 16/10  |
| (pg/g-wet) | 2007      | 13        | 12     | 170     | nd      | 9 [3]                | 69/80       | 15/1   |
|            | 2008      | 11        | 10     | 200     | nd      | 8 [3]                | 63/85       | 14/1   |
|            | 2009      | 17        | 12     | 270     | nd      | 7 [3]                | 86/90       | 18/1   |
|            | 2011      | 18        | 19     | 160     | nd      | 4 [2]                | 16/18       | 16/1   |
|            | 2002      | 28        | 52     | 99      | nd      | 18 [6]               | 7/10        | 2/2    |
|            | 2003      | 22        | 30     | 96      | 5.4     | 4.8 [1.6]            | 10/10       | 2/2    |
|            | 2004      | tr(11)    | 25     | 62      | nd      | 12 [4.2]             | 5/10        | 1/2    |
| D:1-       | 2005      | 18        | 28     | 64      | nd      | 17 [5.5]             | 7/10        | 2/2    |
| Birds      | 2006      | 16        | 23     | 57      | tr(4)   | 11 [4]               | 10/10       | 2/2    |
| (pg/g-wet) | 2007      | 17        | 28     | 55      | nd      | 9 [3]                | 9/10        | 2/2    |
|            | 2008      | 10        | 26     | 83      | nd      | 8 [3]                | 5/10        | 1/2    |
|            | 2009      | 11        | 17     | 43      | tr(3)   | 7 [3]                | 10/10       | 2/2    |
|            | 2011      |           |        | tr(3)   | tr(3)   | 4 [2]                | 1/1         | 1/1    |

(Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) No monitoring was conducted in FY 2010 and FY2012.

<Air>
Stocktaking of the detection of endrin in air during FY2002~2009,2011

|            |                  | Geometric |         |     |           | Quantification       | Detection l | Frequency |
|------------|------------------|-----------|---------|-----|-----------|----------------------|-------------|-----------|
| Endrin     | Monitored year   | mean      | Median  |     | Minimum   | [Detection]<br>limit | Sample      | Site      |
|            | 2002             | 0.22      | 0.28    | 2.5 | nd        | 0.090 [0.030]        | 90/102      | 32/34     |
|            | 2003 Warm season | 0.74      | 0.95    | 6.2 | 0.081     | 0.042 [0.014]        | 35/35       | 35/35     |
|            | 2003 Cold season | 0.23      | 0.20    | 2.1 | 0.042     | 0.042 [0.014]        | 34/34       | 34/34     |
|            | 2004 Warm season | 0.64      | 0.68    | 6.5 | tr(0.054) | 0 14 [0 049]         | 37/37       | 37/37     |
|            | 2004 Cold season | 0.23      | 0.26    | 1.9 | nd        | 0.14 [0.048]         | 36/37       | 36/37     |
|            | 2005 Warm season | tr(0.4)   | tr(0.3) | 2.9 | nd        | 0.5 [0.2]            | 27/37       | 27/37     |
|            | 2005 Cold season | nd        | nd      | 0.7 | nd        | 0.3 [0.2]            | 8/37        | 8/37      |
| A :        | 2006 Warm season | 0.31      | 0.32    | 5.4 | nd        | 0.20 [0.10]          | 32/37       | 32/37     |
| Air        | 2006 Cold season | nd        | nd      | 5.0 | nd        | 0.30 [0.10]          | 7/37        | 7/37      |
| $(pg/m^3)$ | 2007 Warm season | 0.69      | 0.73    | 6.3 | tr(0.06)  | 0.00.00.041          | 36/36       | 36/36     |
|            | 2007 Cold season | 0.16      | 0.13    | 1.5 | nd        | 0.09 [0.04]          | 33/36       | 33/36     |
|            | 2008 Warm season | 0.53      | 0.68    | 4.6 | tr(0.06)  | 0.10.50.041          | 37/37       | 37/37     |
|            | 2008 Cold season | 0.18      | 0.18    | 1.8 | nd        | 0.10 [0.04]          | 35/37       | 35/37     |
|            | 2009 Warm season | 0.49      | 0.51    | 3.4 | nd        | 0.00.00.041          | 36/37       | 36/37     |
|            | 2009 Cold season | 0.17      | 0.15    | 1.8 | nd        | 0.09 [0.04]          | 36/37       | 36/37     |
|            | 2011 Warm season | 0.46      | 0.62    | 5.1 | nd        | 0.00.00.041          | 34/35       | 34/35     |
|            | 2011 Cold season | 0.16      | 0.16    | 1.8 | nd        | 0.09 [0.04]          | 33/37       | 33/37     |

(Note) No monitoring was conducted in FY 2010 and FY2012.

### [6] DDTs (reference)

· History and state of monitoring

DDT, along with hexachlorocyclohexanes (HCHs) and drins, was used as insecticides in high volume. Its registration under the Agricultural Chemicals Regulation Law was expired in FY 1971. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Among several DDT isomers with chlorine at various positions on the aromatic ring, not only p,p'-DDT and o,p'-DDT as active substances but also p,p'-DDE, o,p'-DDE, p,p'-DDD and o,p'-DDD as the environmentally degraded products of DDTs have been the target chemicals in monitoring series since FY 1978.

In previous monitoring series, p,p'-DDT, p,p'-DDE and p,p'-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY 1978 ~ 2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," surface water and sediment had been the monitored media during the period of FY 1986 ~ 1998 and FY 1986 ~ 2001, respectively. Similarly, o,p'-DDT, o,p'-DDE and o,p'-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY 1978 ~ 1996 and in FY 1998, FY 2000 and FY 2001 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, p,p'-DDT, p,p'-DDE, p,p'-DDD, o,p'-DDT, o,p'-DDE and o,p'-DDD have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air since FY 2002.

As of FY 2010, monitoring surveys are conducted every few years. No monitoring was conducted in FY 2011 and FY2012. For reference, the monitoring results up to FY 2010 are given below.

- Monitoring results until FY 2010
- $\circ$  p,p'-DDT, p,p'-DDE and p,p'-DDD

## <Surface Water>

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in surface water during FY2002~2010

| tocktaking of the | •         | Geometric |        | P       |         | Quantification       | Detection 1 | Frequency |
|-------------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| p,p'-DDT          | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                   | 2002      | 13        | 11     | 440     | 0.25    | 0.6 [0.2]            | 114/114     | 38/38     |
|                   | 2003      | 14        | 12     | 740     | tr(2.8) | 3 [0.9]              | 36/36       | 36/36     |
|                   | 2004      | 15        | 14     | 310     | nd      | 6 [2]                | 36/38       | 36/38     |
| Surface Water     | 2005      | 8         | 9      | 110     | 1       | 4 [1]                | 47/47       | 47/47     |
|                   | 2006      | 9.1       | 9.2    | 170     | tr(1.6) | 1.9 [0.6]            | 48/48       | 48/48     |
| (pg/L)            | 2007      | 7.3       | 9.1    | 670     | nd      | 1.7 [0.6]            | 46/48       | 46/48     |
|                   | 2008      | 11        | 11     | 1,200   | nd      | 1.2 [0.5]            | 47/48       | 47/48     |
|                   | 2009      | 9.2       | 8.4    | 440     | 0.81    | 0.15 [0.06]          | 49/49       | 49/49     |
|                   | 2010      | 8.5       | 7.6    | 7,500   | tr(1.0) | 2.4 [0.8]            | 49/49       | 49/49     |
|                   | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
| <i>p,p′</i> -DDE  | year      | mean*     | Median | Maximum | Minimum | [Detection]          | Sample      | Site      |
|                   |           |           |        |         |         | limit                |             |           |
|                   | 2002      | 25        | 26     | 760     | 1.3     | 0.6 [0.2]            | 114/114     | 38/38     |
|                   | 2003      | 26        | 22     | 380     | 5       | 4 [2]                | 36/36       | 36/36     |
|                   | 2004      | 36        | 34     | 680     | tr(6)   | 8 [3]                | 38/38       | 38/38     |
| Surface Water     | 2005      | 26        | 24     | 410     | 4       | 6 [2]                | 47/47       | 47/47     |
| (pg/L)            | 2006      | 24        | 24     | 170     | tr(4)   | 7 [2]                | 48/48       | 48/48     |
| (pg/L)            | 2007      | 22        | 23     | 440     | tr(2)   | 4 [2]                | 48/48       | 48/48     |
|                   | 2008      | 27        | 28     | 350     | 2.5     | 1.1 [0.4]            | 48/48       | 48/48     |
|                   | 2009      | 23        | 23     | 240     | 3.4     | 1.1 [0.4]            | 49/49       | 49/49     |
|                   | 2010      | 14        | 12     | 1,600   | 2.4     | 2.3 [0.8]            | 49/49       | 49/49     |
|                   | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
| p,p'-DDD          | year      | mean*     | Median | Maximum | Minimum | [Detection]          | Sample      | Site      |
|                   |           |           |        |         |         | limit                |             |           |
|                   | 2002      | 16        | 18     | 190     | 0.57    | 0.24 [0.08]          | 114/114     | 38/38     |
|                   | 2003      | 19        | 18     | 410     | 4       | 2 [0.5]              | 36/36       | 36/36     |
|                   | 2004      | 19        | 18     | 740     | tr(2.4) | 3 [0.8]              | 38/38       | 38/38     |
| Surface Water     | 2005      | 17        | 16     | 130     | tr(1.8) | 1.9 [0.64]           | 47/47       | 47/47     |
| (pg/L)            | 2006      | 16        | 17     | 99      | 2.0     | 1.6 [0.5]            | 48/48       | 48/48     |
| (hg/r)            | 2007      | 15        | 12     | 150     | tr(1.5) | 1.7 [0.6]            | 48/48       | 48/48     |
|                   | 2008      | 22        | 20     | 850     | 2.0     | 0.6 [0.2]            | 48/48       | 48/48     |
|                   | 2009      | 14        | 13     | 140     | 1.4     | 0.4 [0.2]            | 49/49       | 49/49     |
|                   | 2010      | 12        | 10     | 970     | 1.6     | 0.20 [0.08]          | 49/49       | 49/49     |

<sup>(</sup>Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted from FY 2011 to FY2012.

### < Sediment >

Stocktaking of the detection of *p,p'*-DDT, *p,p'*-DDE and *p,p'*-DDD in sediment during FY2002~2010

|            | Monitored | Geometric |        | 1.4           |         | Quantification       | Detection 1 | Frequency |
|------------|-----------|-----------|--------|---------------|---------|----------------------|-------------|-----------|
| p,p'-DDT   | year      | mean*     | Median | Maximum       | Minimum | [Detection]<br>limit | Sample      | Site      |
|            | 2002      | 380       | 240    | 97,000        | tr(5)   | 6 [2]                | 189/189     | 63/63     |
|            | 2003      | 290       | 220    | 55,000        | 3       | 2 [0.4]              | 186/186     | 62/62     |
|            | 2004      | 460       | 230    | 98,000        | 7       | 2 [0.5]              | 189/189     | 63/63     |
| Sediment   | 2005      | 360       | 230    | 1,700,000     | 5.1     | 1.0 [0.34]           | 189/189     | 63/63     |
| (pg/g-dry) | 2006      | 310       | 240    | 130,000       | 4.5     | 1.4 [0.5]            | 192/192     | 64/64     |
| (pg/g-dry) | 2007      | 210       | 150    | 130,000       | 3       | 1.3 [0.5]            | 192/192     | 64/64     |
|            | 2008      | 270       | 180    | 1,400,000     | 4.8     | 1.2 [0.5]            | 192/192     | 64/64     |
|            | 2009      | 250       | 170    | 2,100,000     | 1.9     | 1.0 [0.4]            | 192/192     | 64/64     |
|            | 2010      | 230       | 200    | 220,000       | 9.3     | 2.8 [0.9]            | 64/64       | 64/64     |
|            | Monitored | Geometric |        |               |         | Quantification       | Detection 1 | Frequency |
| p,p'-DDE   | year      | mean*     | Median | Maximum       | Minimum | [Detection]          | Sample      | Site      |
|            |           |           |        |               |         | limit                |             |           |
|            | 2002      | 780       | 630    | 23,000        | 8.4     | 2.7 [0.9]            | 189/189     | 63/63     |
|            | 2003      | 790       | 780    | 80,000        | 9.5     | 0.9 [0.3]            | 186/186     | 62/62     |
|            | 2004      | 720       | 700    | 39,000        | 8       | 3 [0.8]              | 189/189     | 63/63     |
| Sediment   | 2005      | 710       | 730    | 64,000        | 8.4     | 2.7 [0.94]           | 189/189     | 63/63     |
| (pg/g-dry) | 2006      | 710       | 820    | 49,000        | 5.8     | 1.0 [0.3]            | 192/192     | 64/64     |
| (P8'8 CT)  | 2007      | 670       | 900    | 61,000        | 3.2     | 1.1 [0.4]            | 192/192     | 64/64     |
|            | 2008      | 920       | 940    | 96,000        | 9.0     | 1.7 [0.7]            | 192/192     | 64/64     |
|            | 2009      | 700       | 660    | 50,000        | 6.7     | 0.8 [0.3]            | 192/192     | 64/64     |
|            | 2010      | 680       | 790    | 40,000        | 11      | 5 [2]                | 64/64       | 64/64     |
|            | Monitored | Geometric |        |               |         | Quantification       | Detection 1 | Frequency |
| p,p'-DDD   | year      | mean*     | Median | Maximum       | Minimum | [Detection]          | Sample      | Site      |
|            |           |           | (0.0   | <b>71</b> 000 | (2.2)   | limit                | 100/100     | <u> </u>  |
|            | 2002      | 640       | 690    | 51,000        | tr(2.2) | 2.4 [0.8]            | 189/189     | 63/63     |
|            | 2003      | 670       | 580    | 32,000        | 3.7     | 0.9 [0.3]            | 186/186     | 62/62     |
|            | 2004      | 650       | 550    | 75,000        | 4       | 2 [0.7]              | 189/189     | 63/63     |
| Sediment   | 2005      | 600       | 570    | 210,000       | 5.2     | 1.7 [0.64]           | 189/189     | 63/63     |
| (pg/g-dry) | 2006      | 560       | 540    | 53,000        | 2.2     | 0.7 [0.2]            | 192/192     | 64/64     |
| (188 3)    | 2007      | 520       | 550    | 80,000        | 3.5     | 1.0 [0.4]            | 192/192     | 64/64     |
|            | 2008      | 740       | 660    | 300,000       | 2.8     | 1.0 [0.4]            | 192/192     | 64/64     |
|            | 2009      | 540       | 560    | 300,000       | 3.9     | 0.4 [0.2]            | 192/192     | 64/64     |
|            | 2010      | 510       | 510    | 78,000        | 4.4     | 1.4 [0.5]            | 64/64       | 64/64     |

<sup>(</sup>Note01) "\*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) No monitoring was conducted from FY 2011 to FY2012.

# <Wildlife>

Stocktaking of the detection of *p,p'*-DDT in wildlife (bivalves, fish and birds) during FY2002~2010

|            | Monitored | Geometric | `      |         | ,       | Quantification       | 1      | requency |
|------------|-----------|-----------|--------|---------|---------|----------------------|--------|----------|
| p,p'-DDT   | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample | Site     |
|            | 2002      | 200       | 200    | 1,200   | 38      | 4.2 [1.4]            | 38/38  | 8/8      |
|            | 2003      | 290       | 290    | 1,800   | 49      | 11 [3.5]             | 30/30  | 6/6      |
|            | 2004      | 360       | 340    | 2,600   | 48      | 3.2 [1.1]            | 31/31  | 7/7      |
| Bivalves   | 2005      | 240       | 170    | 1,300   | 66      | 5.1 [1.7]            | 31/31  | 7/7      |
|            | 2006      | 250       | 220    | 1,100   | 56      | 6 [2]                | 31/31  | 7/7      |
| (pg/g-wet) | 2007      | 240       | 150    | 1,200   | 49      | 5 [2]                | 31/31  | 7/7      |
|            | 2008      | 160       | 100    | 1,400   | 12      | 5 [2]                | 31/31  | 7/7      |
|            | 2009      | 240       | 170    | 9,600   | 46      | 3 [1]                | 31/31  | 7/7      |
|            | 2010      | 180       | 280    | 470     | 43      | 3 [1]                | 6/6    | 6/6      |
|            | 2002      | 430       | 450    | 24,000  | 6.8     | 4.2 [1.4]            | 70/70  | 14/14    |
|            | 2003      | 220       | 400    | 1,900   | tr(3.7) | 11 [3.5]             | 70/70  | 14/14    |
|            | 2004      | 410       | 330    | 53,000  | 5.5     | 3.2 [1.1]            | 70/70  | 14/14    |
| Fish       | 2005      | 280       | 330    | 8,400   | tr(3.8) | 5.1 [1.7]            | 80/80  | 16/16    |
| (pg/g-wet) | 2006      | 300       | 340    | 3,000   | tr(5)   | 6 [2]                | 80/80  | 16/16    |
| (pg/g-wet) | 2007      | 260       | 320    | 1,800   | 9       | 5 [2]                | 80/80  | 16/16    |
|            | 2008      | 280       | 310    | 2,900   | 7       | 5 [2]                | 85/85  | 17/17    |
|            | 2009      | 250       | 300    | 2,000   | 4       | 3 [1]                | 90/90  | 18/18    |
|            | 2010      | 240       | 280    | 2,100   | 7       | 3 [1]                | 18/18  | 18/18    |
|            | 2002      | 440       | 510    | 1,300   | 76      | 4.2 [1.4]            | 10/10  | 2/2      |
|            | 2003      | 610       | 620    | 1,400   | 180     | 11 [3.5]             | 10/10  | 2/2      |
|            | 2004      | 340       | 320    | 700     | 160     | 3.2 [1.1]            | 10/10  | 2/2      |
| Birds      | 2005      | 430       | 550    | 900     | 180     | 5.1 [1.7]            | 10/10  | 2/2      |
| (pg/g-wet) | 2006      | 580       | 490    | 1,800   | 110     | 6 [2]                | 10/10  | 2/2      |
| (hg/g-wet) | 2007      | 480       | 350    | 1,900   | 160     | 5 [2]                | 10/10  | 2/2      |
|            | 2008      | 160       | 170    | 270     | 56      | 5 [2]                | 10/10  | 2/2      |
|            | 2009      | 300       | 190    | 2,900   | 85      | 3 [1]                | 10/10  | 2/2      |
|            | 2010      | 3         |        | 15      | nd      | 3 [1]                | 1/2    | 1/2      |

Stocktaking of the detection of *p,p'*-DDE in wildlife (bivalves, fish and birds) during FY2002~2010

|            | Monitored | Geometric |        |         |         | Quantification       | Detection Free Sample | Frequency |
|------------|-----------|-----------|--------|---------|---------|----------------------|-----------------------|-----------|
| p,p'-DDE   | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample                | Site      |
|            | 2002      | 1,000     | 1,700  | 6,000   | 140     | 2.4 [0.8]            | 38/38                 | 8/8       |
|            | 2003      | 1,200     | 1,000  | 6,500   | 190     | 5.7 [1.9]            | 30/30                 | 6/6       |
|            | 2004      | 1,300     | 1,400  | 8,400   | 220     | 8.2 [2.7]            | 31/31                 | 7/7       |
| Bivalves   | 2005      | 1,200     | 1,600  | 6,600   | 230     | 8.5 [2.8]            | 31/31                 | 7/7       |
|            | 2006      | 1,000     | 1,200  | 6,000   | 160     | 1.9 [0.7]            | 31/31                 | 7/7       |
| (pg/g-wet) | 2007      | 1,100     | 1,200  | 5,600   | 180     | 3 [1]                | 31/31                 | 7/7       |
|            | 2008      | 900       | 1,100  | 5,800   | 120     | 3 [1]                | 31/31                 | 7/7       |
|            | 2009      | 940       | 1,100  | 6,400   | 150     | 4 [1]                | 31/31                 | 7/7       |
|            | 2010      | 1,100     | 1,300  | 6,300   | 230     | 3 [1]                | 6/6                   | 6/6       |
|            | 2002      | 2,900     | 2,200  | 98,000  | 510     | 2.4 [0.8]            | 70/70                 | 14/14     |
|            | 2003      | 2,000     | 2,200  | 12,000  | 180     | 5.7 [1.9]            | 70/70                 | 14/14     |
|            | 2004      | 3,000     | 2,100  | 52,000  | 390     | 8.2 [2.7]            | 70/70                 | 14/14     |
| Fish       | 2005      | 2,400     | 2,400  | 73,000  | 230     | 8.5 [2.8]            | 80/80                 | 16/16     |
|            | 2006      | 2,200     | 2,600  | 28,000  | 280     | 1.9 [0.7]            | 80/80                 | 16/16     |
| (pg/g-wet) | 2007      | 2,200     | 2,000  | 22,000  | 160     | 3 [1]                | 80/80                 | 16/16     |
|            | 2008      | 2,500     | 2,000  | 53,000  | 320     | 3 [1]                | 85/85                 | 17/17     |
|            | 2009      | 2,300     | 2,100  | 20,000  | 260     | 4 [1]                | 90/90                 | 18/18     |
|            | 2010      | 2,300     | 2,100  | 13,000  | 260     | 3 [1]                | 18/18                 | 18/18     |
|            | 2002      | 36,000    | 60,000 | 170,000 | 8,100   | 2.4 [0.8]            | 10/10                 | 2/2       |
|            | 2003      | 66,000    | 76,000 | 240,000 | 18,000  | 5.7 [1.9]            | 10/10                 | 2/2       |
|            | 2004      | 34,000    | 65,000 | 200,000 | 6,800   | 8.2 [2.7]            | 10/10                 | 2/2       |
| Birds      | 2005      | 44,000    | 86,000 | 300,000 | 7,100   | 8.5 [2.8]            | 10/10                 | 2/2       |
|            | 2006      | 38,000    | 57,000 | 160,000 | 5,900   | 1.9 [0.7]            | 10/10                 | 2/2       |
| (pg/g-wet) | 2007      | 40,000    | 56,000 | 320,000 | 6,700   | 3 [1]                | 10/10                 | 2/2       |
|            | 2008      | 51,000    | 79,000 | 160,000 | 7,500   | 3 [1]                | 10/10                 | 2/2       |
|            | 2009      | 30,000    | 64,000 | 220,000 | 4,300   | 4[1]                 | 10/10                 | 2/2       |
|            | 2010      | 32,000    |        | 160,000 | 6,300   | 3 [1]                | 2/2                   | 2/2       |

Stocktaking of the detection of p,p'-DDD in wildlife (bivalves, fish and birds) during FY2002~2010

|            | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
|------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| p,p'-DDD   | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|            | 2002      | 340       | 710    | 3,200   | 11      | 5.4 [1.8]            | 38/38       | 8/8       |
|            | 2003      | 390       | 640    | 2,600   | tr(7.5) | 9.9 [3.3]            | 30/30       | 6/6       |
|            | 2004      | 440       | 240    | 8,900   | 7.8     | 2.2 [0.70]           | 31/31       | 7/7       |
| Bivalves   | 2005      | 370       | 800    | 1,700   | 13      | 2.9 [0.97]           | 31/31       | 7/7       |
|            | 2006      | 300       | 480    | 1,400   | 7.3     | 2.4 [0.9]            | 31/31       | 7/7       |
| (pg/g-wet) | 2007      | 310       | 360    | 1,500   | 7       | 3 [1]                | 31/31       | 7/7       |
|            | 2008      | 280       | 280    | 1,300   | 6       | 3 [1]                | 31/31       | 7/7       |
|            | 2009      | 220       | 170    | 2,400   | 5.8     | 2.4 [0.9]            | 31/31       | 7/7       |
|            | 2010      | 180       | 330    | 960     | 11      | 1.3 [0.5]            | 6/6         | 6/6       |
|            | 2002      | 750       | 680    | 14,000  | 80      | 5.4 [1.8]            | 70/70       | 14/14     |
|            | 2003      | 510       | 520    | 3,700   | 43      | 9.9 [3.3]            | 70/70       | 14/14     |
|            | 2004      | 770       | 510    | 9,700   | 56      | 2.2 [0.70]           | 70/70       | 14/14     |
| Fish       | 2005      | 510       | 650    | 6,700   | 29      | 2.9 [0.97]           | 80/80       | 16/16     |
|            | 2006      | 520       | 580    | 4,300   | 60      | 2.4 [0.9]            | 80/80       | 16/16     |
| (pg/g-wet) | 2007      | 470       | 490    | 4,100   | 36      | 3 [1]                | 80/80       | 16/16     |
|            | 2008      | 460       | 440    | 4,100   | 33      | 3 [1]                | 85/85       | 17/17     |
|            | 2009      | 440       | 460    | 2,500   | 57      | 2.4 [0.9]            | 90/90       | 18/18     |
|            | 2010      | 560       | 610    | 2,900   | 57      | 1.3 [0.5]            | 18/18       | 18/18     |
|            | 2002      | 580       | 740    | 3,900   | 140     | 5.4 [1.8]            | 10/10       | 2/2       |
|            | 2003      | 640       | 860    | 3,900   | 110     | 9.9 [3.3]            | 10/10       | 2/2       |
|            | 2004      | 330       | 520    | 1,400   | 52      | 2.2 [0.70]           | 10/10       | 2/2       |
| Birds      | 2005      | 310       | 540    | 1,400   | 45      | 2.9 [0.97]           | 10/10       | 2/2       |
|            | 2006      | 410       | 740    | 1,800   | 55      | 2.4 [0.9]            | 10/10       | 2/2       |
| (pg/g-wet) | 2007      | 440       | 780    | 2,300   | 70      | 3 [1]                | 10/10       | 2/2       |
|            | 2008      | 240       | 490    | 1,100   | 35      | 3 [1]                | 10/10       | 2/2       |
|            | 2009      | 280       | 430    | 3,400   | 31      | 2.4 [0.9]            | 10/10       | 2/2       |
|            | 2010      | 440       |        | 1,600   | 120     | 1.3 [0.5]            | 2/2         | 2/2       |

<sup>(</sup>Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Air>

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in air during FY2002~2010

|            |                  | Geometric |      |     | um Minimum | Quantification       | Detection I | Frequency |
|------------|------------------|-----------|------|-----|------------|----------------------|-------------|-----------|
| p,p'-DDT   | Monitored year   | mean*     |      |     | Minimum    | [Detection]<br>limit | Sample      | Site      |
|            | 2002             | 1.9       | 1.8  | 22  | 0.25       | 0.24 [0.08]          | 102/102     | 34/34     |
|            | 2003 Warm season | 5.8       | 6.6  | 24  | 0.75       | 0.14 [0.046]         | 35/35       | 35/35     |
|            | 2003 Cold season | 1.7       | 1.6  | 11  | 0.31       | 0.14 [0.040]         | 34/34       | 34/34     |
|            | 2004 Warm season | 4.7       | 5.1  | 37  | 0.41       | 0.22 [0.074]         | 37/37       | 37/37     |
|            | 2004 Cold season | 1.8       | 1.7  | 13  | 0.29       | 0.22 [0.074]         | 37/37       | 37/37     |
|            | 2005 Warm season | 4.1       | 4.2  | 31  | 0.44       | 0.16 [0.054]         | 37/37       | 37/37     |
|            | 2005 Cold season | 1.1       | 0.99 | 4.8 | 0.25       | 0.16 [0.054]         | 37/37       | 37/37     |
| Air        | 2006 Warm season | 4.2       | 3.8  | 51  | 0.35       | 0.17 [0.06]          | 37/37       | 37/37     |
|            | 2006 Cold season | 1.4       | 1.2  | 7.3 | 0.29       | 0.1 / [0.06]         | 37/37       | 37/37     |
| $(pg/m^3)$ | 2007 Warm season | 4.9       | 5.2  | 30  | 0.6        | 0.07 [0.03]          | 36/36       | 36/36     |
|            | 2007 Cold season | 1.2       | 1.2  | 8.8 | 0.23       | 0.07 [0.03]          | 36/36       | 36/36     |
|            | 2008 Warm season | 3.6       | 3.0  | 27  | 0.76       | 0.07.[0.02]          | 37/37       | 37/37     |
|            | 2008 Cold season | 1.2       | 1.0  | 15  | 0.22       | 0.07 [0.03]          | 37/37       | 37/37     |
|            | 2009 Warm season | 3.6       | 3.6  | 28  | 0.44       | 0.07.[0.02]          | 37/37       | 37/37     |
|            | 2009 Cold season | 1.1       | 1.0  | 8.0 | 0.20       | 0.07 [0.03]          | 37/37       | 37/37     |
|            | 2010 Warm season | 3.5       | 3.1  | 56  | 0.28       | 0.10 [0.03]          | 37/37       | 37/37     |
|            | 2010 Cold season | 1.3       | 0.89 | 16  | 0.30       | 0.10 [0.03]          | 37/37       | 37/37     |

<sup>(</sup>Note 2) No monitoring was conducted from FY 2011 to FY2012.

| p,p'-DDE   | Monitored year                                                                                                                                                                                                                                                                                         | Geometric mean*                                                                                   | Median                                                                                       | Maximum                                                                                  | Minimum                                                                                                  | Quantification<br>[Detection]<br>limit                                                                                         | Detection I<br>Sample                                                                                      | Frequency<br>Site                                                                   |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|            | 2002                                                                                                                                                                                                                                                                                                   | 2.8                                                                                               | 2.7                                                                                          | 28                                                                                       | 0.56                                                                                                     | 0.09 [0.03]                                                                                                                    | 102/102                                                                                                    | 34/34                                                                               |
|            | 2003 Warm season                                                                                                                                                                                                                                                                                       | 7.2                                                                                               | 7.0                                                                                          | 51                                                                                       | 1.2                                                                                                      |                                                                                                                                | 35/35                                                                                                      | 35/35                                                                               |
|            | 2003 Cold season                                                                                                                                                                                                                                                                                       | 2.8                                                                                               | 2.4                                                                                          | 22                                                                                       | 1.1                                                                                                      | 0.40 [0.13]                                                                                                                    | 34/34                                                                                                      | 34/34                                                                               |
|            | 2004 Warm season                                                                                                                                                                                                                                                                                       | 6.1                                                                                               | 6.3                                                                                          | 95                                                                                       | 0.62                                                                                                     | 0.12.50.0201                                                                                                                   | 37/37                                                                                                      | 37/37                                                                               |
|            | 2004 Cold season                                                                                                                                                                                                                                                                                       | 2.9                                                                                               | 2.6                                                                                          | 43                                                                                       | 0.85                                                                                                     | 0.12 [0.039]                                                                                                                   | 37/37                                                                                                      | 37/37                                                                               |
|            | 2005 Warm season                                                                                                                                                                                                                                                                                       | 5.0                                                                                               | 5.7                                                                                          | 42                                                                                       | 1.2                                                                                                      | 0 14 50 0247                                                                                                                   | 37/37                                                                                                      | 37/37                                                                               |
|            | 2005 Cold season                                                                                                                                                                                                                                                                                       | 1.7                                                                                               | 1.5                                                                                          | 9.9                                                                                      | 0.76                                                                                                     | 0.14 [0.034]                                                                                                                   | 37/37                                                                                                      | 37/37                                                                               |
| <b>A</b> · | 2006 Warm season                                                                                                                                                                                                                                                                                       | 5.0                                                                                               | 4.7                                                                                          | 49                                                                                       | 1.7                                                                                                      | 0.10.50.021                                                                                                                    | 37/37                                                                                                      | 37/37                                                                               |
| Air        | 2006 Cold season                                                                                                                                                                                                                                                                                       | 1.9                                                                                               | 1.7                                                                                          | 9.5                                                                                      | 0.52                                                                                                     | 0.10 [0.03]                                                                                                                    | 37/37                                                                                                      | 37/37                                                                               |
| $(pg/m^3)$ | 2007 Warm season                                                                                                                                                                                                                                                                                       | 6.4                                                                                               | 6.1                                                                                          | 120                                                                                      | 0.54                                                                                                     | 0.04.00.021                                                                                                                    | 36/36                                                                                                      | 36/36                                                                               |
|            | 2007 Cold season                                                                                                                                                                                                                                                                                       | 2.1                                                                                               | 1.9                                                                                          | 39                                                                                       | 0.73                                                                                                     | 0.04 [0.02]                                                                                                                    | 36/36                                                                                                      | 36/36                                                                               |
|            | 2008 Warm season                                                                                                                                                                                                                                                                                       | 4.8                                                                                               | 4.4                                                                                          | 96                                                                                       | 0.98                                                                                                     | 0.04.00.021                                                                                                                    | 37/37                                                                                                      | 37/37                                                                               |
|            | 2008 Cold season                                                                                                                                                                                                                                                                                       | 2.2                                                                                               | 2.0                                                                                          | 22                                                                                       | 0.89                                                                                                     | 0.04 [0.02]                                                                                                                    | 37/37                                                                                                      | 37/37                                                                               |
|            | 2009 Warm season                                                                                                                                                                                                                                                                                       | 4.9                                                                                               | 4.8                                                                                          | 130                                                                                      | 0.87                                                                                                     | 0.00.00.021                                                                                                                    | 37/37                                                                                                      | 37/37                                                                               |
|            | 2009 Cold season                                                                                                                                                                                                                                                                                       | 2.1                                                                                               | 1.9                                                                                          | 100                                                                                      | 0.60                                                                                                     | 0.08 [0.03]                                                                                                                    | 37/37                                                                                                      | 37/37                                                                               |
|            |                                                                                                                                                                                                                                                                                                        | 4.0                                                                                               | 4.1                                                                                          | 200                                                                                      | tr(0.41)                                                                                                 |                                                                                                                                | 37/37                                                                                                      | 37/37                                                                               |
|            | 2010 Warm season                                                                                                                                                                                                                                                                                       | 4.9                                                                                               | 4.1                                                                                          | 200                                                                                      | и(о.тт)                                                                                                  | 0.62 [0.21]                                                                                                                    |                                                                                                            |                                                                                     |
|            | 2010 Warm season<br>2010 Cold season                                                                                                                                                                                                                                                                   | 4.9<br>2.2                                                                                        | 1.8                                                                                          | 28                                                                                       | tr(0.47)                                                                                                 | 0.62 [0.21]                                                                                                                    | 37/37                                                                                                      | 37/37                                                                               |
|            | 2010 Cold season                                                                                                                                                                                                                                                                                       | 2.2                                                                                               | 1.8                                                                                          |                                                                                          | ` ′                                                                                                      | Quantification                                                                                                                 |                                                                                                            |                                                                                     |
| p,p'-DDD   |                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                                                              |                                                                                          | ` ′                                                                                                      |                                                                                                                                | 37/37                                                                                                      |                                                                                     |
| p,p'-DDD   | 2010 Cold season                                                                                                                                                                                                                                                                                       | 2.2<br>Geometric                                                                                  | 1.8                                                                                          | 28                                                                                       | tr(0.47)                                                                                                 | Quantification<br>[Detection]                                                                                                  | 37/37<br>Detection I                                                                                       | requency                                                                            |
| p,p'-DDD   | 2010 Cold season  Monitored year                                                                                                                                                                                                                                                                       | 2.2<br>Geometric<br>mean*                                                                         | 1.8<br>Median                                                                                | 28<br>Maximum                                                                            | tr(0.47)  Minimum                                                                                        | Quantification [Detection] limit 0.018 [0.006]                                                                                 | 37/37 Detection I Sample                                                                                   | Frequency<br>Site                                                                   |
| p,p'-DDD   | 2010 Cold season  Monitored year  2002                                                                                                                                                                                                                                                                 | 2.2 Geometric mean* 0.12                                                                          | 1.8<br>Median<br>0.13                                                                        | 28<br>Maximum<br>0.76                                                                    | tr(0.47) Minimum                                                                                         | Quantification [Detection] limit                                                                                               | 37/37  Detection I  Sample  101/102                                                                        | Site 34/34                                                                          |
| p,p'-DDD   | 2010 Cold season  Monitored year  2002  2003 Warm season                                                                                                                                                                                                                                               | 2.2  Geometric mean*  0.12  0.30                                                                  | 1.8<br>Median<br>0.13<br>0.35                                                                | 28<br>Maximum<br>0.76<br>1.4                                                             | tr(0.47) Minimum  nd 0.063                                                                               | Quantification [Detection] limit 0.018 [0.006] 0.054 [0.018]                                                                   | 37/37 Detection I Sample  101/102 35/35                                                                    | Site 34/34 35/35                                                                    |
| p,p'-DDD   | 2010 Cold season  Monitored year  2002  2003 Warm season 2003 Cold season                                                                                                                                                                                                                              | 2.2 Geometric mean*  0.12 0.30 0.13 0.24 0.12                                                     | 1.8<br>Median<br>0.13<br>0.35<br>0.14                                                        | 28 Maximum  0.76 1.4 0.52                                                                | tr(0.47)  Minimum  nd  0.063 tr(0.037)                                                                   | Quantification [Detection] limit 0.018 [0.006]                                                                                 | 37/37<br>Detection I<br>Sample<br>101/102<br>35/35<br>34/34                                                | Site  34/34  35/35  34/34                                                           |
| p,p'-DDD   | 2010 Cold season  Monitored year  2002  2003 Warm season 2003 Cold season 2004 Warm season                                                                                                                                                                                                             | 2.2 Geometric mean*  0.12 0.30 0.13 0.24                                                          | 1.8<br>Median<br>0.13<br>0.35<br>0.14<br>0.27                                                | 28 Maximum  0.76 1.4 0.52 1.4                                                            | tr(0.47)  Minimum  nd  0.063 tr(0.037) tr(0.036)                                                         | Quantification [Detection] limit 0.018 [0.006] 0.054 [0.018] 0.053 [0.018]                                                     | 37/37 Detection I Sample  101/102 35/35 34/34 37/37                                                        | Site  34/34  35/35  34/34  37/37                                                    |
| p,p'-DDD   | 2010 Cold season  Monitored year  2002  2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season                                                                                                                                                                                            | 2.2 Geometric mean*  0.12 0.30 0.13 0.24 0.12                                                     | 1.8<br>Median<br>0.13<br>0.35<br>0.14<br>0.27<br>0.12                                        | 28  Maximum  0.76 1.4 0.52 1.4 0.91                                                      | tr(0.47)  Minimum  nd 0.063 tr(0.037) tr(0.036) tr(0.025)                                                | Quantification [Detection] limit 0.018 [0.006] 0.054 [0.018]                                                                   | 37/37 Detection I Sample  101/102 35/35 34/34 37/37 37/37                                                  | 34/34<br>35/35<br>34/34<br>37/37<br>37/37                                           |
|            | 2010 Cold season  Monitored year  2002  2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season                                                                                                                                                                           | 2.2 Geometric mean*  0.12 0.30 0.13 0.24 0.12 0.24                                                | 1.8  Median  0.13 0.35 0.14 0.27 0.12 0.26                                                   | 28  Maximum  0.76 1.4 0.52 1.4 0.91 1.3                                                  | tr(0.47)  Minimum  nd 0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07)                                       | Quantification [Detection] limit 0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05]                                         | 37/37 Detection I Sample  101/102 35/35 34/34 37/37 37/37 37/37                                            | 34/34<br>35/35<br>34/34<br>35/35<br>34/34<br>37/37<br>37/37                         |
| Air        | 2010 Cold season  Monitored year  2002  2003 Warm season 2004 Cold season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season                                                                                                                                         | 2.2  Geometric mean*  0.12  0.30  0.13  0.24  0.12  0.24  tr(0.06)  0.28  0.14                    | 1.8  Median  0.13 0.35 0.14 0.27 0.12 0.26 tr(0.07)                                          | 28  Maximum  0.76 1.4 0.52 1.4 0.91 1.3 0.29                                             | tr(0.47)  Minimum  nd 0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd                                    | Quantification [Detection] limit 0.018 [0.006] 0.054 [0.018] 0.053 [0.018]                                                     | 37/37 Detection I Sample  101/102 35/35 34/34 37/37 37/37 37/37 28/37                                      | Site  34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37                         |
|            | 2010 Cold season  Monitored year  2002  2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season                                                                                                                                         | 2.2  Geometric mean*  0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06) 0.28 0.14 0.26                       | 1.8  Median  0.13 0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32                                     | 28  Maximum  0.76  1.4  0.52  1.4  0.91  1.3  0.29  1.3                                  | tr(0.47)  Minimum  nd 0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd nd 0.046                        | Quantification [Detection] limit 0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05] 0.13 [0.04]                             | 37/37 Detection I Sample  101/102 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37 36/36                    | Site  34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37                         |
| Air        | 2010 Cold season  Monitored year  2002  2003 Warm season 2004 Cold season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season                                                                                                                                         | 2.2  Geometric mean*  0.12  0.30  0.13  0.24  0.12  0.24  tr(0.06)  0.28  0.14                    | 1.8  Median  0.13 0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32 tr(0.12)                            | 28  Maximum  0.76  1.4  0.52  1.4  0.91  1.3  0.29  1.3  0.99                            | tr(0.47)  Minimum  nd 0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd nd                              | Quantification [Detection] limit 0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05]                                         | 37/37 Detection I Sample  101/102 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37                          | Site  34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37                         |
| Air        | 2010 Cold season  Monitored year  2002  2003 Warm season 2004 Cold season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Warm season 2006 Cold season 2007 Warm season                                                                                                       | 2.2  Geometric mean*  0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06) 0.28 0.14 0.26                       | 1.8  Median  0.13 0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32 tr(0.12) 0.27                       | 28  Maximum  0.76  1.4  0.52  1.4  0.91  1.3  0.29  1.3  0.99  1.4                       | tr(0.47)  Minimum  nd 0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd nd 0.046                        | Quantification [Detection] limit 0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05] 0.13 [0.04] 0.011 [0.004]               | 37/37 Detection I Sample  101/102 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37 36/36                    | Site  34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37                         |
| Air        | 2010 Cold season  Monitored year  2002  2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season                                                                                      | 2.2  Geometric mean*  0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06) 0.28 0.14 0.26 0.093                 | 1.8  Median  0.13 0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087                 | 28  Maximum  0.76  1.4  0.52  1.4  0.91  1.3  0.29  1.3  0.99  1.4  0.5                  | tr(0.47)  Minimum  nd 0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd nd 0.046 0.026                  | Quantification [Detection] limit 0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05] 0.13 [0.04]                             | 37/37  Detection I Sample  101/102 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37 36/36 36/36             | Site  34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37 36/36 36/36             |
| Air        | 2010 Cold season  Monitored year  2002  2003 Warm season 2004 Cold season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2007 Cold season 2008 Warm season                                                                     | 2.2  Geometric mean*  0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06) 0.28 0.14 0.26 0.093 0.17            | 1.8  Median  0.13 0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17            | 28  Maximum  0.76  1.4  0.52  1.4  0.91  1.3  0.29  1.3  0.99  1.4  0.5  1.1             | tr(0.47)  Minimum  nd 0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd nd 0.046 0.026 0.037            | Quantification [Detection] limit 0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05] 0.13 [0.04] 0.011 [0.004] 0.025 [0.009] | 37/37  Detection I Sample  101/102 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37 36/36 36/36 37/37       | Site  34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/36 36/36 37/37             |
| Air        | 2010 Cold season  Monitored year  2002  2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Cold season                  | 2.2  Geometric mean*  0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06) 0.28 0.14 0.26 0.093 0.17 0.091      | 1.8  Median  0.13 0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17 0.081      | 28  Maximum  0.76  1.4  0.52  1.4  0.91  1.3  0.29  1.3  0.99  1.4  0.5  1.1  0.31       | tr(0.47)  Minimum  nd 0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd nd 0.046 0.026 0.037 0.036      | Quantification [Detection] limit 0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05] 0.13 [0.04] 0.011 [0.004]               | 37/37  Detection I Sample  101/102 35/35 34/34 37/37 37/37 28/37 36/37 36/37 36/36 36/36 37/37 37/37       | Site  34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/36 36/36 37/37 37/37       |
| Air        | 2010 Cold season  Monitored year  2002  2003 Warm season 2004 Cold season 2004 Cold season 2005 Cold season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Warm season | 2.2  Geometric mean*  0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06) 0.28 0.14 0.26 0.093 0.17 0.091 0.17 | 1.8  Median  0.13 0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17 0.081 0.18 | 28  Maximum  0.76  1.4  0.52  1.4  0.91  1.3  0.29  1.3  0.99  1.4  0.5  1.1  0.31  0.82 | tr(0.47)  Minimum  nd 0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd nd 0.046 0.026 0.037 0.036 0.03 | Quantification [Detection] limit 0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05] 0.13 [0.04] 0.011 [0.004] 0.025 [0.009] | 37/37  Detection I Sample  101/102 35/35 34/34 37/37 37/37 28/37 36/37 36/37 36/36 36/36 37/37 37/37 37/37 | Site  34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/36 36/36 37/37 37/37 37/37 |

(Note) No monitoring was conducted from FY 2011 to FY2012.

## o o,p'-DDT, o,p'-DDE and o,p'-DDD

## <Surface Water>

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in surface water during FY2002~2010

|               | Monitored | Geometric |         |         |          | Quantification       | Detection 1 | Frequency |
|---------------|-----------|-----------|---------|---------|----------|----------------------|-------------|-----------|
| o,p'-DDT      | year      | mean*     | Median  | Maximum | Minimum  | [Detection]<br>limit | Sample      | Site      |
|               | 2002      | 5.4       | 4.6     | 77      | 0.19     | 1.2 [0.4]            | 114/114     | 38/38     |
|               | 2003      | 6         | 5       | 100     | tr(1.5)  | 3 [0.7]              | 36/36       | 36/36     |
|               | 2004      | tr(4.5)   | 5       | 85      | nd       | 5 [2]                | 29/38       | 29/38     |
| Surface Water | 2005      | 3         | 3       | 39      | nd       | 3 [1]                | 42/47       | 42/47     |
| (pg/L)        | 2006      | 2.8       | 2.4     | 52      | 0.51     | 2.3 [0.8]            | 48/48       | 48/48     |
| (pg/L)        | 2007      | tr(2.1)   | tr(2.2) | 86      | nd       | 2.5 [0.8]            | 38/48       | 38/48     |
|               | 2008      | 3.1       | 3.0     | 230     | nd       | 1.4 [0.5]            | 44/48       | 44/48     |
|               | 2009      | 2.4       | 2.4     | 100     | 0.43     | 0.16 [0.06]          | 49/49       | 49/49     |
|               | 2010      | 1.5       | tr(1.2) | 700     | nd       | 1.5 [0.5]            | 43/49       | 43/49     |
|               | Monitored | Geometric |         |         |          | Quantification       | Detection 1 | Frequency |
| o,p'-DDE      | year      | mean*     | Median  | Maximum | Minimum  | [Detection]<br>limit | Sample      | Site      |
|               | 2002      | 2.4       | 2.1     | 680     | nd       | 0.9 [0.3]            | 113/114     | 38/38     |
|               | 2003      | 2.2       | 2.0     | 170     | tr(0.42) | 0.8 [0.3]            | 36/36       | 36/36     |
|               | 2004      | 3         | 2       | 170     | tr(0.6)  | 2 [0.5]              | 38/38       | 38/38     |
| Surface Water | 2005      | 2.5       | 2.1     | 410     | 0.4      | 1.2 [0.4]            | 47/47       | 47/47     |
| (pg/L)        | 2006      | tr(1.6)   | tr(1.4) | 210     | nd       | 2.6 [0.9]            | 28/48       | 28/48     |
| (pg/L)        | 2007      | tr(1.5)   | tr(1.1) | 210     | nd       | 2.3 [0.8]            | 29/48       | 29/48     |
|               | 2008      | 1.5       | 1.8     | 260     | nd       | 0.7 [0.3]            | 39/48       | 39/48     |
|               | 2009      | 1.3       | 1.1     | 140     | nd       | 0.22 [0.09]          | 47/49       | 47/49     |
|               | 2010      | 0.97      | 0.65    | 180     | tr(0.13) | 0.24 [0.09]          | 49/49       | 49/49     |
|               | Manitarad | Geometric |         |         |          | Quantification       | Detection 1 | Frequency |
| o,p'-DDD      | year      | mean*     | Median  | Maximum | Minimum  | [Detection]<br>limit | Sample      | Site      |
|               | 2002      | 5.6       | 6.0     | 110     | nd       | 0.60 [0.20]          | 113/114     | 38/38     |
|               | 2003      | 7.1       | 5.0     | 160     | 1.1      | 0.8 [0.3]            | 36/36       | 36/36     |
|               | 2004      | 6         | 5       | 81      | tr(0.7)  | 2 [0.5]              | 38/38       | 38/38     |
| Surface Water | 2005      | 5.2       | 5.4     | 51      | tr(0.5)  | 1.2 [0.4]            | 47/47       | 47/47     |
|               | 2006      | 2.5       | 3.3     | 39      | nd       | 0.8 [0.3]            | 40/48       | 40/48     |
| (pg/L)        | 2007      | 4.6       | 3.9     | 41      | tr(0.3)  | 0.8 [0.3]            | 48/48       | 48/48     |
|               | 2008      | 6.7       | 7.2     | 170     | nd       | 0.8 [0.3]            | 47/48       | 47/48     |
|               | 2009      | 4.4       | 3.8     | 41      | 0.44     | 0.22 [0.09]          | 49/49       | 49/49     |
|               | 2010      | 4.6       | 3.8     | 170     | tr(0.5)  | 0.6 [0.2]            | 49/49       | 49/49     |

(Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) No monitoring was conducted from FY 2011 to FY2012.

## < Sediment >

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in sediment during FY2002~2010

|            | Monitored | Geometric |        |         |         | Quantification       | Detection I | requency |
|------------|-----------|-----------|--------|---------|---------|----------------------|-------------|----------|
| o,p'-DDT   | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
|            | 2002      | 76        | 47     | 27,000  | nd      | 6 [2]                | 183/189     | 62/63    |
|            | 2003      | 50        | 43     | 3,200   | nd      | 0.8 [0.3]            | 185/186     | 62/62    |
|            | 2004      | 69        | 50     | 17,000  | tr(1.1) | 2 [0.6]              | 189/189     | 63/63    |
| Sediment   | 2005      | 58        | 46     | 160,000 | 0.8     | 0.8 [0.3]            | 189/189     | 63/63    |
|            | 2006      | 57        | 52     | 18,000  | tr(0.8) | 1.2 [0.4]            | 192/192     | 64/64    |
| (pg/g-dry) | 2007      | 38        | 31     | 27,000  | nd      | 1.8 [0.6]            | 186/192     | 63/64    |
|            | 2008      | 51        | 40     | 140,000 | tr(0.7) | 1.5 [0.6]            | 192/192     | 64/64    |
|            | 2009      | 44        | 30     | 100,000 | nd      | 1.2 [0.5]            | 190/192     | 64/64    |
|            | 2010      | 40        | 33     | 13,000  | 1.4     | 1.1 [0.4]            | 64/64       | 64/64    |

|            | Monitored         | Geometric       |        |         |         | Quantification                         | Detection 1        | Frequency         |
|------------|-------------------|-----------------|--------|---------|---------|----------------------------------------|--------------------|-------------------|
| o,p'-DDE   | year              | mean*           | Median | Maximum | Minimum | [Detection]<br>limit                   | Sample             | Site              |
|            | 2002              | 54              | 37     | 16,000  | nd      | 3 [1]                                  | 188/189            | 63/63             |
|            | 2003              | 48              | 39     | 24,000  | tr(0.5) | 0.6 [0.2]                              | 186/186            | 62/62             |
|            | 2004              | 40              | 34     | 28,000  | nd      | 3 [0.8]                                | 184/189            | 63/63             |
| C - 1: 4   | 2005              | 40              | 32     | 31,000  | nd      | 2.6 [0.9]                              | 181/189            | 62/63             |
| Sediment   | 2006              | 42              | 40     | 27,000  | tr(0.4) | 1.1 [0.4]                              | 192/192            | 64/64             |
| (pg/g-dry) | 2007              | 37              | 41     | 25,000  | nd      | 1.2 [0.4]                              | 186/192            | 63/64             |
|            | 2008              | 50              | 48     | 37,000  | nd      | 1.4 [0.6]                              | 186/192            | 63/64             |
|            | 2009              | 37              | 31     | 33,000  | nd      | 0.6 [0.2]                              | 191/192            | 64/64             |
|            | 2010              | 37              | 32     | 25,000  | tr(0.7) | 1.2 [0.5]                              | 64/64              | 64/64             |
| o,p'-DDD   | Monitored<br>year | Geometric mean* | Median | Maximum | Minimum | Quantification<br>[Detection]<br>limit | Detection I Sample | Frequency<br>Site |
|            | 2002              | 160             | 150    | 14,000  | nd      | 6 [2]                                  | 184/189            | 62/63             |
|            | 2003              | 160             | 130    | 8,800   | tr(1.0) | 2 [0.5]                                | 186/186            | 62/62             |
|            | 2004              | 140             | 120    | 16,000  | tr(0.7) | 2 [0.5]                                | 189/189            | 63/63             |
| G 1' 4     | 2005              | 130             | 110    | 32,000  | tr(0.8) | 1.0 [0.3]                              | 189/189            | 63/63             |
| Sediment   | 2006              | 120             | 110    | 13,000  | tr(0.3) | 0.5 [0.2]                              | 192/192            | 64/64             |
| (pg/g-dry) | 2007              | 110             | 130    | 21,000  | tr(0.5) | 1.0 [0.4]                              | 192/192            | 64/64             |
|            | 2008              | 170             | 150    | 50,000  | 0.5     | 0.3 [0.1]                              | 192/192            | 64/64             |
|            | 2000              | 120             | 120    | 24.000  | 0.5     | 0.5 [0.2]                              | 192/192            | 64/64             |
|            | 2009              | 120             | 120    | 24,000  | 0.5     | 0.5 [0.2]                              | 192/192            | 07/07             |

<sup>(</sup>Note 1) " \*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002  $\sim$ FY2009.

## <Wildlife>

Stocktaking of the detection of o,p'-DDT in wildlife (bivalves, fish and birds) during FY2002~2010

|            | Manitar-1         | Caamatui-          |        | ,       | ,        | Quantification       | Detection 1 | requency |
|------------|-------------------|--------------------|--------|---------|----------|----------------------|-------------|----------|
| o,p'-DDT   | Monitored<br>year | Geometric<br>mean* | Median | Maximum | Minimum  | [Detection]<br>limit | Sample      | Site     |
|            | 2002              | 110                | 83     | 480     | 22       | 12 [4]               | 38/38       | 8/8      |
|            | 2003              | 130                | 120    | 480     | 35       | 2.9 [0.97]           | 30/30       | 6/6      |
|            | 2004              | 160                | 140    | 910     | 20       | 1.8 [0.61]           | 31/31       | 7/7      |
| D: 1       | 2005              | 98                 | 57     | 440     | 29       | 2.6 [0.86]           | 31/31       | 7/7      |
| Bivalves   | 2006              | 92                 | 79     | 380     | 24       | 3 [1]                | 31/31       | 7/7      |
| (pg/g-wet) | 2007              | 79                 | 52     | 350     | 20       | 3 [1]                | 31/31       | 7/7      |
|            | 2008              | 58                 | 37     | 330     | 5        | 3 [1]                | 31/31       | 7/7      |
|            | 2009              | 74                 | 48     | 2,500   | 17       | 2.2 [0.8]            | 31/31       | 7/7      |
|            | 2010              | 51                 | 67     | 160     | 15       | 3 [1]                | 6/6         | 6/6      |
|            | 2002              | 130                | 130    | 2,300   | tr(6)    | 12 [4]               | 70/70       | 14/14    |
|            | 2003              | 85                 | 120    | 520     | 2.9      | 2.9 [0.97]           | 70/70       | 14/14    |
|            | 2004              | 160                | 140    | 1,800   | 3.7      | 1.8 [0.61]           | 70/70       | 14/14    |
| T7: -1.    | 2005              | 100                | 110    | 1,500   | 5.8      | 2.6 [0.86]           | 80/80       | 16/16    |
| Fish       | 2006              | 100                | 110    | 700     | 6        | 3 [1]                | 80/80       | 16/16    |
| (pg/g-wet) | 2007              | 69                 | 90     | 430     | 3        | 3 [1]                | 80/80       | 16/16    |
|            | 2008              | 72                 | 92     | 720     | 3        | 3 [1]                | 85/85       | 17/17    |
|            | 2009              | 61                 | 73     | 470     | 2.4      | 2.2 [0.8]            | 90/90       | 18/18    |
|            | 2010              | 58                 | 71     | 550     | 5        | 3 [1]                | 18/18       | 18/18    |
|            | 2002              | 12                 | tr(10) | 58      | nd       | 12 [4]               | 8/10        | 2/2      |
|            | 2003              | 24                 | 16     | 66      | 8.3      | 2.9 [0.97]           | 10/10       | 2/2      |
|            | 2004              | 8.5                | 13     | 43      | tr(0.87) | 1.8 [0.61]           | 10/10       | 2/2      |
| D: 1       | 2005              | 11                 | 14     | 24      | 3.4      | 2.6 [0.86]           | 10/10       | 2/2      |
| Birds      | 2006              | 14                 | 10     | 120     | 3        | 3 [1]                | 10/10       | 2/2      |
| (pg/g-wet) | 2007              | 9                  | 9      | 26      | tr(2)    | 3 [1]                | 10/10       | 2/2      |
|            | 2008              | 4                  | 6      | 16      | nd       | 3 [1]                | 8/10        | 2/2      |
|            | 2009              | 6.3                | 7.6    | 12      | tr(1.4)  | 2.2 [0.8]            | 10/10       | 2/2      |
|            | 2010              | nd                 |        | nd      | nd       | 3 [1]                | 0/2         | 0/2      |

<sup>(</sup>Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<sup>(</sup>Note 2) No monitoring was conducted from FY 2011 to FY2012.

<sup>(</sup>Note 2) No monitoring was conducted from FY 2011 to FY2012.

Stocktaking of the detection of o,p'-DDE and o,p'-DDD in wildlife (bivalves, fish and birds) during FY2002~2010

|             |                   | •                  |          | ` `     |          |                                        |                  |                   |
|-------------|-------------------|--------------------|----------|---------|----------|----------------------------------------|------------------|-------------------|
| o,p'-DDE    | Monitored<br>year | Geometric mean*    | Median   | Maximum | Minimum  | Quantification<br>[Detection]<br>limit | Detection Sample | Frequency<br>Site |
|             | 2002              | 83                 | 66       | 1,100   | 13       | 3.6 [1.2]                              | 38/38            | 8/8               |
|             | 2003              | 85                 | 100      | 460     | 17       | 3.6 [1.2]                              | 30/30            | 6/6               |
|             | 2004              | 86                 | 69       | 360     | 19       | 2.1 [0.69]                             | 31/31            | 7/7               |
|             | 2005              | 70                 | 89       | 470     | 12       | 3.4 [1.1]                              | 31/31            | 7/7               |
| Bivalves    | 2006              | 62                 | 81       | 340     | 12       | 3 [1]                                  | 31/31            | 7/7               |
| (pg/g-wet)  | 2007              | 56                 | 69       | 410     | 8.9      | 2.3 [0.9]                              | 31/31            | 7/7               |
|             | 2008              | 49                 | 52       | 390     | 8        | 3 [1]                                  | 31/31            | 7/7               |
|             | 2009              | 46                 | 58       | 310     | 8        | 3 [1]                                  | 31/31            | 7/7               |
|             | 2010              | 46                 | 58       | 160     | 7.8      | 1.5 [0.6]                              | 6/6              | 6/6               |
|             | 2002              | 91                 | 50       | 13,000  | 3.6      | 3.6 [1.2]                              | 70/70            | 14/14             |
|             | 2003              | 51                 | 54       | 2,500   | nd       | 3.6 [1.2]                              | 67/70            | 14/14             |
|             | 2004              | 76                 | 48       | 5,800   | tr(0.89) | 2.1 [0.69]                             | 70/70            | 14/14             |
|             | 2005              | 54                 | 45       | 12,000  | tr(1.4)  | 3.4 [1.1]                              | 80/80            | 16/16             |
| Fish        | 2006              | 56                 | 43       | 4,800   | tr(1)    | 3 [1]                                  | 80/80            | 16/16             |
| (pg/g-wet)  | 2007              | 45                 | 29       | 4,400   | nd       | 2.3 [0.9]                              | 79/80            | 16/16             |
|             | 2008              | 50                 | 37       | 13,000  | tr(1)    | 3 [1]                                  | 85/85            | 17/17             |
|             | 2009              | 46                 | 33       | 4,300   | tr(1)    | 3 [1]                                  | 90/90            | 18/18             |
|             | 2009              | 47                 | 37       | 2,800   |          |                                        | 18/18            | 18/18             |
|             |                   | 28                 | 26       |         | tr(1.2)  | 1.5 [0.6]                              |                  |                   |
|             | 2002              |                    |          | 49      | 20       | 3.6 [1.2]                              | 10/10            | 2/2               |
|             | 2003              | tr(2.3)            | tr(2.0)  | 4.2     | nd       | 3.6 [1.2]                              | 9/10             | 2/2               |
|             | 2004              | tr(1.0)            | tr(1.1)  | 3.7     | nd       | 2.1 [0.69]                             | 5/10             | 1/2               |
| Birds       | 2005              | tr(1.2)            | tr(1.9)  | tr(2.9) | nd       | 3.4 [1.1]                              | 7/10             | 2/2               |
| (pg/g-wet)  | 2006              | tr(1)              | tr(2)    | 3       | tr(1)    | 3 [1]                                  | 10/10            | 2/2               |
| (P8'8 ""C") | 2007              | tr(1.0)            | tr(1.4)  | 2.8     | nd       | 2.3 [0.9]                              | 6/10             | 2/2               |
|             | 2008              | tr(1)              | nd       | 3       | nd       | 3 [1]                                  | 5/10             | 1/2               |
|             | 2009              | nd                 | tr(1)    | tr(2)   | nd       | 3 [1]                                  | 6/10             | 2/2               |
|             | 2010              | tr(1.1)            |          | 3.7     | nd       | 1.5 [0.6]                              | 1/2              | 1/2               |
|             | Manitanad         | Coomotnio          |          |         |          | Quantification                         | Detection        | Frequency         |
| o,p'-DDD    | year              | Geometric<br>mean* | Median   | Maximum | Minimum  | [Detection]<br>limit                   | Sample           | Site              |
|             | 2002              | 120                | 190      | 2,900   | tr(9)    | 12 [4]                                 | 38/38            | 8/8               |
|             | 2003              | 200                | 220      | 1,900   | 6.5      | 6.0 [2.0]                              | 30/30            | 6/6               |
|             | 2004              | 220                | 130      | 2,800   | 6.0      | 5.7 [1.9]                              | 31/31            | 7/7               |
|             | 2005              | 170                | 280      | 1,800   | 10       | 3.3 [1.1]                              | 31/31            | 7/7               |
| Bivalves    | 2006              | 150                | 200      | 1,000   | 7        | 4 [1]                                  | 31/31            | 7/7               |
| (pg/g-wet)  | 2007              | 150                | 200      | 1,200   | 6        | 3 [1]                                  | 31/31            | 7/7               |
|             | 2008              | 130                | 140      | 1,100   | 5        | 4 [2]                                  | 31/31            | 7/7               |
|             | 2009              | 95                 | 51       | 1,000   | 5        | 3 [1]                                  | 31/31            | 7/7               |
|             | 2010              | 57                 | 50       | 400     | 5.8      | 0.6 [0.2]                              | 6/6              | 6/6               |
|             | 2010              | 95                 | 90       | 1,100   |          | 12 [4]                                 | 66/70            | 14/14             |
|             | 2002              | 93<br>75           | 90<br>96 | 920     |          |                                        | 66/70            | 14/14             |
|             |                   |                    |          |         | nd       | 6.0 [2.0]                              |                  |                   |
|             | 2004              | 120                | 96       | 1,700   | nd       | 5.7 [1.9]                              | 68/70            | 14/14             |
| Fish        | 2005              | 83                 | 81       | 1,400   | nd       | 3.3 [1.1]                              | 79/80            | 16/16             |
| (pg/g-wet)  | 2006              | 80                 | 86       | 1,100   | tr(1)    | 4 [1]                                  | 80/80            | 16/16             |
| (10.0)      | 2007              | 66                 | 62       | 1,300   | nd       | 3 [1]                                  | 78/80            | 16/16             |
|             | 2008              | 65                 | 74       | 1,000   | nd       | 4 [2]                                  | 80/85            | 16/17             |
|             | 2009              | 63                 | 64       | 760     | nd       | 3 [1]                                  | 87/90            | 18/18             |
|             | 2010              | 75                 | 99       | 700     | 2.6      | 0.6 [0.2]                              | 18/18            | 18/18             |
|             | 2002              | 15                 | 15       | 23      | tr(8)    | 12 [4]                                 | 10/10            | 2/2               |
|             | 2003              | 15                 | 14       | 36      | tr(5.0)  | 6.0 [2.0]                              | 10/10            | 2/2               |
|             | 2004              | 6.1                | 5.7      | 25      | nd       | 5.7 [1.9]                              | 9/10             | 2/2               |
| D: 1        | 2005              | 7.3                | 7.5      | 9.7     | 4.7      | 3.3 [1.1]                              | 10/10            | 2/2               |
| Birds       | 2006              | 8                  | 8        | 19      | 5        | 4 [1]                                  | 10/10            | 2/2               |
| (pg/g-wet)  | 2007              | 7                  | 7        | 10      | 5        | 3 [1]                                  | 10/10            | 2/2               |
|             | 2008              | 4                  | tr(3)    | 14      | tr(2)    | 4 [2]                                  | 10/10            | 2/2               |
|             | 2009              | 6                  | 5        | 13      | 3        | 3 [1]                                  | 10/10            | 2/2               |
|             |                   |                    |          | 11      |          |                                        | 2/2              | 2/2               |
|             | 2010              | 6.3                |          | 11      | 3.6      | 0.6[0.2]                               | 212              | 212               |

<sup>2010 6.3 --- 11 3.6 0.6 [0.2] 2/2 2/2 (</sup>Note 1) "\*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<sup>(</sup>Note 2) No monitoring was conducted from FY 2011 to FY2012.

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in air during FY2002~2010

| o,p'-DDT   | Monitored year                       | Geometric<br>mean | Median       | Maximum     | Minimum                        | Quantification<br>[Detection]<br>limit | Detection I<br>Sample | Frequency<br>Site |
|------------|--------------------------------------|-------------------|--------------|-------------|--------------------------------|----------------------------------------|-----------------------|-------------------|
|            | 2002                                 | 2.2               | 2.0          | 40          | 0.41                           | 0.15 [0.05]                            | 102/102               | 34/34             |
|            | 2003 Warm season                     | 6.9               | 7.7          | 38          | 0.61                           | 0.12.50.0401                           | 35/35                 | 35/35             |
|            | 2003 Cold season                     | 1.6               | 1.4          | 6.4         | 0.43                           | 0.12 [0.040]                           | 34/34                 | 34/34             |
|            | 2004 Warm season                     | 5.1               | 5.4          | 22          | 0.54                           | 0.002.50.0213                          | 37/37                 | 37/37             |
|            | 2004 Cold season                     | 1.5               | 1.4          | 9.4         | 0.35                           | 0.093 [0.031]                          | 37/37                 | 37/37             |
|            | 2005 Warm season                     | 3.0               | 3.1          | 14          | 0.67                           | 0.40.50.02.43                          | 37/37                 | 37/37             |
|            | 2005 Cold season                     | 0.76              | 0.67         | 3.0         | 0.32                           | 0.10 [0.034]                           | 37/37                 | 37/37             |
|            | 2006 Warm season                     | 2.5               | 2.4          | 20          | 0.55                           |                                        | 37/37                 | 37/37             |
| Air        | 2006 Cold season                     | 0.90              | 0.79         | 3.9         | 0.37                           | 0.09 [0.03]                            | 37/37                 | 37/37             |
| $(pg/m^3)$ | 2007 Warm season                     | 2.9               | 2.6          | 19          | 0.24                           | 0.02.50.043                            | 36/36                 | 36/36             |
|            | 2007 Cold season                     | 0.77              | 0.63         | 3.4         | 0.31                           | 0.03 [0.01]                            | 36/36                 | 36/36             |
|            | 2008 Warm season                     | 2.3               | 2.1          | 18          | 0.33                           | 0.02.50.043                            | 37/37                 | 37/37             |
|            | 2008 Cold season                     | 0.80              | 0.62         | 6.5         | 0.32                           | 0.03 [0.01]                            | 37/37                 | 37/37             |
|            | 2009 Warm season                     | 2.3               | 2.2          | 14          | 0.33                           |                                        | 37/37                 | 37/37             |
|            | 2009 Cold season                     | 0.80              | 0.71         | 3.7         | 0.20                           | 0.019 [0.008]                          | 37/37                 | 37/37             |
|            | 2010 Warm season                     | 2.2               | 1.9          | 26          | 0.19                           |                                        | 37/37                 | 37/37             |
|            | 2010 Cold season                     | 0.81              | 0.69         | 5.5         | 0.19                           | 0.14 [0.05]                            | 37/37                 | 37/37             |
|            | 2010 Cold Scason                     |                   | 0.07         | 5.5         | 0.22                           | Quantification                         | Detection I           |                   |
| o,p'-DDE   | Monitored year                       | Geometric<br>mean | Median       | Maximum     | Minimum                        | [Detection]<br>limit                   | Sample                | Site              |
|            | 2002                                 | 0.60              | 0.56         | 8.5         | 0.11                           | 0.03 [0.01]                            | 102/102               | 34/34             |
|            | 2003 Warm season                     | 1.4               | 1.5          | 7.5         | 0.17                           | 0.020 [0.0068]                         | 35/35                 | 35/35             |
|            | 2003 Cold season                     | 0.50              | 0.47         | 1.7         | 0.18                           |                                        | 34/34                 | 34/34             |
|            | 2004 Warm season                     | 1.1               | 1.2          | 8.9         | 0.14                           | 0.027 [0.012]                          | 37/37                 | 37/37             |
|            | 2004 Cold season                     | 0.53              | 0.49         | 3.9         | 0.14                           | 0.037 [0.012]                          | 37/37                 | 37/37             |
|            | 2005 Warm season                     | 1.6               | 1.5          | 7.9         | 0.33                           | 0.074.50.0243                          | 37/37                 | 37/37             |
|            | 2005 Cold season                     | 0.62              | 0.59         | 2.0         | 0.24                           | 0.074 [0.024]                          | 37/37                 | 37/37             |
|            | 2006 Warm season                     | 1.1               | 1.1          | 7.4         | nd                             |                                        | 36/37                 | 36/37             |
| Air        | 2006 Cold season                     | 0.65              | 0.56         | 2.6         | 0.19                           | 0.09 [0.03]                            | 37/37                 | 37/37             |
| $(pg/m^3)$ | 2007 Warm season                     | 0.66              | 0.67         | 7           | 0.096                          |                                        | 36/36                 | 36/36             |
|            | 2007 Cold season                     | 0.3               | 0.29         | 3.7         | 0.12                           | 0.017 [0.007]                          | 36/36                 | 36/36             |
|            | 2008 Warm season                     | 0.48              | 0.52         | 5.0         | 0.11                           |                                        | 37/37                 | 37/37             |
|            | 2008 Cold season                     | 0.30              | 0.24         | 1.1         | 0.15                           | 0.025 [0.009]                          | 37/37                 | 37/37             |
|            | 2009 Warm season                     | 0.51              | 0.46         | 6.7         | 0.098                          |                                        | 37/37                 | 37/37             |
|            | 2009 Cold season                     | 0.27              | 0.40         | 23          | 0.072                          | 0.016 [0.006]                          | 37/37                 | 37/37             |
|            | 2010 Warm season                     | 0.49              | 0.41         | 9.0         | 0.09                           |                                        | 37/37                 | 37/37             |
|            |                                      |                   |              |             |                                | 0.04 [0.01]                            |                       |                   |
|            | 2010 Cold season                     | 0.27              | 0.23         | 2.3         | 0.08                           | Quantification                         | 37/37<br>Detection I  | 37/37             |
| o,p'-DDD   | Monitored year                       | Geometric<br>mean | Median       | Maximum     | Minimum                        | [Detection]<br>limit                   | Sample                | Site              |
|            | 2002                                 | 0.14              | 0.18         | 0.85        | nd                             | 0.021 [0.007]                          | 97/102                | 33/34             |
|            | 2003 Warm season                     | 0.37              | 0.42         | 1.3         | 0.059                          | 0.042 [0.014]                          | 35/35                 | 35/35             |
|            | 2003 Cold season                     | 0.15              | 0.14         | 0.42        | 0.062                          |                                        | 34/34                 | 34/34             |
|            | 2004 Warm season                     | 0.31              | 0.33         | 2.6         | tr(0.052)                      | 0.14 [0.048]                           | 37/37                 | 37/37             |
|            | 2004 Cold season                     | 0.14              | tr(0.13)     | 0.86        | nd                             |                                        | 35/37                 | 35/37             |
|            | 2005 Warm season                     | 0.22              | 0.19         | 0.90        | tr(0.07)                       | 0.10 [0.03]                            | 37/37                 | 37/37             |
|            | 2005 Cold season                     | tr(0.07)          | tr(0.07)     | 0.21        | nd                             |                                        | 35/37                 | 35/37             |
| Air        | 2006 Warm season                     | 0.28              | 0.28         | 1.4         | tr(0.05)                       | 0.10 [0.03]                            | 37/37                 | 37/37             |
| $(pg/m^3)$ | 2006 Cold season                     | 0.12              | 0.11         | 0.79        | nd nd                          |                                        | 34/37                 | 34/37             |
| 10 /       | 2007 Warm season                     | 0.28              | 0.29         | 1.9         | 0.05                           | 0.05 [0.02]                            | 36/36                 | 36/36             |
|            | 2007 Cold season                     | 0.095             | 0.09         | 0.33        | tr(0.03)                       | F J                                    | 36/36                 | 36/36             |
|            | 2008 Warm season                     | 0.19              | 0.16         | 1.6         | 0.05                           | 0.04 [0.01]                            | 37/37                 | 37/37             |
|            | 2008 Cold season                     | 0.10              | 0.09         | 0.26        | 0.04                           |                                        | 37/37                 | 37/37             |
|            | 2009 Warm season                     | 0.20              | 0.19         | 0.90        | 0.04                           | 0.03 [0.01]                            | 37/37                 | 37/37             |
|            | 2009 Cold season                     | 0.08              | 0.08         | 0.28        | $\frac{\text{tr}(0.02)}{0.04}$ |                                        | 37/37                 | 37/37             |
|            | 2010 Warm season<br>2010 Cold season | 0.21<br>0.10      | 0.19<br>0.09 | 1.8<br>0.48 | 0.04<br>tr(0.02)               | 0.03 [0.01]                            | 37/37<br>37/37        | 37/37<br>37/37    |
|            | ZUTU CUIU SCASOII                    | 0.10              |              | FY2012.     | tr(0.02)                       |                                        | 31131                 | 37/37             |

(Note) No monitoring was conducted from FY 2011 to FY2012.

### [7] Chlordanes

· History and state of monitoring

Chlordanes were used as insecticides, but the registration of Chlordanes under the Agricultural Chemicals Regulation Law was expired in FY 1968. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986 because of its properties such as persistency, since it had been used as termitecides for wood products such as primary processed timber, plywood and house.

Although manufactured Chlordanes have complicated compositions, heptachlor, γ-chlordane, heptachlor epoxide, *cis*-chlordane, *trans*-chlordane, oxychlordane (as a chlordane metabolite), *cis*-nonachlor (not registrated as an Agricultural Chemical) and *trans*-nonachlor (not registrated as an Agricultural Chemical) were the original target chemicals in monitoring series. Since FY 1983, 5 of those 8 chemicals (*cis*-chlordane, *trans*-chlordane, oxychlordane, *cis*-nonachlor and *trans*-nonachlor) have been the target chemicals owning to their high detection frequency in the FY 1982 High-Precision Environmental Survey.

In previous monitoring series, Chlordanes had been monitored in wildlife (bivalves, fish and birds) during the period of FY 1978 ~ 2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring", *cis*-chlordane, *trans*-chlordane, *cis*-nonachlor and *trans*-nonachlor in surface water and sediment have been the monitored during the period of FY 1986 ~ 1998 and FY 1986 ~ 2001, respectively.

Under the framework of the Environmental Monitoring, *cis*-chlordane, *trans*-chlordane, oxychlordane (as a chlordane metabolite), *cis*-nonachlor (not registrated as an Agricultural Chemical) and *trans*-nonachlor have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air since FY 2002.

- · Monitoring results
- o cis-Chlordane and trans-Chlordane

### <Surface Water>

cis-chlordane: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.6pg/L, and the detection range was  $10 \sim 350pg/L$ . As results of the inter-annual trend analysis from FY 2002 to FY 2012, reduction tendency in specimens from sea areas was identified as statistically significant.

*trans*-chlordane: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.8pg/L, and the detection range was  $12 \sim 300pg/L$ .

Stocktaking of the detection of cis-chlordane and trans-chlordane in surface water FY2002~2012

|               | Monitored | Geometric |        |         |         | Quantification       | Detection l | Frequency |
|---------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| cis-chlordane | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|               | 2002      | 42        | 32     | 880     | 2.5     | 0.9 [0.3]            | 114/114     | 38/38     |
|               | 2003      | 69        | 51     | 920     | 12      | 3 [0.9]              | 36/36       | 36/36     |
|               | 2004      | 92        | 87     | 1,900   | 10      | 6 [2]                | 38/38       | 38/38     |
|               | 2005      | 53        | 54     | 510     | 6       | 4 [1]                | 47/47       | 47/47     |
| C C W         | 2006      | 31        | 26     | 440     | 5       | 5 [2]                | 48/48       | 48/48     |
| Surface Water | 2007      | 23        | 22     | 680     | nd      | 4 [2]                | 47/48       | 47/48     |
| (pg/L)        | 2008      | 29        | 29     | 480     | 2.9     | 1.6 [0.6]            | 48/48       | 48/48     |
|               | 2009      | 29        | 26     | 710     | 4.4     | 1.1 [0.4]            | 49/49       | 49/49     |
|               | 2010      | 19        | 14     | 170     | nd      | 11 [4]               | 47/49       | 47/49     |
|               | 2011      | 20        | 16     | 500     | 3.8     | 1.4 [0.6]            | 49/49       | 49/49     |
|               | 2012      | 43        | 37     | 350     | 10      | 1.6 [0.6]            | 48/48       | 48/48     |

|                 | Monitored | Geometric |        |         |         | Quantification       | Detection l | requency |
|-----------------|-----------|-----------|--------|---------|---------|----------------------|-------------|----------|
| trans-chlordane | year      | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
|                 | 2002      | 33        | 24     | 780     | 3.1     | 1.5 [0.5]            | 114/114     | 38/38    |
|                 | 2003      | 34        | 30     | 410     | 6       | 5 [2]                | 36/36       | 36/36    |
|                 | 2004      | 32        | 26     | 1,200   | 5       | 5 [2]                | 38/38       | 38/38    |
|                 | 2005      | 25        | 21     | 200     | 3       | 4 [1]                | 47/47       | 47/47    |
| CC W-4          | 2006      | 24        | 16     | 330     | tr(4)   | 7 [2]                | 48/48       | 48/48    |
| Surface Water   | 2007      | 16        | 20     | 580     | nd      | 2.4 [0.8]            | 47/48       | 47/48    |
| (pg/L)          | 2008      | 23        | 22     | 420     | 3       | 3 [1]                | 48/48       | 48/48    |
|                 | 2009      | 23        | 18     | 690     | 3.0     | 0.8 [0.3]            | 49/49       | 49/49    |
|                 | 2010      | 15        | tr(11) | 310     | nd      | 13 [4]               | 44/49       | 44/49    |
|                 | 2011      | 16        | 13     | 470     | 3.2     | 1.0 [0.4]            | 49/49       | 49/49    |
|                 | 2012      | 41        | 33     | 300     | 12      | 2.5 [0.8]            | 48/48       | 48/48    |

(Note) " \* ":Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

#### <Sediment>

cis-chlordane: The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 1.0 pg/g-dry, and the detection range was  $\text{tr}(2.6) \sim 11,000 \text{ pg/g-dry}$ . As results of the inter-annual trend analysis from FY 2002 to FY 2012, reduction tendencies in specimens from river areas ,lake areas ,river mouth areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

trans-chlordane: The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 1.3pg/g-dry, and the detection range was tr(2.9) ~ 13,000 pg/g-dry. As results of the inter-annual trend analysis from FY 2002 to FY 2012, reduction tendencies in specimens from river areas was identified as statistically significant and reduction tendency in specimens from the overall sediments was also identified as statistically significant.

Stocktaking of the detection of cis-chlordane and trans-chlordane in sediment FY2002~2012

|                 | Monitored    | Geometric |          |                 |            | Quantification         | Detection 1        | Frequency      |
|-----------------|--------------|-----------|----------|-----------------|------------|------------------------|--------------------|----------------|
| cis-chlordane   | year         | mean*     | Median   | Maximum         | Minimum    | [Detection]            | Sample             | Site           |
|                 |              |           |          |                 |            | limit                  |                    |                |
|                 | 2002         | 140       | 98       | 18,000          | 1.8        | 0.9 [0.3]              | 189/189            | 63/63          |
|                 | 2003         | 190       | 140      | 19,000          | tr(3.6)    | 4 [2]                  | 186/186            | 62/62          |
|                 | 2004         | 160       | 97       | 36,000          | 4          | 4 [2]                  | 189/189            | 63/63          |
|                 | 2005         | 150       | 100      | 44,000          | 3.3        | 1.9 [0.64]             | 189/189            | 63/63          |
| Sediment        | 2006         | 100       | 70       | 13,000          | tr(0.9)    | 2.4 [0.8]              | 192/192            | 64/64          |
| (pg/g-dry)      | 2007         | 82        | 55       | 7,500           | nd         | 5 [2]                  | 191/192            | 64/64          |
| (pg/g-dry)      | 2008         | 100       | 63       | 11,000          | tr(2.3)    | 2.4 [0.9]              | 192/192            | 64/64          |
|                 | 2009         | 84        | 61       | 8,600           | 2.0        | 0.7 [0.3]              | 192/192            | 64/64          |
|                 | 2010         | 82        | 62       | 7,200           | tr(4)      | 6 [2]                  | 64/64              | 64/64          |
|                 | 2011         | 70        | 58       | 4,500           | 1.7        | 1.1 [0.4]              | 64/64              | 64/64          |
|                 | 2012         | 69        | 61       | 11,000          | tr(2.6)    | 2.9 [1.0]              | 63/63              | 63/63          |
|                 | Monitored    | Geometric |          |                 |            | Quantification         | Detection 1        | Frequency      |
| trans-chlordane | year         | mean*     | Median   | Maximum         | Minimum    | [Detection]            | Sample             | Site           |
|                 | yeai         | ilicali   |          |                 |            | limit                  |                    |                |
|                 | 2002         | 150       | 110      | 16,000          | 2.1        | 1.8 [0.6]              | 189/189            | 63/63          |
|                 | 2003         | 130       | 100      | 13,000          | tr(2.4)    | 4 [2]                  | 186/186            | 62/62          |
|                 | 2004         | 110       | 80       | 26,000          | 3          | 3 [0.9]                | 189/189            | 63/63          |
|                 | 2005         | 110       | 81       | 32,000          | 3.4        | 2.3 [0.84]             | 189/189            | 63/63          |
| C - 1: 4        | 2006         | 110       | 76       | 12,000          | 2.2        | 1.1 [0.4]              | 192/192            | 64/64          |
| Sediment        | 2007         | 82        | 58       | 7,500           | nd         | 2.2 [0.8]              | 191/192            | 64/64          |
| (na/a dmi)      | 2007         | 02        | 30       | 7,500           | 114        | [ ]                    |                    |                |
| (pg/g-dry)      | 2007         | 110       | 66       | 10,000          | 2.4        | 2.0 [0.8]              | 192/192            | 64/64          |
| (pg/g-dry)      |              |           |          | /               |            |                        |                    | 64/64<br>64/64 |
| (pg/g-dry)      | 2008         | 110       | 66       | 10,000          | 2.4        | 2.0 [0.8]              | 192/192            |                |
| (pg/g-dry)      | 2008<br>2009 | 110<br>91 | 66<br>68 | 10,000<br>8,300 | 2.4<br>2.1 | 2.0 [0.8]<br>1.7 [0.7] | 192/192<br>192/192 | 64/64          |

(Note) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was

derived during FY2002 ~FY2009. <Wildlife>

cis-chlordane: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was  $180 \sim 3,500$  pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was  $98 \sim 3,100pg/g$ -wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was  $5 \sim 110$  pg/g-wet.

trans-chlordane: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was  $140 \sim 1,300 \text{ pg/g}$ -wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was  $19 \sim 1,100 \text{ pg/g}$ -wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was  $tr(4) \sim 10 \text{ pg/g}$ -wet.

Stocktaking of the detection of cis-chlordane in wildlife (bivalves, fish and birds) FY2002~2012

|               | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequenc |
|---------------|-----------|-----------|--------|---------|---------|----------------------|-------------|----------|
| cis-chlordane | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
|               | 2002      | 730       | 1,200  | 26,000  | 24      | 2.4 [0.8]            | 38/38       | 8/8      |
|               | 2003      | 1,100     | 1,400  | 14,000  | 110     | 3.9 [1.3]            | 30/30       | 6/6      |
|               | 2004      | 1,300     | 1,600  | 14,000  | 91      | 18 [5.8]             | 31/31       | 7/7      |
|               | 2005      | 1,000     | 960    | 13,000  | 78      | 12 [3.9]             | 31/31       | 7/7      |
| D:1           | 2006      | 970       | 1,100  | 18,000  | 67      | 4 [1]                | 31/31       | 7/7      |
| Bivalves      | 2007      | 870       | 590    | 19,000  | 59      | 5 [2]                | 31/31       | 7/7      |
| (pg/g-wet)    | 2008      | 750       | 560    | 11,000  | 85      | 5 [2]                | 31/31       | 7/7      |
|               | 2009      | 1,200     | 1,100  | 16,000  | 83      | 4 [2]                | 31/31       | 7/7      |
|               | 2010      | 1,600     | 2,300  | 15,000  | 67      | 4 [2]                | 6/6         | 6/6      |
|               | 2011      | 790       | 880    | 3,400   | 160     | 3 [1]                | 4/4         | 4/4      |
|               | 2012      | 710       | 500    | 3,500   | 180     | 5 [2]                | 5/5         | 5/5      |
|               | 2002      | 610       | 550    | 6,900   | 57      | 2.4 [0.8]            | 70/70       | 14/14    |
|               | 2003      | 510       | 400    | 4,400   | 43      | 3.9 [1.3]            | 70/70       | 14/14    |
|               | 2004      | 620       | 490    | 9,800   | 68      | 18 [5.8]             | 70/70       | 14/14    |
|               | 2005      | 520       | 600    | 8,000   | 42      | 12 [3.9]             | 80/80       | 16/16    |
| Fish          | 2006      | 520       | 420    | 4,900   | 56      | 4[1]                 | 80/80       | 16/16    |
|               | 2007      | 430       | 360    | 5,200   | 30      | 5 [2]                | 80/80       | 16/16    |
| (pg/g-wet)    | 2008      | 430       | 340    | 3,500   | 36      | 5 [2]                | 85/85       | 17/17    |
|               | 2009      | 430       | 450    | 3,200   | 41      | 4 [2]                | 90/90       | 18/18    |
|               | 2010      | 450       | 630    | 3,400   | 51      | 4 [2]                | 18/18       | 18/18    |
|               | 2011      | 580       | 660    | 3,800   | 79      | 3 [1]                | 18/18       | 18/18    |
|               | 2012      | 580       | 550    | 3,100   | 98      | 5 [2]                | 19/19       | 19/19    |
|               | 2002      | 67        | 180    | 450     | 10      | 2.4 [0.8]            | 10/10       | 2/2      |
|               | 2003      | 47        | 120    | 370     | 6.8     | 3.9 [1.3]            | 10/10       | 2/2      |
|               | 2004      | 39        | 110    | 240     | tr(5.8) | 18 [5.8]             | 10/10       | 2/2      |
|               | 2005      | 53        | 120    | 340     | tr(5.8) | 12 [3.9]             | 10/10       | 2/2      |
| D' 1          | 2006      | 32        | 83     | 250     | Š       | 4[1]                 | 10/10       | 2/2      |
| Birds         | 2007      | 29        | 83     | 230     | tr(4)   | 5 [2]                | 10/10       | 2/2      |
| (pg/g-wet)    | 2008      | 24        | 87     | 280     | tr(3)   | 5 [2]                | 10/10       | 2/2      |
|               | 2009      | 21        | 48     | 130     | 4       | 4 [2]                | 10/10       | 2/2      |
|               | 2010      | 27        |        | 180     | 4       | 4 [2]                | 2/2         | 2/2      |
|               | 2011      |           |        | 6       | 6       | 3 [1]                | 1/1         | 1/1      |
|               | 2012      | 23        |        | 110     | 5       | 5 [2]                | 2/2         | 2/2      |

|                 | Monitored | Geometric |        |         |         | Quantification       | Detection l | Frequency |
|-----------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| trans-chlordane | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                 | 2002      | 390       | 840    | 2,300   | 33      | 2.4 [0.8]            | 38/38       | 8/8       |
|                 | 2003      | 550       | 840    | 2,800   | 69      | 7.2 [2.4]            | 30/30       | 6/6       |
|                 | 2004      | 560       | 770    | 2,800   | 53      | 48 [16]              | 31/31       | 7/7       |
|                 | 2005      | 470       | 660    | 2,400   | 40      | 10 [3.5]             | 31/31       | 7/7       |
| D' 1            | 2006      | 470       | 580    | 2,800   | 41      | 4 [2]                | 31/31       | 7/7       |
| Bivalves        | 2007      | 440       | 460    | 1,500   | 34      | 6 [2]                | 31/31       | 7/7       |
| (pg/g-wet)      | 2008      | 360       | 410    | 1,300   | 52      | 7 [3]                | 31/31       | 7/7       |
|                 | 2009      | 540       | 560    | 16,000  | 48      | 4 [1]                | 31/31       | 7/7       |
|                 | 2010      | 520       | 640    | 5,500   | 31      | 3 [1]                | 6/6         | 6/6       |
|                 | 2011      | 490       | 470    | 2,900   | 150     | 4 [1]                | 4/4         | 4/4       |
|                 | 2012      | 390       | 310    | 1,300   | 140     | 7 [2]                | 5/5         | 5/5       |
|                 | 2002      | 190       | 160    | 2,700   | 20      | 2.4 [0.8]            | 70/70       | 14/14     |
|                 | 2003      | 160       | 120    | 1,800   | 9.6     | 7.2 [2.4]            | 70/70       | 14/14     |
|                 | 2004      | 200       | 130    | 5,200   | tr(17)  | 48 [16]              | 70/70       | 14/14     |
|                 | 2005      | 160       | 180    | 3,100   | tr(9.8) | 10 [3.5]             | 76/80       | 16/16     |
| F:-1.           | 2006      | 150       | 120    | 2,000   | 14      | 4 [2]                | 80/80       | 16/16     |
| Fish            | 2007      | 130       | 100    | 2,100   | 8       | 6 [2]                | 80/80       | 16/16     |
| (pg/g-wet)      | 2008      | 120       | 71     | 1,300   | 14      | 7 [3]                | 85/85       | 17/17     |
|                 | 2009      | 130       | 140    | 1,300   | 10      | 4 [1]                | 90/90       | 18/18     |
|                 | 2010      | 120       | 170    | 1,100   | 9       | 3 [1]                | 18/18       | 18/18     |
|                 | 2011      | 180       | 240    | 1,300   | 20      | 4 [1]                | 18/18       | 18/18     |
|                 | 2012      | 170       | 140    | 1,100   | 19      | 7 [2]                | 19/19       | 19/19     |
|                 | 2002      | 14        | 14     | 26      | 8.9     | 2.4 [0.8]            | 10/10       | 2/2       |
|                 | 2003      | 11        | 12     | 27      | tr(5.9) | 7.2 [2.4]            | 10/10       | 2/2       |
|                 | 2004      | nd        | nd     | tr(26)  | nd      | 48 [16]              | 5/10        | 1/2       |
|                 | 2005      | 11        | 12     | 30      | tr(4.5) | 10 [3.5]             | 10/10       | 2/2       |
| D: 1            | 2006      | 7         | 8      | 17      | tr(3)   | 4 [2]                | 10/10       | 2/2       |
| Birds           | 2007      | 7         | 8      | 19      | tr(3)   | 6 [2]                | 10/10       | 2/2       |
| (pg/g-wet)      | 2008      | tr(5)     | 9      | 27      | nd      | 7 [3]                | 7/10        | 2/2       |
|                 | 2009      | 6         | 7      | 13      | tr(3)   | 4 [1]                | 10/10       | 2/2       |
|                 | 2010      | 4         |        | 10      | tr(2)   | 3 [1]                | 2/2         | 2/2       |
|                 | 2011      |           |        | 5       | Š       | 4 [1]                | 1/1         | 1/1       |
|                 | 2012      | tr(6)     |        | 10      | tr(4)   | 7 [2]                | 2/2         | 2/2       |

(Note) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

### < Air >

cis-chlordane: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of 0.51pg/m³, and the detection range was 2.9 ~ 650 pg/m³. For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 35 of the 36 valid sites adopting the detection limit of 0.51pg/m³, and none of the detected concentrations exceeded 74pg/m³. As results of the inter-annual trend analysis from FY 2003 to FY 2012, reduction tendency in specimens at the warm season and the cold season were identified as statistically significant.

trans-chlordane: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.7 \text{pg/m}^3$ , and the detection range was  $2.8 \sim 780 \text{ pg/m}^3$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 35 of the 36 valid sites adopting the detection limit of  $0.7 \text{pg/m}^3$ , and none of the detected concentrations exceeded 95 pg/m<sup>3</sup>. As results of the inter-annual trend analysis from FY 2003 to FY 2012, reduction tendencies in specimens at the warm season was identified as statistically significant.

Stocktaking of the detection of cis-chlordane and trans-chlordane in air during FY2002~2012

| oia                 |                                                                                                                                                                                                                                                                                                                                                                           | Geometric                                                                       |                                                                                     |                                                                                                |                                                                                                         | Quantification                                                                                                                            | Detection 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Frequency                                                                                                                                                       |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cis-<br>chlordane   | Monitored year                                                                                                                                                                                                                                                                                                                                                            | mean                                                                            | Median                                                                              | Maximum                                                                                        | Minimum                                                                                                 | [Detection]<br>limit                                                                                                                      | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Site                                                                                                                                                            |
|                     | 2002                                                                                                                                                                                                                                                                                                                                                                      | 31                                                                              | 40                                                                                  | 670                                                                                            | 0.86                                                                                                    | 0.60 [0.20]                                                                                                                               | 102/102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34/34                                                                                                                                                           |
|                     | 2003 Warm season                                                                                                                                                                                                                                                                                                                                                          | 110                                                                             | 120                                                                                 | 1,600                                                                                          | 6.4                                                                                                     | 0.51 [0.17]                                                                                                                               | 35/35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35/35                                                                                                                                                           |
|                     | 2003 Cold season                                                                                                                                                                                                                                                                                                                                                          | 30                                                                              | 38                                                                                  | 220                                                                                            | 2.5                                                                                                     | 0.31 [0.17]                                                                                                                               | 34/34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34/34                                                                                                                                                           |
|                     | 2004 Warm season                                                                                                                                                                                                                                                                                                                                                          | 92                                                                              | 160                                                                                 | 1,000                                                                                          | 2.3                                                                                                     | 0.57 [0.19]                                                                                                                               | 37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37/37                                                                                                                                                           |
|                     | 2004 Cold season                                                                                                                                                                                                                                                                                                                                                          | 29                                                                              | 49                                                                                  | 290                                                                                            | 1.2                                                                                                     | 0.37 [0.19]                                                                                                                               | 37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37/37                                                                                                                                                           |
|                     | 2005 Warm season                                                                                                                                                                                                                                                                                                                                                          | 92                                                                              | 120                                                                                 | 1,000                                                                                          | 3.4                                                                                                     | 0.16 [0.054]                                                                                                                              | 37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37/37                                                                                                                                                           |
|                     | 2005 Cold season                                                                                                                                                                                                                                                                                                                                                          | 16                                                                              | 19                                                                                  | 260                                                                                            | 1.4                                                                                                     |                                                                                                                                           | 37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37/37                                                                                                                                                           |
|                     | 2006 Warm season                                                                                                                                                                                                                                                                                                                                                          | 82                                                                              | 110                                                                                 | 760                                                                                            | 2.9                                                                                                     | 0.13 [0.04]                                                                                                                               | 37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37/37                                                                                                                                                           |
|                     | 2006 Cold season                                                                                                                                                                                                                                                                                                                                                          | 19                                                                              | 19                                                                                  | 280                                                                                            | 2.0                                                                                                     | 0.13 [0.04]                                                                                                                               | 37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37/37                                                                                                                                                           |
| Air                 | 2007 Warm season                                                                                                                                                                                                                                                                                                                                                          | 90                                                                              | 120                                                                                 | 1,100                                                                                          | 3.3                                                                                                     | 0.10 [0.04]                                                                                                                               | 36/36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36/36                                                                                                                                                           |
| $(pg/m^3)$          | 2007 Cold season                                                                                                                                                                                                                                                                                                                                                          | 17                                                                              | 20                                                                                  | 230                                                                                            | 1.4                                                                                                     |                                                                                                                                           | 36/36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36/36                                                                                                                                                           |
| (pg/III )           | 2008 Warm season                                                                                                                                                                                                                                                                                                                                                          | 75                                                                              | 120                                                                                 | 790                                                                                            | 1.9                                                                                                     | 0.14 [0.05]                                                                                                                               | 37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37/37                                                                                                                                                           |
|                     | 2008 Cold season                                                                                                                                                                                                                                                                                                                                                          | 21                                                                              | 34                                                                                  | 200                                                                                            | 1.5                                                                                                     |                                                                                                                                           | 37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37/37                                                                                                                                                           |
|                     | 2009 Warm season                                                                                                                                                                                                                                                                                                                                                          | 67                                                                              | 110                                                                                 | 790                                                                                            | 2.7                                                                                                     | 0.16 [0.06]                                                                                                                               | 37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37/37                                                                                                                                                           |
|                     | 2009 Cold season                                                                                                                                                                                                                                                                                                                                                          | 19                                                                              | 22                                                                                  | 180                                                                                            | 0.65                                                                                                    |                                                                                                                                           | 37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37/37                                                                                                                                                           |
|                     | 2010 Warm season                                                                                                                                                                                                                                                                                                                                                          | 68                                                                              | 100                                                                                 | 700                                                                                            | 1.8                                                                                                     | 0.17 [0.06]                                                                                                                               | 37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37/37                                                                                                                                                           |
|                     | 2010 Cold season                                                                                                                                                                                                                                                                                                                                                          | 20                                                                              | 27                                                                                  | 130                                                                                            | 0.84                                                                                                    |                                                                                                                                           | 37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37/37                                                                                                                                                           |
|                     | 2011 Warm season                                                                                                                                                                                                                                                                                                                                                          | 66                                                                              | 95                                                                                  | 700                                                                                            | 1.5                                                                                                     | 1.3 [0.42]                                                                                                                                | 35/35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35/35                                                                                                                                                           |
|                     | 2011 Cold season                                                                                                                                                                                                                                                                                                                                                          | 20                                                                              | 31                                                                                  | 240                                                                                            | tr(0.88)                                                                                                | 1.3 [0. <del>4</del> 2]                                                                                                                   | 37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37/37                                                                                                                                                           |
|                     |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 |                                                                                     |                                                                                                |                                                                                                         |                                                                                                                                           | 26126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36/36                                                                                                                                                           |
|                     | 2012 Warm season                                                                                                                                                                                                                                                                                                                                                          | 61                                                                              | 98                                                                                  | 650                                                                                            | 2.9                                                                                                     | 1.5.[0.51]                                                                                                                                | 36/36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                 |
|                     |                                                                                                                                                                                                                                                                                                                                                                           | 61<br>10                                                                        | 98<br>14                                                                            | 650<br>74                                                                                      | 2.9<br>nd                                                                                               | 1.5 [0.51]                                                                                                                                | 35/36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35/36                                                                                                                                                           |
| trans-              | 2012 Warm season<br>2012 Cold season                                                                                                                                                                                                                                                                                                                                      | 10                                                                              | 14                                                                                  | 74                                                                                             | nd                                                                                                      | Quantification                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35/36                                                                                                                                                           |
| trans-<br>chlordane | 2012 Warm season<br>2012 Cold season<br>Monitored year                                                                                                                                                                                                                                                                                                                    | Geometric mean                                                                  | 14<br>Median                                                                        | 74<br>Maximum                                                                                  | nd<br>Minimum                                                                                           | Quantification<br>[Detection]<br>limit                                                                                                    | 35/36  Detection I Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35/36<br>Frequency<br>Site                                                                                                                                      |
|                     | 2012 Warm season<br>2012 Cold season<br>Monitored year<br>2002                                                                                                                                                                                                                                                                                                            | Geometric mean 36                                                               | 14<br>Median                                                                        | 74<br>Maximum<br>820                                                                           | nd<br>Minimum<br>0.62                                                                                   | Quantification<br>[Detection]                                                                                                             | 35/36 Detection I Sample 102/102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35/36<br>Frequency<br>Site<br>34/34                                                                                                                             |
|                     | 2012 Warm season 2012 Cold season  Monitored year  2002 2003 Warm season                                                                                                                                                                                                                                                                                                  | Geometric mean 36 130                                                           | 14<br>Median<br>48<br>150                                                           | 74<br>Maximum<br>820<br>2,000                                                                  | nd Minimum  0.62 6.5                                                                                    | Quantification [Detection] limit 0.60 [0.20]                                                                                              | 35/36  Detection 1  Sample  102/102  35/35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35/36<br>Frequency<br>Site<br>34/34<br>35/35                                                                                                                    |
|                     | 2012 Warm season<br>2012 Cold season<br>Monitored year<br>2002                                                                                                                                                                                                                                                                                                            | Geometric mean  36 130 37                                                       | 14<br>Median<br>48<br>150<br>44                                                     | 74 Maximum  820 2,000 290                                                                      | nd<br>Minimum<br>0.62                                                                                   | Quantification<br>[Detection]<br>limit                                                                                                    | 35/36 Detection I Sample 102/102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35/36<br>Frequency<br>Site<br>34/34<br>35/35<br>34/34                                                                                                           |
|                     | 2012 Warm season 2012 Cold season  Monitored year  2002 2003 Warm season 2003 Cold season 2004 Warm season                                                                                                                                                                                                                                                                | 10<br>Geometric<br>mean<br>36<br>130<br>37<br>110                               | 14<br>Median<br>48<br>150<br>44<br>190                                              | 74  Maximum  820 2,000 290 1,300                                                               | nd Minimum  0.62 6.5 2.5 2.2                                                                            | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29]                                                                                  | 35/36  Detection 1  Sample  102/102  35/35  34/34  37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35/36<br>Frequency<br>Site<br>34/34<br>35/35<br>34/34<br>37/37                                                                                                  |
|                     | 2012 Warm season 2012 Cold season  Monitored year  2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season                                                                                                                                                                                                                                               | 10 Geometric mean  36 130 37 110 35                                             | 14<br>Median<br>48<br>150<br>44<br>190<br>60                                        | 74  Maximum  820 2,000 290 1,300 360                                                           | nd Minimum  0.62 6.5 2.5 2.2 1.5                                                                        | Quantification [Detection] limit 0.60 [0.20]                                                                                              | 35/36  Detection 1  Sample  102/102  35/35  34/34  37/37  37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35/36<br>Frequency<br>Site<br>34/34<br>35/35<br>34/34<br>37/37<br>37/37                                                                                         |
|                     | 2012 Warm season 2012 Cold season  Monitored year  2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season                                                                                                                                                                                                                              | 10 Geometric mean  36 130 37 110 35 100                                         | 14<br>Median<br>48<br>150<br>44<br>190<br>60<br>130                                 | 74  Maximum  820 2,000 290 1,300 360 1,300                                                     | nd Minimum  0.62 6.5 2.5 2.2 1.5 3.2                                                                    | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23]                                                                      | 35/36  Detection   Sample  102/102  35/35  34/34  37/37  37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35/36<br>Frequency<br>Site<br>34/34<br>35/35<br>34/34<br>37/37<br>37/37<br>37/37                                                                                |
|                     | 2012 Warm season 2012 Cold season  Monitored year  2002  2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season                                                                                                                                                                                                            | 10 Geometric mean  36 130 37 110 35 100 19                                      | 14<br>Median<br>48<br>150<br>44<br>190<br>60<br>130<br>23                           | 74  Maximum  820 2,000 290 1,300 360 1,300 310                                                 | nd Minimum  0.62 6.5 2.5 2.2 1.5 3.2 1.9                                                                | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29]                                                                                  | 35/36  Detection   Sample  102/102  35/35  34/34  37/37  37/37  37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35/36<br>Frequency<br>Site<br>34/34<br>35/35<br>34/34<br>37/37<br>37/37<br>37/37                                                                                |
|                     | 2012 Warm season 2012 Cold season  Monitored year  2002  2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2005 Cold season 2006 Warm season                                                                                                                                                                          | 10 Geometric mean  36 130 37 110 35 100 19 96                                   | 14<br>Median<br>48<br>150<br>44<br>190<br>60<br>130<br>23<br>140                    | 74  Maximum  820 2,000 290 1,300 360 1,300 310 1,200                                           | nd Minimum  0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4                                                            | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14]                                                          | 35/36  Detection   Sample   102/102   35/35   34/34   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37 | 35/36<br>Frequency<br>Site<br>34/34<br>35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37                                                              |
|                     | 2012 Warm season 2012 Cold season  Monitored year  2002  2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season                                                                                                                                                                          | 10 Geometric mean  36 130 37 110 35 100 19                                      | 14<br>Median<br>48<br>150<br>44<br>190<br>60<br>130<br>23                           | 74  Maximum  820 2,000 290 1,300 360 1,300 310 1,200 350                                       | nd Minimum  0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0                                                        | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23]                                                                      | 35/36  Detection   Sample  102/102  35/35  34/34  37/37  37/37  37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35/36 Frequency Site  34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37                                                                                     |
| chlordane           | 2012 Warm season 2012 Cold season  Monitored year  2002  2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2005 Cold season 2006 Warm season                                                                                                                                                                          | 10 Geometric mean  36 130 37 110 35 100 19 96 22 100                            | 14<br>Median<br>48<br>150<br>44<br>190<br>60<br>130<br>23<br>140<br>21<br>140       | 74  Maximum  820 2,000 290 1,300 360 1,300 310 1,200 350 1,300                                 | nd Minimum  0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4                                                            | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06]                                              | 35/36  Detection   Sample   102/102   35/35   34/34   37/37   37/37   37/37   37/37   37/37   37/37   36/36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35/36 Frequency Site  34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36                                                                         |
| chlordane           | 2012 Warm season 2012 Cold season  Monitored year  2002  2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Warm season 2007 Warm season 2007 Warm season                                                                                                                                        | 10 Geometric mean  36 130 37 110 35 100 19 96 22 100 20                         | 14<br>Median<br>48<br>150<br>44<br>190<br>60<br>130<br>23<br>140<br>21<br>140<br>24 | 74  Maximum  820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300                             | nd Minimum  0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5                                                | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14]                                                          | 35/36  Detection   Sample   102/102   35/35   34/34   37/37   37/37   37/37   37/37   37/37   36/36   36/36   36/36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35/36 Frequency Site  34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36                                                                         |
| chlordane           | 2012 Warm season 2012 Cold season  Monitored year  2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Warm season 2007 Warm season 2007 Cold season 2007 Warm season 2008 Warm season                                                                                                       | 10 Geometric mean  36 130 37 110 35 100 19 96 22 100 20 87                      | 14<br>Median  48 150 44 190 60 130 23 140 21 140 24                                 | 74  Maximum  820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990                         | nd  Minimum  0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5                                           | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05]                                  | 35/36  Detection   Sample   102/102   35/35   34/34   37/37   37/37   37/37   37/37   37/37   36/36   36/36   37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35/36 Frequency Site  34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37                                                                   |
| chlordane           | 2012 Warm season 2012 Cold season  Monitored year  2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2007 Warm season 2008 Warm season 2008 Warm season                                                                                                       | 10 Geometric mean  36 130 37 110 35 100 19 96 22 100 20 87 25                   | 14<br>Median  48 150 44 190 60 130 23 140 21 140 24 130 41                          | 74  Maximum  820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990 250                     | nd  Minimum  0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8                                       | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06]                                              | 35/36  Detection   Sample   102/102   35/35   34/34   37/37   37/37   37/37   37/37   36/36   36/36   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37 | 35/36 Frequency Site  34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37                                                                   |
| chlordane           | 2012 Warm season 2012 Cold season  Monitored year  2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Warm season 2007 Warm season 2007 Cold season 2007 Warm season 2008 Warm season                                                                                                       | 10 Geometric mean  36 130 37 110 35 100 19 96 22 100 20 87                      | 14<br>Median  48 150 44 190 60 130 23 140 21 140 24                                 | 74  Maximum  820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990                         | nd  Minimum  0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5                                           | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06]                      | 35/36  Detection   Sample   102/102   35/35   34/34   37/37   37/37   37/37   37/37   37/37   36/36   36/36   37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35/36 Frequency Site  34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37                                                                   |
| chlordane           | 2012 Warm season 2012 Cold season  Monitored year  2002 2003 Warm season 2003 Cold season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Warm season 2009 Cold season                                                                                      | 10 Geometric mean  36 130 37 110 35 100 19 96 22 100 20 87 25 79 23             | 14<br>Median  48 150 44 190 60 130 23 140 21 140 24 130 41 120 30                   | 74  Maximum  820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210             | nd Minimum  0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68                               | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05]                                  | 35/36  Detection   Sample   102/102   35/35   34/34   37/37   37/37   37/37   37/37   36/36   36/36   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37 | 35/36 Frequency Site  34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37                                                 |
| chlordane           | 2012 Warm season 2012 Cold season  Monitored year  2002 2003 Warm season 2003 Cold season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Warm season 2007 Warm season 2008 Warm season 2008 Warm season 2009 Warm season 2009 Cold season 2009 Cold season 2009 Warm season 2009 Cold season                                   | 10 Geometric mean  36 130 37 110 35 100 19 96 22 100 20 87 25 79 23             | 14 Median  48 150 44 190 60 130 23 140 21 140 24 130 41 120 30 120                  | 74  Maximum  820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 990 250 960 210 820             | nd Minimum  0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0                           | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.12 [0.05]                      | 35/36  Detection   Sample   102/102   35/35   34/34   37/37   37/37   37/37   37/37   36/36   36/36   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37   37/37 | 35/36 Frequency Site  34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37                                     |
| chlordane           | 2012 Warm season 2012 Cold season  Monitored year  2002 2003 Warm season 2003 Cold season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Warm season 2007 Warm season 2007 Warm season 2007 Warm season 2008 Warm season 2008 Warm season 2009 Cold season 2009 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season | 10 Geometric mean  36 130 37 110 35 100 19 96 22 100 20 87 25 79 23 79 24       | 14 Median  48 150 44 190 60 130 23 140 21 140 24 130 41 120 30 120 34               | 74  Maximum  820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 990 250 960 210 820 150         | nd Minimum  0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0)                   | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06]                      | 35/36  Detection   Sample  102/102  35/35  34/34  37/37  37/37  37/37  36/36  36/36  37/37  37/37  37/37  37/37  37/37  37/37  37/37  37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35/36 Frequency Site  34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37                               |
| chlordane           | 2012 Warm season 2012 Cold season  Monitored year  2002 2003 Warm season 2003 Cold season 2004 Warm season 2005 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2010 Warm season 2010 Cold season | 10 Geometric mean  36 130 37 110 35 100 19 96 22 100 20 87 25 79 23 79 24 76    | 14 Median  48 150 44 190 60 130 23 140 21 140 24 130 41 120 30 120 34 110           | 74  Maximum  820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 990 250 960 210 820 150 810     | nd  Minimum  0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4)          | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 1.2 [0.05] 1.2 [0.4] | 35/36  Detection   Sample  102/102  35/35  34/34  37/37  37/37  37/37  36/36  36/36  37/37  37/37  37/37  37/37  37/37  37/37  37/37  37/37  37/37  37/37  37/37  37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35/36 Frequency Site  34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37       |
| chlordane           | 2012 Warm season 2012 Cold season  Monitored year  2002 2003 Warm season 2003 Cold season 2004 Warm season 2005 Cold season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2009 Warm season 2010 Cold season 2010 Warm season 2010 Warm season 2011 Warm season 2011 Cold season                  | 10 Geometric mean  36 130 37 110 35 100 19 96 22 100 20 87 25 79 23 79 24 76 24 | 14 Median  48 150 44 190 60 130 23 140 21 140 24 130 41 120 30 120 34 110 37        | 74  Maximum  820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 990 250 960 210 820 150 810 290 | nd  Minimum  0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4) tr(0.70) | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.12 [0.05]                      | 35/36  Detection I Sample  102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35/36 Frequency Site  34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 |
| chlordane           | 2012 Warm season 2012 Cold season  Monitored year  2002 2003 Warm season 2003 Cold season 2004 Warm season 2005 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2010 Warm season 2010 Cold season | 10 Geometric mean  36 130 37 110 35 100 19 96 22 100 20 87 25 79 23 79 24 76    | 14 Median  48 150 44 190 60 130 23 140 21 140 24 130 41 120 30 120 34 110           | 74  Maximum  820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 990 250 960 210 820 150 810     | nd  Minimum  0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4)          | Quantification [Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 1.2 [0.05] 1.2 [0.4] | 35/36  Detection   Sample  102/102  35/35  34/34  37/37  37/37  37/37  36/36  36/36  37/37  37/37  37/37  37/37  37/37  37/37  37/37  37/37  37/37  37/37  37/37  37/37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35/36 Frequency Site  34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37       |

### Oxychlordane, cis-Nonachlor and trans-Nonachlor

#### <Surface Water>

Oxychlordane: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 44 pf the 48 valid sites adopting the detection limit of 0.4pg/L, and none of the detected concentrations exceeded 17 pg/L.

cis-Nonachlor: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of  $0.3 \,\mathrm{pg/L}$ , and the detection range was  $1.1 \sim 58 \,\mathrm{pg/L}$ .

trans-Nonachlor: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.6pg/L, and the detection range was  $7.9 \sim 210$  pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2012, reduction tendencies in specimens from river areas was identified as statistically significant.

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in surface water during FY2002~2012

| 2002~2012       | Monitored         | Geometric          |         |         |         | Quantification       | Detection 1 | Frequency |
|-----------------|-------------------|--------------------|---------|---------|---------|----------------------|-------------|-----------|
| Oxychlordane    | year              | mean*              | Median  | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                 | 2002              | 2.7                | 3.5     | 41      | nd      | 1.2 [0.4]            | 96/114      | 35/38     |
|                 | 2003              | 3                  | 2       | 39      | tr(0.6) | 2 [0.5]              | 36/36       | 36/36     |
|                 | 2004              | 3.2                | 2.9     | 47      | tr(0.7) | 2 [0.5]              | 38/38       | 38/38     |
|                 | 2005              | 2.6                | 2.1     | 19      | nd      | 1.1 [0.4]            | 46/47       | 46/47     |
| C               | 2006              | tr(2.5)            | tr(2.4) | 18      | nd      | 2.8 [0.9]            | 43/48       | 43/48     |
| Surface Water   | 2007              | tr(2)              | nd      | 41      | nd      | 6 [2]                | 25/48       | 25/48     |
| (pg/L)          | 2008              | 1.9                | 1.9     | 14      | nd      | 1.9 [0.7]            | 40/48       | 40/48     |
|                 | 2009              | 2.0                | 1.9     | 19      | nd      | 1.1 [0.4]            | 45/49       | 45/49     |
|                 | 2010              | 1.5                | 1.3     | 45      | nd      | 0.7 [0.3]            | 47/49       | 47/49     |
|                 | 2011              | 1.9                | 1.8     | 34      | nd      | 1.3 [0.5]            | 44/49       | 44/49     |
|                 | 2012              | 2.2                | 2.3     | 17      | nd      | 0.9 [0.4]            | 44/48       | 44/48     |
|                 | M '4 1            | C                  |         |         |         | Quantification       | Detection 1 | Frequency |
| cis-Nonachlor   | Monitored<br>year | Geometric mean*    | Median  | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                 | 2002              | 7.9                | 6.7     | 250     | 0.23    | 1.8 [0.6]            | 114/114     | 38/38     |
|                 | 2003              | 8.0                | 7.0     | 130     | 1.3     | 0.3 [0.1]            | 36/36       | 36/36     |
|                 | 2004              | 7.5                | 6.3     | 340     | 0.8     | 0.6 [0.2]            | 38/38       | 38/38     |
|                 | 2005              | 6.0                | 5.9     | 43      | 0.9     | 0.5 [0.2]            | 47/47       | 47/47     |
| C C W           | 2006              | 6.6                | 5.6     | 83      | 1.0     | 0.8 [0.3]            | 48/48       | 48/48     |
| Surface Water   | 2007              | 5.9                | 6.1     | 210     | nd      | 2.4 [0.8]            | 43/48       | 43/48     |
| (pg/L)          | 2008              | 6.5                | 5.9     | 130     | 0.9     | 0.9 [0.3]            | 48/48       | 48/48     |
|                 | 2009              | 7.1                | 5.5     | 210     | 1.4     | 0.3 [0.1]            | 49/49       | 49/49     |
|                 | 2010              | 5.4                | 3.9     | 40      | tr(0.9) | 1.3 [0.4]            | 49/49       | 49/49     |
|                 | 2011              | 5.0                | 4.3     | 130     | 0.8     | 0.6 [0.2]            | 49/49       | 49/49     |
|                 | 2012              | 6.4                | 5.9     | 58      | 1.1     | 0.8 [0.3]            | 48/48       | 48/48     |
|                 |                   |                    |         |         |         | Quantification       | Detection 1 |           |
| trans-Nonachlor | Monitored<br>year | Geometric<br>mean* | Median  | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                 | 2002              | 30                 | 24      | 780     | 1.8     | 1.2 [0.4]            | 114/114     | 38/38     |
|                 | 2003              | 26                 | 20      | 450     | 4       | 2 [0.5]              | 36/36       | 36/36     |
|                 | 2004              | 25                 | 19      | 1,100   | tr(3)   | 4 [2]                | 38/38       | 38/38     |
|                 | 2005              | 20                 | 17      | 150     | 2.6     | 2.5 [0.84]           | 47/47       | 47/47     |
| C C W           | 2006              | 21                 | 16      | 310     | 3.2     | 3.0 [1.0]            | 48/48       | 48/48     |
| Surface Water   | 2007              | 17                 | 17      | 540     | tr(2)   | 5 [2]                | 48/48       | 48/48     |
| (pg/L)          | 2008              | 18                 | 17      | 340     | 1.9     | 1.6 [0.6]            | 48/48       | 48/48     |
|                 | 2009              | 20                 | 17      | 530     | 2.7     | 1.0 [0.4]            | 49/49       | 49/49     |
|                 | 2010              | 12                 | 11      | 93      | nd      | 8 [3]                | 45/49       | 45/49     |
|                 | 2011              | 15                 | 12      | 480     | 2.6     | 1.3 [0.5]            | 49/49       | 49/49     |
|                 | 2012              | 30                 | 26      | 210     | 7.9     | 1.5 [0.6]            | 48/48       | 48/48     |

(Note) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

#### <Sediment>

Oxychlordane: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 38 of the 63 valid sites adopting the detection limit of 0.7pg/g-dry, and none of the detected concentrations exceeded 75 pg/g-dry. As results of the inter-annual trend analysis from FY 2003 to FY 2012, the second-half period indicated lower concentration than the first-half period in specimens from overall sediments as statistically significant.

cis-Nonachlor: The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 1pg/g-dry, and the detection range was  $tr(1) \sim 4,900 pg/g$ -dry. As results of the inter-annual trend analysis from FY 2002 to FY 2012, reduction tendencies in specimens from river areas, river mouth areas and sea areas were identified as statistically significant.

trans-Nonachlor: The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.8pg/g-dry, and the detection range was 2.5 ~ 10,000 pg/g-dry. As results of the inter-annual trend analysis from FY 2002 to FY 2012, reduction tendencies in specimens from river mouth areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall sediments was also identified as statistically significant.

| Stocktaking of the detection of Oxychlordane. cis-Nonachlor and t | trans-Nonachlor in sediment during FY2002~2012 |
|-------------------------------------------------------------------|------------------------------------------------|

| Oxychlordane           | Monitored<br>year | Geometric<br>mean* | Median  | Maximum | Minimum | Quantification       | Detection 1 | Frequenc |
|------------------------|-------------------|--------------------|---------|---------|---------|----------------------|-------------|----------|
|                        |                   |                    |         |         |         | [Detection]<br>limit | Sample      | Site     |
| Sediment<br>(pg/g-dry) | 2002              | 2.7                | 1.7     | 120     | nd      | 1.5 [0.5]            | 153/189     | 59/63    |
|                        | 2003              | 2                  | 2       | 85      | nd      | 1 [0.4]              | 158/186     | 57/62    |
|                        | 2004              | tr(2.1)            | tr(1.3) | 140     | nd      | 3 [0.8]              | 129/189     | 54/63    |
|                        | 2005              | 2.3                | tr(1.9) | 160     | nd      | 2.0 [0.7]            | 133/189     | 51/63    |
|                        | 2006              | tr(2.5)            | tr(1.7) | 280     | nd      | 2.9 [1.0]            | 141/192     | 54/64    |
|                        | 2007              | tr(2.1)            | tr(1.5) | 76      | nd      | 2.5 [0.9]            | 117/192     | 46/64    |
|                        | 2008              | tr(2)              | tr(1)   | 340     | nd      | 3 [1]                | 110/192     | 48/64    |
|                        | 2009              | 2                  | tr(1)   | 150     | nd      | 2 [1]                | 97/192      | 45/64    |
|                        | 2010              | 1.7                | 1.2     | 60      | nd      | 1.0 [0.4]            | 56/64       | 56/64    |
|                        | 2011              | tr(1.6)            | tr(1.2) | 83      | nd      | 2.2 [0.9]            | 36/64       | 36/64    |
|                        | 2012              | tr(1.4)            | tr(1.0) | 75      | nd      | 1.7 [0.7]            | 38/63       | 38/63    |
| cis-Nonachlor          | Monitored<br>year | Geometric mean*    | Median  | Maximum | Minimum | Quantification       | Detection 1 | Frequenc |
|                        |                   |                    |         |         |         | [Detection]<br>limit | Sample      | Site     |
| Sediment<br>(pg/g-dry) | 2002              | 76                 | 66      | 7,800   | nd      | 2.1 [0.7]            | 188/189     | 63/63    |
|                        | 2003              | 66                 | 50      | 6,500   | nd      | 3 [0.9]              | 184/186     | 62/62    |
|                        | 2004              | 53                 | 34      | 9,400   | tr(0.8) | 2 [0.6]              | 189/189     | 63/63    |
|                        | 2005              | 56                 | 42      | 9,900   | tr(1.1) | 1.9 [0.64]           | 189/189     | 63/63    |
|                        | 2006              | 58                 | 48      | 5,800   | tr(0.6) | 1.2 [0.4]            | 192/192     | 64/64    |
|                        | 2007              | 48                 | 35      | 4,200   | nd      | 1.6 [0.6]            | 191/192     | 64/64    |
|                        | 2008              | 57                 | 42      | 5,100   | 1.1     | 0.6 [0.2]            | 192/192     | 64/64    |
|                        | 2009              | 53                 | 38      | 4,700   | 1.4     | 1.0 [0.4]            | 192/192     | 64/64    |
|                        | 2010              | 53                 | 45      | 3,600   | 2.3     | 0.9 [0.3]            | 64/64       | 64/64    |
|                        | 2011              | 41                 | 38      | 2,900   | nd      | 1.1 [0.4]            | 63/64       | 63/64    |
|                        | 2012              | 44                 | 35      | 4,900   | tr(1)   | 3 [1]                | 63/63       | 63/63    |

|                 | Monitored | Geometric |        |         |         | Quantification       | Detection l | Frequency |
|-----------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| trans-Nonachlor | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                 | 2002      | 130       | 83     | 13,000  | 3.1     | 1.5 [0.5]            | 189/189     | 63/63     |
|                 | 2003      | 110       | 78     | 11,000  | 2       | 2 [0.6]              | 186/186     | 62/62     |
|                 | 2004      | 94        | 63     | 23,000  | 3       | 2 [0.6]              | 189/189     | 63/63     |
|                 | 2005      | 99        | 72     | 24,000  | 2.4     | 1.5 [0.54]           | 189/189     | 63/63     |
| G 1' 4          | 2006      | 100       | 65     | 10,000  | 3.4     | 1.2 [0.4]            | 192/192     | 64/64     |
| Sediment        | 2007      | 78        | 55     | 8,400   | tr(1.6) | 1.7 [0.6]            | 192/192     | 64/64     |
| (pg/g-dry)      | 2008      | 91        | 53     | 8,400   | tr(1.6) | 2.2 [0.8]            | 192/192     | 64/64     |
|                 | 2009      | 85        | 58     | 7,800   | 2.0     | 0.9 [0.3]            | 192/192     | 64/64     |
|                 | 2010      | 80        | 65     | 6,200   | tr(3)   | 6 [2]                | 64/64       | 64/64     |
|                 | 2011      | 68        | 52     | 4,500   | 1.7     | 0.8 [0.3]            | 64/64       | 64/64     |
|                 | 2012      | 69        | 62     | 10,000  | 2.5     | 2.4 [0.8]            | 63/63       | 63/63     |

(Note) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

### < Wildlife >

Oxychlordane: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was  $12 \sim 450$  pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was  $28 \sim 390$  pg/g-wet. For birds, the presence of the substance was monitored in 2 area, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was  $170 \sim 360$  pg/g-wet.

cis-Nonachlor: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was  $52 \sim 670$  pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was  $33 \sim 2,200$  pg/g-wet. For birds, the presence of the substance was monitored in 2 area, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was  $56 \sim 100$  pg/g-wet.

trans-Nonachlor: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was  $190 \sim 1,800 \text{ pg/g}$ -wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was  $140 \sim 4,200 \text{ pg/g}$ -wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was  $270 \sim 480 \text{ pg/g}$ -wet.

Stocktaking of the detection of Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor in wildlife (bivalves, fish and birds) during FY2002~2012

|              | Monitored | Geometric |        |         |         | Quantification       | Detection l | Frequency |
|--------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| Oxychlordane | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|              | 2002      | 71        | 83     | 5,600   | nd      | 3.6 [1.2]            | 37/38       | 8/8       |
|              | 2003      | 93        | 62     | 1,900   | 11      | 8.4 [2.8]            | 30/30       | 6/6       |
|              | 2004      | 110       | 100    | 1,700   | 14      | 9.2 [3.1]            | 31/31       | 7/7       |
|              | 2005      | 99        | 79     | 1,400   | 12      | 9.3 [3.1]            | 31/31       | 7/7       |
| Bivalves     | 2006      | 91        | 90     | 2,400   | 7       | 7 [3]                | 31/31       | 7/7       |
| (pg/g-wet)   | 2007      | 70        | 43     | 2,200   | 8       | 6 [2]                | 31/31       | 7/7       |
| (pg/g-wei)   | 2008      | 64        | 55     | 1,100   | 7       | 7 [2]                | 31/31       | 7/7       |
|              | 2009      | 100       | 89     | 820     | 10      | 4 [1]                | 31/31       | 7/7       |
|              | 2010      | 240       | 390    | 3,300   | 11      | 8 [3]                | 6/6         | 6/6       |
|              | 2011      | 68        | 100    | 260     | 8       | 3 [1]                | 4/4         | 4/4       |
|              | 2012      | 66        | 80     | 450     | 12      | 3 [1]                | 5/5         | 5/5       |
|              | 2002      | 170       | 140    | 3,900   | 16      | 3.6 [1.2]            | 70/70       | 14/14     |
|              | 2003      | 150       | 160    | 820     | 30      | 8.4 [2.8]            | 70/70       | 14/14     |
|              | 2004      | 160       | 140    | 1,500   | 25      | 9.2 [3.1]            | 70/70       | 14/14     |
|              | 2005      | 150       | 150    | 1,900   | 20      | 9.3 [3.1]            | 80/80       | 16/16     |
| Fish         | 2006      | 150       | 120    | 3,000   | 28      | 7 [3]                | 80/80       | 16/16     |
| (pg/g-wet)   | 2007      | 120       | 100    | 1,900   | 17      | 6 [2]                | 80/80       | 16/16     |
| (pg/g-wet)   | 2008      | 130       | 130    | 2,200   | 15      | 7 [2]                | 85/85       | 17/17     |
|              | 2009      | 120       | 99     | 2,400   | 23      | 4 [1]                | 90/90       | 18/18     |
|              | 2010      | 120       | 140    | 1,000   | 33      | 8 [3]                | 18/18       | 18/18     |
|              | 2011      | 140       | 130    | 2,300   | 33      | 3 [1]                | 18/18       | 18/18     |
|              | 2012      | 140       | 180    | 390     | 28      | 3 [1]                | 19/19       | 19/19     |
|              | 2002      | 640       | 630    | 890     | 470     | 3.6 [1.2]            | 10/10       | 2/2       |
|              | 2003      | 760       | 700    | 1,300   | 610     | 8.4 [2.8]            | 10/10       | 2/2       |
|              | 2004      | 460       | 450    | 730     | 320     | 9.2 [3.1]            | 10/10       | 2/2       |
|              | 2005      | 610       | 660    | 860     | 390     | 9.3 [3.1]            | 10/10       | 2/2       |
| Birds        | 2006      | 510       | 560    | 720     | 270     | 7 [3]                | 10/10       | 2/2       |
| (pg/g-wet)   | 2007      | 440       | 400    | 740     | 290     | 6 [2]                | 10/10       | 2/2       |
| (pg/g-wet)   | 2008      | 560       | 530    | 960     | 290     | 7 [2]                | 10/10       | 2/2       |
|              | 2009      | 300       | 290    | 540     | 190     | 4 [1]                | 10/10       | 2/2       |
|              | 2010      | 400       |        | 510     | 320     | 8 [3]                | 2/2         | 2/2       |
|              | 2011      |           |        | 590     | 590     | 3 [1]                | 1/1         | 1/1       |
|              | 2012      | 250       |        | 360     | 170     | 3 [1]                | 2/2         | 2/2       |

| cis-Nonachlor                        | Monitored<br>year                                                                                                                                                                                                                  | Geometric<br>mean*                                                                                                                                        | Median                                                                                                                       | Maximum                                                                                                                                                                                      | Minimum                                                                                                                 | Quantification [Detection]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Detection l<br>Sample                                                                                                                                                                                                                | Frequen<br>Site                                                                                                                                      |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | -                                                                                                                                                                                                                                  |                                                                                                                                                           |                                                                                                                              | ~                                                                                                                                                                                            |                                                                                                                         | limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                                                                                                                                      |
|                                      | 2002                                                                                                                                                                                                                               | 170                                                                                                                                                       | 300                                                                                                                          | 870                                                                                                                                                                                          | 8.6                                                                                                                     | 1.2 [0.4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38/38                                                                                                                                                                                                                                | 8/8                                                                                                                                                  |
|                                      | 2003                                                                                                                                                                                                                               | 290                                                                                                                                                       | 260                                                                                                                          | 1,800                                                                                                                                                                                        | 48                                                                                                                      | 4.8 [1.6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30/30                                                                                                                                                                                                                                | 6/6                                                                                                                                                  |
|                                      | 2004                                                                                                                                                                                                                               | 320                                                                                                                                                       | 380                                                                                                                          | 1,800                                                                                                                                                                                        | 43                                                                                                                      | 3.4 [1.1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31/31                                                                                                                                                                                                                                | 7/7                                                                                                                                                  |
|                                      | 2005                                                                                                                                                                                                                               | 270                                                                                                                                                       | 220                                                                                                                          | 1,300                                                                                                                                                                                        | 27                                                                                                                      | 4.5 [1.5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31/31                                                                                                                                                                                                                                | 7/7                                                                                                                                                  |
| Bivalves                             | 2006                                                                                                                                                                                                                               | 270                                                                                                                                                       | 180                                                                                                                          | 1,500                                                                                                                                                                                        | 31                                                                                                                      | 3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31/31                                                                                                                                                                                                                                | 7/7                                                                                                                                                  |
| (pg/g-wet)                           | 2007                                                                                                                                                                                                                               | 250                                                                                                                                                       | 250                                                                                                                          | 1,000                                                                                                                                                                                        | 26                                                                                                                      | 3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31/31                                                                                                                                                                                                                                | 7/7                                                                                                                                                  |
| 400                                  | 2008                                                                                                                                                                                                                               | 210<br>300                                                                                                                                                | 210<br>310                                                                                                                   | 780                                                                                                                                                                                          | 33<br>31                                                                                                                | 4 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31/31                                                                                                                                                                                                                                | 7/7<br>7/7                                                                                                                                           |
|                                      | 2009<br>2010                                                                                                                                                                                                                       | 280                                                                                                                                                       | 310                                                                                                                          | 10,000<br>1,300                                                                                                                                                                              | 35                                                                                                                      | 3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31/31<br>6/6                                                                                                                                                                                                                         | 6/6                                                                                                                                                  |
|                                      | 2010                                                                                                                                                                                                                               | 250                                                                                                                                                       | 280                                                                                                                          |                                                                                                                                                                                              | 33<br>77                                                                                                                | 3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4/4                                                                                                                                                                                                                                  | 4/4                                                                                                                                                  |
|                                      | 2011                                                                                                                                                                                                                               | 200                                                                                                                                                       | 190                                                                                                                          | 1,300<br>670                                                                                                                                                                                 | 52                                                                                                                      | 1.8 [0.7]<br>2 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5/5                                                                                                                                                                                                                                  | 5/5                                                                                                                                                  |
|                                      | 2002                                                                                                                                                                                                                               | 460                                                                                                                                                       | 420                                                                                                                          |                                                                                                                                                                                              |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70/70                                                                                                                                                                                                                                | 14/14                                                                                                                                                |
|                                      |                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                                                              | 5,100                                                                                                                                                                                        | 46                                                                                                                      | 1.2 [0.4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                      | 14/14                                                                                                                                                |
|                                      | 2003<br>2004                                                                                                                                                                                                                       | 360<br>430                                                                                                                                                | 360<br>310                                                                                                                   | 2,600                                                                                                                                                                                        | 19<br>48                                                                                                                | 4.8 [1.6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70/70<br>70/70                                                                                                                                                                                                                       | 14/14                                                                                                                                                |
|                                      | 2004                                                                                                                                                                                                                               | 380                                                                                                                                                       | 360                                                                                                                          | 10,000                                                                                                                                                                                       | 46<br>27                                                                                                                | 3.4 [1.1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                      |                                                                                                                                                      |
|                                      | 2003                                                                                                                                                                                                                               | 370                                                                                                                                                       | 330                                                                                                                          | 6,200<br>3,300                                                                                                                                                                               | 33                                                                                                                      | 4.5 [1.5]<br>3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80/80<br>80/80                                                                                                                                                                                                                       | 16/16<br>16/16                                                                                                                                       |
| Fish                                 | 2006                                                                                                                                                                                                                               | 370                                                                                                                                                       |                                                                                                                              |                                                                                                                                                                                              |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80/80                                                                                                                                                                                                                                | 16/10                                                                                                                                                |
| (pg/g-wet)                           | 2007                                                                                                                                                                                                                               | 350                                                                                                                                                       | 280<br>300                                                                                                                   | 3,700<br>3,200                                                                                                                                                                               | 16<br>46                                                                                                                | 3 [1]<br>4 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85/85                                                                                                                                                                                                                                | 17/1                                                                                                                                                 |
| 400                                  |                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                                                              |                                                                                                                                                                                              |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                                      |
|                                      | 2009                                                                                                                                                                                                                               | 340<br>320                                                                                                                                                | 340                                                                                                                          | 2,600                                                                                                                                                                                        | 27<br>23                                                                                                                | 3 [1]<br>3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90/90                                                                                                                                                                                                                                | 18/13                                                                                                                                                |
|                                      | 2010<br>2011                                                                                                                                                                                                                       | 320<br>440                                                                                                                                                | 370<br>450                                                                                                                   | 2,200<br>2,900                                                                                                                                                                               | 23<br>45                                                                                                                | 3 [1]<br>1.8 [0.7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18/18<br>18/18                                                                                                                                                                                                                       | 18/13<br>18/13                                                                                                                                       |
|                                      | 2011                                                                                                                                                                                                                               |                                                                                                                                                           |                                                                                                                              |                                                                                                                                                                                              |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                                      |
|                                      |                                                                                                                                                                                                                                    | 420                                                                                                                                                       | 450                                                                                                                          | 2,200                                                                                                                                                                                        | 33                                                                                                                      | 2[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19/19                                                                                                                                                                                                                                | 19/1                                                                                                                                                 |
|                                      | 2002                                                                                                                                                                                                                               | 200                                                                                                                                                       | 240                                                                                                                          | 450                                                                                                                                                                                          | 68                                                                                                                      | 1.2 [0.4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/10                                                                                                                                                                                                                                | 2/2                                                                                                                                                  |
|                                      | 2003                                                                                                                                                                                                                               | 200                                                                                                                                                       | 260                                                                                                                          | 660                                                                                                                                                                                          | 68                                                                                                                      | 4.8 [1.6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/10                                                                                                                                                                                                                                | 2/2                                                                                                                                                  |
|                                      | 2004                                                                                                                                                                                                                               | 140                                                                                                                                                       | 150                                                                                                                          | 240                                                                                                                                                                                          | 73                                                                                                                      | 3.4 [1.1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/10                                                                                                                                                                                                                                | 2/2                                                                                                                                                  |
|                                      | 2005                                                                                                                                                                                                                               | 160                                                                                                                                                       | 180                                                                                                                          | 370                                                                                                                                                                                          | 86                                                                                                                      | 4.5 [1.5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/10                                                                                                                                                                                                                                | 2/2                                                                                                                                                  |
| Birds                                | 2006                                                                                                                                                                                                                               | 120                                                                                                                                                       | 130                                                                                                                          | 270                                                                                                                                                                                          | 60                                                                                                                      | 3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/10                                                                                                                                                                                                                                | 2/2                                                                                                                                                  |
| (pg/g-wet)                           | 2007                                                                                                                                                                                                                               | 130                                                                                                                                                       | 140                                                                                                                          | 300                                                                                                                                                                                          | 42                                                                                                                      | 3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/10                                                                                                                                                                                                                                | 2/2                                                                                                                                                  |
| (188)                                | 2008                                                                                                                                                                                                                               | 140                                                                                                                                                       | 150                                                                                                                          | 410                                                                                                                                                                                          | 37                                                                                                                      | 4 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/10                                                                                                                                                                                                                                | 2/2                                                                                                                                                  |
|                                      | 2009                                                                                                                                                                                                                               | 81                                                                                                                                                        | 85                                                                                                                           | 160                                                                                                                                                                                          | 44                                                                                                                      | 3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/10                                                                                                                                                                                                                                | 2/2                                                                                                                                                  |
|                                      | 2010                                                                                                                                                                                                                               | 100                                                                                                                                                       |                                                                                                                              | 190                                                                                                                                                                                          | 57                                                                                                                      | 3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/2                                                                                                                                                                                                                                  | 2/2                                                                                                                                                  |
|                                      | 2011                                                                                                                                                                                                                               |                                                                                                                                                           |                                                                                                                              | 76                                                                                                                                                                                           | 76                                                                                                                      | 1.8 [0.7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/1                                                                                                                                                                                                                                  | 1/1                                                                                                                                                  |
|                                      |                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                                                              |                                                                                                                                                                                              |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                                      |
|                                      | 2012                                                                                                                                                                                                                               | 75                                                                                                                                                        |                                                                                                                              | 100                                                                                                                                                                                          | 56                                                                                                                      | 2 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/2                                                                                                                                                                                                                                  | 2/2                                                                                                                                                  |
|                                      | 2012                                                                                                                                                                                                                               | 75                                                                                                                                                        |                                                                                                                              | 100                                                                                                                                                                                          | 56                                                                                                                      | 2 [1]  Quantification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      | 2/2                                                                                                                                                  |
| trans-Nonachlor                      | 2012<br>Monitored                                                                                                                                                                                                                  | 75<br>Geometric                                                                                                                                           |                                                                                                                              |                                                                                                                                                                                              |                                                                                                                         | 2 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/2<br>Detection l                                                                                                                                                                                                                   | 2/2<br>Frequen                                                                                                                                       |
| trans-Nonachlor                      | 2012<br>Monitored<br>year                                                                                                                                                                                                          | 75<br>Geometric<br>mean*                                                                                                                                  | Median                                                                                                                       | 100<br>Maximum                                                                                                                                                                               | 56<br>Minimum                                                                                                           | 2 [1] Quantification [Detection] limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/2 Detection l Sample                                                                                                                                                                                                               | 2/2<br>Frequer<br>Site                                                                                                                               |
| trans-Nonachlor                      | Monitored<br>year<br>2002                                                                                                                                                                                                          | 75 Geometric mean* 450                                                                                                                                    | Median 1,100                                                                                                                 | 100<br>Maximum<br>1,800                                                                                                                                                                      | 56<br>Minimum                                                                                                           | 2 [1] Quantification [Detection] limit 2.4 [0.8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/2 Detection I Sample 38/38                                                                                                                                                                                                         | 2/2<br>Frequer<br>Site                                                                                                                               |
| trans-Nonachlor                      | Monitored<br>year<br>2002<br>2003                                                                                                                                                                                                  | 75 Geometric mean* 450 800                                                                                                                                | Median 1,100 700                                                                                                             | 100<br>Maximum<br>1,800<br>3,800                                                                                                                                                             | 56<br>Minimum<br>21<br>140                                                                                              | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2/2 Detection I Sample  38/38 30/30                                                                                                                                                                                                  | 2/2<br>Frequer<br>Site<br>8/8<br>6/6                                                                                                                 |
| trans-Nonachlor                      | 2012<br>Monitored<br>year<br>2002<br>2003<br>2004                                                                                                                                                                                  | 75 Geometric mean* 450 800 780                                                                                                                            | <br>Median<br>1,100<br>700<br>870                                                                                            | 100<br>Maximum<br>1,800<br>3,800<br>3,400                                                                                                                                                    | 56<br>Minimum<br>21<br>140<br>110                                                                                       | 2 [1]  Quantification [Detection] limit  2.4 [0.8] 3.6 [1.2] 13 [4.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/2 Detection I Sample  38/38 30/30 31/31                                                                                                                                                                                            | 2/2<br>Frequen<br>Site<br>8/8<br>6/6<br>7/7                                                                                                          |
| trans-Nonachlor                      | 2012<br>Monitored<br>year<br>2002<br>2003<br>2004<br>2005                                                                                                                                                                          | 75 Geometric mean* 450 800 780 700                                                                                                                        | 1,100<br>700<br>870<br>650                                                                                                   | 100<br>Maximum<br>1,800<br>3,800<br>3,400<br>3,400                                                                                                                                           | 56<br>Minimum<br>21<br>140<br>110<br>72                                                                                 | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2/2  Detection I  Sample  38/38 30/30 31/31 31/31                                                                                                                                                                                    | 2/2<br>Frequen<br>Site<br>8/8<br>6/6<br>7/7<br>7/7                                                                                                   |
|                                      | 2012<br>Monitored<br>year<br>2002<br>2003<br>2004<br>2005<br>2006                                                                                                                                                                  | 75 Geometric mean* 450 800 780 700 660                                                                                                                    | 1,100<br>700<br>870<br>650<br>610                                                                                            | 100<br>Maximum<br>1,800<br>3,800<br>3,400<br>3,400<br>3,200                                                                                                                                  | 56<br>Minimum<br>21<br>140<br>110<br>72<br>85                                                                           | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/2  Detection I  Sample  38/38 30/30 31/31 31/31 31/31                                                                                                                                                                              | 2/2<br>Frequent<br>Site<br>8/8<br>6/6<br>7/7<br>7/7<br>7/7                                                                                           |
| Bivalves                             | 2012<br>Monitored<br>year<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007                                                                                                                                                          | 75 Geometric mean* 450 800 780 700 660 640                                                                                                                | 1,100<br>700<br>870<br>650<br>610<br>610                                                                                     | 100  Maximum  1,800 3,800 3,400 3,400 3,200 2,400                                                                                                                                            | 56 Minimum  21 140 110 72 85 71                                                                                         | 2 [1]  Quantification [Detection] limit  2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2/2  Detection I  Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31                                                                                                                                                                  | 2/2<br>Frequer<br>Site<br>8/8<br>6/6<br>7/7<br>7/7<br>7/7                                                                                            |
|                                      | 2012<br>Monitored<br>year<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008                                                                                                                                                  | 75 Geometric mean* 450 800 780 700 660 640 510                                                                                                            | 1,100<br>700<br>870<br>650<br>610<br>610<br>510                                                                              | 100  Maximum  1,800 3,800 3,400 3,400 3,200 2,400 2,000                                                                                                                                      | 56<br>Minimum<br>21<br>140<br>110<br>72<br>85<br>71<br>94                                                               | 2 [1]  Quantification [Detection] limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/2  Detection I  Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31                                                                                                                                                            | 2/2<br>Frequer<br>Site<br>8/8<br>6/6<br>7/7<br>7/7<br>7/7<br>7/7                                                                                     |
| Bivalves                             | 2012<br>Monitored<br>year<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009                                                                                                                                          | 75 Geometric mean* 450 800 780 700 660 640 510 780                                                                                                        | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680                                                                       | 100  Maximum  1,800 3,800 3,400 3,400 3,200 2,400 2,000 33,000                                                                                                                               | 56 Minimum  21 140 110 72 85 71 94 79                                                                                   | 2 [1]  Quantification [Detection] limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2/2  Detection I  Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31                                                                                                                                                            | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7                                                                                                    |
| Bivalves                             | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010                                                                                                                                                                 | 75 Geometric mean*  450 800 780 700 660 640 510 780 790                                                                                                   | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680<br>870                                                                | 100  Maximum  1,800 3,800 3,400 3,400 3,200 2,400 2,000 33,000 6,000                                                                                                                         | 56 Minimum  21 140 110 72 85 71 94 79 84                                                                                | 2 [1]  Quantification [Detection] limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/2  Detection I  Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6                                                                                                                                                              | 2/2<br>Frequer<br>Site<br>8/8<br>6/6<br>7/7<br>7/7<br>7/7<br>7/7<br>7/7<br>7/7<br>6/6                                                                |
| Bivalves                             | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011                                                                                                                                                            | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640                                                                                               | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680<br>870<br>680                                                         | 1,800<br>3,800<br>3,400<br>3,400<br>3,200<br>2,400<br>2,000<br>33,000<br>6,000<br>3,000                                                                                                      | 56 Minimum  21 140 110 72 85 71 94 79 84 200                                                                            | 2 [1]  Quantification [Detection] limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/2  Detection I  Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4                                                                                                                                                          | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4                                                                                            |
| Bivalves                             | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012                                                                                                                                                       | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640 530                                                                                           | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680<br>870<br>680<br>400                                                  | 1,800<br>3,800<br>3,400<br>3,400<br>3,200<br>2,400<br>2,000<br>33,000<br>6,000<br>3,000<br>1,800                                                                                             | 56 Minimum  21 140 110 72 85 71 94 79 84 200 190                                                                        | 2 [1]  Quantification [Detection] limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2/2  Detection I  Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5                                                                                                                                                      | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5                                                                                            |
| Bivalves                             | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002                                                                                                                                                  | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640 530 1,000                                                                                     | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680<br>870<br>680<br>400                                                  | 100  Maximum  1,800 3,800 3,400 3,400 3,200 2,400 2,000 33,000 6,000 3,000 1,800 8,300                                                                                                       | 56 Minimum  21 140 110 72 85 71 94 79 84 200 190 98                                                                     | 2 [1]  Quantification [Detection] limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2/2  Detection I  Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5  70/70                                                                                                                                               | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5                                                                                            |
| Bivalves                             | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003                                                                                                                                             | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640 530 1,000 920                                                                                 | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680<br>870<br>680<br>400<br>900<br>840                                    | 100  Maximum  1,800 3,800 3,400 3,400 3,200 2,400 2,000 33,000 6,000 3,000 1,800 8,300 5,800                                                                                                 | 56 Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85                                                                  | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/2  Detection I  Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5  70/70 70/70                                                                                                                                         | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1 14/1                                                                                  |
| Bivalves                             | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004                                                                                                                                        | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640 530 1,000 920 1,100                                                                           | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680<br>870<br>680<br>400<br>900<br>840<br>760                             | 100  Maximum  1,800 3,800 3,400 3,400 3,200 2,400 2,000 33,000 6,000 3,000 1,800 8,300 5,800 21,000                                                                                          | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140                                                             | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2/2  Detection I  Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 70/70 70/70 70/70                                                                                                                                    | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1 14/1                                                                                  |
| Bivalves                             | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005                                                                                                                                   | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970                                                                       | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680<br>870<br>680<br>400<br>900<br>840<br>760<br>750                      | 100  Maximum  1,800 3,800 3,400 3,400 2,400 2,000 33,000 6,000 3,000 1,800 8,300 21,000 13,000                                                                                               | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80                                                          | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2/2  Detection I  Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 70/70 70/70 70/70 80/80                                                                                                                              | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1 14/1 16/1                                                                             |
| Bivalves<br>(pg/g-wet)               | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006                                                                                                                              | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640 530  1,000 920 1,100 970 940                                                                  | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680<br>870<br>680<br>400<br>900<br>840<br>760<br>750<br>680               | 100  Maximum  1,800 3,800 3,400 3,400 3,200 2,400 2,000 33,000 6,000 3,000 1,800 8,300 5,800 21,000 13,000 6,900                                                                             | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120                                                      | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 70/70 70/70 70/70 80/80 80/80                                                                                                                         | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1 14/1 16/1 16/1                                                                        |
| Bivalves<br>(pg/g-wet)               | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007                                                                                                                         | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970 940 800                                                               | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680<br>870<br>680<br>400<br>900<br>840<br>760<br>750<br>680<br>680        | 100  Maximum  1,800 3,800 3,400 3,400 2,400 2,000 33,000 6,000 3,000 1,800 5,800 21,000 13,000 6,900 7,900                                                                                   | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71                                                   | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80                                                                                                             | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1 14/1 16/1 16/1 16/1                                                               |
| Bivalves<br>(pg/g-wet)               | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008                                                                                                                    | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970 940 800 860                                                           | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680<br>870<br>680<br>400<br>900<br>840<br>750<br>680<br>680<br>750        | 100  Maximum  1,800 3,800 3,400 3,400 2,400 2,000 33,000 6,000 3,000 1,800 8,300 5,800 21,000 13,000 6,900 7,900 6,900                                                                       | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87                                                | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85                                                                                                       | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1- 14/1- 16/1- 16/1- 16/1-                                                              |
| Bivalves<br>(pg/g-wet)               | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009                                                                                                               | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970 940 800 860 810                                                       | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680<br>870<br>680<br>400<br>900<br>840<br>760<br>750<br>680<br>680        | 100  Maximum  1,800 3,800 3,400 3,400 2,400 2,000 33,000 6,000 3,000 1,800 5,800 21,000 13,000 6,900 7,900                                                                                   | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87 68                                             | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]                                                                                                                                                                                                                                                                                                                                                              | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80                                                                                                             | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1- 14/1- 16/1- 16/1- 17/1 18/1-                                                         |
| Bivalves<br>(pg/g-wet)               | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012                                                                                                | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970 940 800 860 810 800                                                   | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680<br>870<br>680<br>400<br>900<br>840<br>750<br>680<br>680<br>750<br>720 | 100  Maximum  1,800 3,800 3,400 3,400 2,400 2,000 33,000 6,000 3,000 1,800 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700                                                           | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87 68 110                                         | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]                                                                                                                                                                                                                                                                                                                                                       | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85                                                                                                       | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1- 14/1- 16/1- 16/1- 17/1 18/1-                                                         |
| Bivalves<br>(pg/g-wet)               | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012                                                                                                | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970 940 800 860 810                                                       | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680<br>870<br>680<br>400<br>900<br>840<br>750<br>680<br>680<br>750<br>720 | 100  Maximum  1,800 3,800 3,400 3,400 2,400 2,000 33,000 6,000 3,000 1,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000                                                                 | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87 68                                             | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]                                                                                                                                                                                                                                                                                                                                                              | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5  70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 18/18                                                                              | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1- 14/1- 16/1- 16/1- 18/1: 18/1:                                                    |
| Bivalves<br>(pg/g-wet)               | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012                                                                                                | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970 940 800 860 810 800                                                   | 1,100<br>700<br>870<br>650<br>610<br>610<br>510<br>680<br>870<br>680<br>400<br>900<br>840<br>750<br>680<br>680<br>750<br>720 | 100  Maximum  1,800 3,800 3,400 3,400 2,400 2,000 33,000 6,000 3,000 1,800 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700                                                           | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87 68 110                                         | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]                                                                                                                                                                                                                                                                                                                                                       | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5  70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18                                                                                          | 2/2 Frequen Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1- 14/1- 16/1- 16/1- 16/1- 18/1- 18/1- 18/1-                                        |
| Bivalves<br>(pg/g-wet)               | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012                                                                                                | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970 940 800 860 810 800 1,100 1,100                                       | 1,100 700 870 650 610 610 510 680 870 680 400 900 840 750 680 680 750 720 1,000 1,300                                        | 100  Maximum  1,800 3,800 3,400 3,400 2,400 2,000 33,000 6,000 3,000 1,800 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000 4,200                                               | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87 68 110 190 140                                 | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [1]                                                                                                                                                                                                                                                                                                                                  | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5  70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 18/18 19/19                                                                        | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1- 14/1- 16/1- 16/1- 16/1- 18/1- 18/1- 18/1- 18/1- 18/1- 19/1-                      |
| Bivalves<br>(pg/g-wet)               | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2022 203                                                                                       | 75 Geometric mean*  450 800 780 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970 940 800 860 810 800 1,100 1,100 890                               | Median  1,100 700 870 650 610 610 510 680 870 680 400 900 840 760 750 680 680 750 720 1,000 1,300 980                        | 100  Maximum  1,800 3,800 3,400 3,400 2,400 2,000 33,000 6,000 3,000 1,800 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000 4,200 1,900                                         | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87 68 110 190 140 350                             | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  4 [1]  2.4 [0.8]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]                                                                                                                                                                                                                                                                                        | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5  70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 18/18 19/19 10/10                                                                  | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1- 14/1- 16/1- 16/1- 16/1- 18/1- 18/1- 18/1- 18/1- 18/1- 18/1- 19/1-                |
| Bivalves<br>(pg/g-wet)               | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 202 203                                                                                        | 75 Geometric mean*  450 800 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970 940 800 860 810 800 1,100 1,100 890 1,100                             | Median  1,100 700 870 650 610 610 510 680 870 680 400 900 840 760 750 680 680 750 720 1,000 1,300 980 1,400                  | 100  Maximum  1,800 3,800 3,400 3,400 3,400 2,000 33,000 6,000 3,000 1,800 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000 4,200 1,900 3,700                                   | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87 68 110 190 140 350 350                         | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [1]  2.4 [0.8]  3 [1]  7 [3]  6 [2]  3 [1]  7 [3]  6 [2]  3 [1]  7 [3]  6 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]                                                                                                                                                                                                                            | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5  70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 18/18 19/19 10/10 10/10                                                            | 2/2 Frequen Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1- 16/1- 16/1- 16/1- 18/1- 18/1- 18/1- 18/1- 18/1- 19/1- 2/2 2/2                |
| Bivalves<br>(pg/g-wet)               | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2003 2004                               | 75 Geometric mean*  450 800 780 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970 940 800 860 810 800 1,100 1,100 890 1,100 690                     | Median  1,100 700 870 650 610 610 510 680 870 680 400 900 840 750 680 680 750 720 1,000 1,300 980 1,400 780                  | 100  Maximum  1,800 3,800 3,400 3,400 3,400 2,000 33,000 6,000 3,000 1,800 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000 4,200 1,900 3,700 1,200                             | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87 68 110 190 140 350 350 390                     | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1] | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5  70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 18/18 19/19 10/10 10/10                                                            | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1 16/1 16/1 16/1 18/1 18/1 18/1 19/1 2/2 2/2 2/2                                    |
| Bivalves<br>(pg/g-wet)               | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005                     | 75  Geometric mean*  450 800 780 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970 940 800 860 810 800 1,100 1,100 890 1,100 690 870                | 1,100 700 870 650 610 610 610 510 680 870 680 400 900 840 760 750 680 680 750 720 1,000 1,300 980 1,400 780 880              | 100  Maximum  1,800 3,800 3,400 3,400 2,400 2,000 33,000 6,000 3,000 1,800 8,300 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000 4,200 1,900 3,700 1,200 2,000                             | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87 68 110 190 140 350 350 390 440                 | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  5 [2.1]                                                                                                                                                                                                   | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 18/18 19/19 10/10 10/10 10/10                                                       | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1- 16/1- 16/1- 18/1: 18/1: 18/1: 18/1: 19/1! 2/2 2/2 2/2                                |
| Bivalves (pg/g-wet)  Fish (pg/g-wet) | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006                | 75  Geometric mean*  450 800 780 780 700 660 640 510 780 790 640 530  1,000 970 940 800 860 810 800 1,100 1,100 890 1,100 690 870 650                     | 1,100 700 870 650 610 610 510 680 870 680 400 900 840 760 750 680 680 750 720 1,000 1,300 980 1,400 780 880 620              | 100  Maximum  1,800 3,800 3,400 3,400 3,400 2,400 2,000 33,000 6,000 3,000 1,800 8,300 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000 4,200 1,900 3,700 1,200 2,000 1,500                 | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87 68 110 190 140 350 350 390 440 310             | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]                                                                                                                                            | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 18/18 19/19 10/10 10/10 10/10 10/10                                           | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 64/4 5/5 14/1- 16/10 16/10 17/1- 18/13 18/13 18/13 19/19 2/2 2/2 2/2 2/2 2/2                   |
| Bivalves<br>(pg/g-wet)               | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 202 203 204 205 2006 207 2008 209 2010 2011 2012 2002 2003 2004 2005 2006 2007                 | 75  Geometric mean*  450 800 780 780 700 660 640 510 780 790 640 530  1,000 970 940 800 860 810 800 1,100 1,100 890 1,100 690 870 650 590                 | 1,100 700 870 650 610 610 510 680 870 680 400 900 840 760 750 680 680 750 720 1,000 1,300 980 1,400 780 880 620 680          | 100  Maximum  1,800 3,800 3,400 3,400 3,400 2,400 2,000 33,000 6,000 3,000 1,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000 4,200 1,900 3,700 1,200 2,000 1,500 1,400                 | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87 68 110 190 140 350 350 350 390 440 310 200     | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  7 [3]  6 [2.2]  3 [1]  7 [3]  6 [2.2]  3 [1]  7 [3]                                                                                                                                                                                                                                                     | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 18/18 19/19 10/10 10/10 10/10 10/10 10/10 10/10                         | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1- 16/1- 16/1- 16/1- 18/1- 18/1- 18/1- 18/1- 19/1- 2/2 2/2 2/2 2/2 2/2 2/2          |
| Bivalves (pg/g-wet)  Fish (pg/g-wet) | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008      | 75 Geometric mean*  450 800 780 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970 940 800 860 810 800 1,100 1,100 890 1,100 690 870 650 590 740     | 1,100 700 870 650 610 610 510 680 870 680 400 900 840 760 750 680 680 750 720 1,000 1,300 980 1,400 780 880 620 680 850      | 100  Maximum  1,800 3,800 3,400 3,400 3,400 2,000 33,000 6,000 3,000 1,800 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000 4,200 1,900 3,700 1,200 2,000 1,500 1,400 2,600     | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87 68 110 190 140 350 350 390 440 310 200 180     | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]                                                                                                                                                                                                                                                   | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 18/18 19/19 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10                   | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 14/1- 16/10 16/10 16/10 17/1' 18/13 18/13 19/19 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2            |
| Bivalves (pg/g-wet)  Fish (pg/g-wet) | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 | 75 Geometric mean*  450 800 780 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970 940 800 860 810 800 1,100 1,100 890 1,100 690 870 650 590 740 400 | 1,100 700 870 650 610 610 510 680 870 680 400 900 840 760 750 680 680 750 720 1,000 1,300 980 1,400 780 880 620 680 850 430  | 100  Maximum  1,800 3,800 3,400 3,400 3,200 2,400 2,000 33,000 6,000 3,000 1,800 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000 4,200 1,900 1,200 2,000 1,500 1,400 2,600 730 | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87 68 110 190 140 350 350 390 440 310 200 180 220 | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [1]  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  7 [3]  6 [2]  3 [1]  7 [3]  6 [2]  3 [1]  7 [3]  6 [2]  3 [1]  7 [3]  6 [2]  3 [1]                                                                                                                                                                                                     | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 70/70 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 18/18 19/19 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/1- 14/1- 16/10 16/10 17/1' 18/13 18/13 19/19 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/ |
| Bivalves (pg/g-wet)  Fish (pg/g-wet) | 2012  Monitored year  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2002 2003 2004 2005 2006 2007 2008      | 75 Geometric mean*  450 800 780 780 700 660 640 510 780 790 640 530 1,000 920 1,100 970 940 800 860 810 800 1,100 1,100 890 1,100 690 870 650 590 740     | 1,100 700 870 650 610 610 510 680 870 680 400 900 840 760 750 680 680 750 720 1,000 1,300 980 1,400 780 880 620 680 850      | 100  Maximum  1,800 3,800 3,400 3,400 3,400 2,000 33,000 6,000 3,000 1,800 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000 4,200 1,900 3,700 1,200 2,000 1,500 1,400 2,600     | 56  Minimum  21 140 110 72 85 71 94 79 84 200 190 98 85 140 80 120 71 87 68 110 190 140 350 350 390 440 310 200 180     | 2 [1]  Quantification [Detection]  limit  2.4 [0.8]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3.6 [1.2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  3 [1]  4 [2]  3 [1]  7 [3]  6 [2]  13 [4.2]  6.2 [2.1]  3 [1]  7 [3]  6 [2]                                                                                                                                                                                                                                                   | 2/2  Detection I Sample  38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 18/18 19/19 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10                   | 2/2 Frequer Site  8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 14/1- 16/10 16/10 16/10 17/1' 18/13 18/13 19/19 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2            |

(Note) "\*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

#### <Air>

Oxychlordane: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of 0.03pg/m³, and the detection range was  $0.34 \sim 6.7$  pg/m³. For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of 0.03pg/m³, and the detection range was  $0.22 \sim 1.0$  pg/m³. As results of the inter-annual trend analysis from FY 2003 to FY 2012, reduction tendency in specimens at the warm season was identified as statistically significant.

cis-Nonachlor: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.05 \,\mathrm{pg/m^3}$ , and the detection range was  $0.29 \,\sim 89 \,\mathrm{pg/m^3}$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.05 \,\mathrm{pg/m^3}$ , and the detection range was  $\mathrm{tr}(0.05) \,\sim 10 \,\mathrm{pg/m^3}$ . As results of the inter-annual trend analysis from FY 2003 to FY 2012, reduction tendency in specimens at the warm season was identified as statistically significant.

trans-Nonachlor: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.41 \text{pg/m}^3$ , and the detection range was  $2.5 \sim 510 \text{ pg/m}^3$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.41 \text{pg/m}^3$ , and the detection range was  $\text{tr}(0.50) \sim 61 \text{ pg/m}^3$ . As results of the inter-annual trend analysis from FY 2003 to FY 2012, reduction tendency in specimens at the warm season was identified as statistically significant.

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in air during FY2002~2012

| Oxychlordane |                  | Geometric |        |         |          | Quantification       | Detection Frequence |       |
|--------------|------------------|-----------|--------|---------|----------|----------------------|---------------------|-------|
| Oxychlordane | Monitored year   | mean      | Median | Maximum | Minimum  | [Detection]<br>limit | Sample              | Site  |
|              | 2002             | 0.96      | 0.98   | 8.3     | nd       | 0.024 [0.008]        | 101/102             | 34/34 |
|              | 2003 Warm season | 2.5       | 2.7    | 12      | 0.41     | 0.045 [0.015]        | 35/35               | 35/35 |
|              | 2003 Cold season | 0.87      | 0.88   | 3.2     | 0.41     | 0.045 [0.015]        | 34/34               | 34/34 |
|              | 2004 Warm season | 1.9       | 2.0    | 7.8     | 0.41     | 0.12 [0.042]         | 37/37               | 37/37 |
|              | 2004 Cold season | 0.80      | 0.76   | 3.9     | 0.27     | 0.13 [0.042]         | 37/37               | 37/37 |
|              | 2005 Warm season | 1.9       | 2.0    | 8.8     | 0.65     | 0.16 [0.054]         | 37/37               | 37/37 |
|              | 2005 Cold season | 0.55      | 0.50   | 2.2     | 0.27     | 0.16 [0.054]         | 37/37               | 37/37 |
|              | 2006 Warm season | 1.8       | 1.9    | 5.7     | 0.47     | 0.23 [0.08]          | 37/37               | 37/37 |
|              | 2006 Cold season | 0.54      | 0.56   | 5.1     | tr(0.13) | 0.23 [0.08]          | 37/37               | 37/37 |
| Air          | 2007 Warm season | 1.9       | 1.8    | 8.6     | 0.56     | 0.05 [0.02]          | 36/36               | 36/36 |
| $(pg/m^3)$   | 2007 Cold season | 0.61      | 0.63   | 2.4     | 0.26     | 0.03 [0.02]          | 36/36               | 36/36 |
| (pg/III)     | 2008 Warm season | 1.7       | 1.7    | 7.1     | 0.50     | 0.04 [0.01]          | 37/37               | 37/37 |
|              | 2008 Cold season | 0.61      | 0.63   | 1.8     | 0.27     |                      | 37/37               | 37/37 |
|              | 2009 Warm season | 1.7       | 1.8    | 6.5     | 0.38     | 0.04 [0.02]          | 37/37               | 37/37 |
|              | 2009 Cold season | 0.65      | 0.61   | 2.7     | 0.24     | 0.04 [0.02]          | 37/37               | 37/37 |
|              | 2010 Warm season | 1.5       | 1.5    | 6.2     | 0.44     | 0.02 [0.01]          | 37/37               | 37/37 |
|              | 2010 Cold season | 0.56      | 0.55   | 2.3     | 0.26     | 0.03 [0.01]          | 37/37               | 37/37 |
|              | 2011 Warm season | 1.5       | 1.5    | 5.2     | 0.28     | 0.07 [0.02]          | 35/35               | 35/35 |
|              | 2011 Cold season | 0.61      | 0.57   | 2.6     | 0.21     | 0.07 [0.03]          | 37/37               | 37/37 |
|              | 2012 Warm season | 1.4       | 1.6    | 6.7     | 0.34     | 0.08 [0.03]          | 36/36               | 36/36 |
| -            | 2012 Cold season | 0.41      | 0.38   | 1.0     | 0.22     | 0.06 [0.03]          | 36/36               | 36/36 |

|                      |                                                                                                                                                                                                                                                                                                                                                                      | Geometric                                                                                    |                                                                                                      |                                                                                                                      |                                                                                                                    | Quantification                                                                                                      | Detection l                                                                                                                                           | Frequency                                                                                                                           |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| cis-Nonachlor        | Monitored year                                                                                                                                                                                                                                                                                                                                                       | mean                                                                                         | Median                                                                                               | Maximum                                                                                                              | Minimum                                                                                                            | [Detection]<br>limit                                                                                                | Sample                                                                                                                                                | Site                                                                                                                                |
|                      | 2002                                                                                                                                                                                                                                                                                                                                                                 | 3.1                                                                                          | 4.0                                                                                                  | 62                                                                                                                   | 0.071                                                                                                              | 0.030 [0.010]                                                                                                       | 102/102                                                                                                                                               | 34/34                                                                                                                               |
|                      | 2003 Warm season                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                           | 15                                                                                                   | 220                                                                                                                  | 0.81                                                                                                               | 0.026 [0.0088]                                                                                                      | 35/35                                                                                                                                                 | 35/35                                                                                                                               |
|                      | 2003 Cold season                                                                                                                                                                                                                                                                                                                                                     | 2.7                                                                                          | 3.5                                                                                                  | 23                                                                                                                   | 0.18                                                                                                               |                                                                                                                     | 34/34                                                                                                                                                 | 34/34                                                                                                                               |
|                      | 2004 Warm season                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                           | 15                                                                                                   | 130                                                                                                                  | 0.36                                                                                                               | 0.072 [0.024]                                                                                                       | 37/37                                                                                                                                                 | 37/37                                                                                                                               |
|                      | 2004 Cold season                                                                                                                                                                                                                                                                                                                                                     | 2.7                                                                                          | 4.4                                                                                                  | 28                                                                                                                   | 0.087                                                                                                              |                                                                                                                     | 37/37                                                                                                                                                 | 37/37                                                                                                                               |
|                      | 2005 Warm season                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                           | 14                                                                                                   | 160                                                                                                                  | 0.30                                                                                                               | 0.08 [0.03]                                                                                                         | 37/37                                                                                                                                                 | 37/37                                                                                                                               |
|                      | 2005 Cold season                                                                                                                                                                                                                                                                                                                                                     | 1.6                                                                                          | 1.6                                                                                                  | 34                                                                                                                   | 0.08                                                                                                               |                                                                                                                     | 37/37                                                                                                                                                 | 37/37                                                                                                                               |
|                      | 2006 Warm season                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                           | 12                                                                                                   | 170                                                                                                                  | 0.28                                                                                                               | 0.15 [0.05]                                                                                                         | 37/37                                                                                                                                                 | 37/37                                                                                                                               |
|                      | 2006 Cold season                                                                                                                                                                                                                                                                                                                                                     | 2.4                                                                                          | 2.0                                                                                                  | 41                                                                                                                   | tr(0.14)                                                                                                           | 0.13 [0.03]                                                                                                         | 37/37                                                                                                                                                 | 37/37                                                                                                                               |
| Air                  | 2007 Warm season                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                           | 14                                                                                                   | 150                                                                                                                  | 0.31                                                                                                               | 0.02.00.013                                                                                                         | 36/36                                                                                                                                                 | 36/36                                                                                                                               |
| $(pg/m^3)$           | 2007 Cold season                                                                                                                                                                                                                                                                                                                                                     | 1.6                                                                                          | 1.7                                                                                                  | 22                                                                                                                   | 0.09                                                                                                               | 0.03 [0.01]                                                                                                         | 36/36                                                                                                                                                 | 36/36                                                                                                                               |
| (pg/m <sup>*</sup> ) | 2008 Warm season                                                                                                                                                                                                                                                                                                                                                     | 7.9                                                                                          | 12                                                                                                   | 87                                                                                                                   | 0.18                                                                                                               | 0.03 [0.01]                                                                                                         | 37/37                                                                                                                                                 | 37/37                                                                                                                               |
|                      | 2008 Cold season                                                                                                                                                                                                                                                                                                                                                     | 2.0                                                                                          | 2.7                                                                                                  | 19                                                                                                                   | 0.16                                                                                                               | 0.03 [0.01]                                                                                                         | 37/37                                                                                                                                                 | 37/37                                                                                                                               |
|                      | 2009 Warm season                                                                                                                                                                                                                                                                                                                                                     | 7.5                                                                                          | 10                                                                                                   | 110                                                                                                                  | 0.33                                                                                                               | 0.04.00.021                                                                                                         | 37/37                                                                                                                                                 | 37/37                                                                                                                               |
|                      | 2009 Cold season                                                                                                                                                                                                                                                                                                                                                     | 1.9                                                                                          | 2.1                                                                                                  | 18                                                                                                                   | 0.07                                                                                                               | 0.04 [0.02]                                                                                                         | 37/37                                                                                                                                                 | 37/37                                                                                                                               |
|                      | 2010 Warm season                                                                                                                                                                                                                                                                                                                                                     | 7.5                                                                                          | 10                                                                                                   | 68                                                                                                                   | 0.23                                                                                                               | 0.11.50.043                                                                                                         | 37/37                                                                                                                                                 | 37/37                                                                                                                               |
|                      | 2010 Cold season                                                                                                                                                                                                                                                                                                                                                     | 1.8                                                                                          | 2.1                                                                                                  | 13                                                                                                                   | tr(0.06)                                                                                                           | 0.11 [0.04]                                                                                                         | 37/37                                                                                                                                                 | 37/37                                                                                                                               |
|                      | 2011 Warm season                                                                                                                                                                                                                                                                                                                                                     | 7.4                                                                                          | 8.8                                                                                                  | 89                                                                                                                   | 0.24                                                                                                               | 0.15 [0.051]                                                                                                        | 35/35                                                                                                                                                 | 35/35                                                                                                                               |
|                      | 2011 Cold season                                                                                                                                                                                                                                                                                                                                                     | 1.9                                                                                          | 2.9                                                                                                  | 28                                                                                                                   | nd                                                                                                                 | 0.15 [0.051]                                                                                                        | 36/37                                                                                                                                                 | 36/37                                                                                                                               |
|                      | 2012 Warm season                                                                                                                                                                                                                                                                                                                                                     | 6.9                                                                                          | 11                                                                                                   | 89                                                                                                                   | 0.29                                                                                                               | 0.12.50.051                                                                                                         | 36/36                                                                                                                                                 | 36/36                                                                                                                               |
|                      | 2012 Cold season                                                                                                                                                                                                                                                                                                                                                     | 0.98                                                                                         | 1.1                                                                                                  | 10                                                                                                                   | tr(0.05)                                                                                                           | 0.12 [0.05]                                                                                                         | 36/36                                                                                                                                                 | 36/36                                                                                                                               |
| trans-Nonachl        |                                                                                                                                                                                                                                                                                                                                                                      | Geometric                                                                                    |                                                                                                      |                                                                                                                      |                                                                                                                    | Quantification                                                                                                      | Detection l                                                                                                                                           | Frequency                                                                                                                           |
| or                   | Monitored year                                                                                                                                                                                                                                                                                                                                                       | mean                                                                                         | Median                                                                                               | Maximum                                                                                                              | Minimum                                                                                                            | [Detection]<br>limit                                                                                                | Sample                                                                                                                                                | Site                                                                                                                                |
|                      |                                                                                                                                                                                                                                                                                                                                                                      | 2.4                                                                                          | 20                                                                                                   | 550                                                                                                                  | 0.64                                                                                                               | 0.20.50.103                                                                                                         |                                                                                                                                                       |                                                                                                                                     |
|                      | 2002                                                                                                                                                                                                                                                                                                                                                                 | 24                                                                                           | 30                                                                                                   | 330                                                                                                                  | 0.64                                                                                                               | 0.30 [0.10]                                                                                                         | 102/102                                                                                                                                               | 34/34                                                                                                                               |
|                      | 2002<br>2003 Warm season                                                                                                                                                                                                                                                                                                                                             | 24<br>87                                                                                     | 100                                                                                                  | 1,200                                                                                                                | 5.1                                                                                                                |                                                                                                                     | 102/102<br>35/35                                                                                                                                      | 34/34<br>35/35                                                                                                                      |
|                      |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                              |                                                                                                      |                                                                                                                      |                                                                                                                    | 0.30 [0.10]                                                                                                         |                                                                                                                                                       |                                                                                                                                     |
|                      | 2003 Warm season                                                                                                                                                                                                                                                                                                                                                     | 87                                                                                           | 100                                                                                                  | 1,200                                                                                                                | 5.1                                                                                                                | 0.35 [0.12]                                                                                                         | 35/35                                                                                                                                                 | 35/35                                                                                                                               |
|                      | 2003 Warm season<br>2003 Cold season                                                                                                                                                                                                                                                                                                                                 | 87<br>24                                                                                     | 100<br>28                                                                                            | 1,200<br>180                                                                                                         | 5.1<br>2.1                                                                                                         |                                                                                                                     | 35/35<br>34/34                                                                                                                                        | 35/35<br>34/34                                                                                                                      |
|                      | 2003 Warm season<br>2003 Cold season<br>2004 Warm season                                                                                                                                                                                                                                                                                                             | 87<br>24<br>72                                                                               | 100<br>28<br>120                                                                                     | 1,200<br>180<br>870                                                                                                  | 5.1<br>2.1<br>1.9                                                                                                  | 0.35 [0.12]                                                                                                         | 35/35<br>34/34<br>37/37                                                                                                                               | 35/35<br>34/34<br>37/37                                                                                                             |
|                      | 2003 Warm season<br>2003 Cold season<br>2004 Warm season<br>2004 Cold season                                                                                                                                                                                                                                                                                         | 87<br>24<br>72<br>23                                                                         | 100<br>28<br>120<br>39                                                                               | 1,200<br>180<br>870<br>240                                                                                           | 5.1<br>2.1<br>1.9<br>0.95                                                                                          | 0.35 [0.12]                                                                                                         | 35/35<br>34/34<br>37/37<br>37/37                                                                                                                      | 35/35<br>34/34<br>37/37<br>37/37                                                                                                    |
|                      | 2003 Warm season<br>2003 Cold season<br>2004 Warm season<br>2004 Cold season<br>2005 Warm season                                                                                                                                                                                                                                                                     | 87<br>24<br>72<br>23<br>75                                                                   | 100<br>28<br>120<br>39<br>95                                                                         | 1,200<br>180<br>870<br>240<br>870                                                                                    | 5.1<br>2.1<br>1.9<br>0.95<br>3.1                                                                                   | 0.35 [0.12]<br>0.48 [0.16]<br>0.13 [0.044]                                                                          | 35/35<br>34/34<br>37/37<br>37/37<br>37/37                                                                                                             | 35/35<br>34/34<br>37/37<br>37/37<br>37/37                                                                                           |
|                      | 2003 Warm season<br>2003 Cold season<br>2004 Warm season<br>2004 Cold season<br>2005 Warm season<br>2005 Cold season                                                                                                                                                                                                                                                 | 87<br>24<br>72<br>23<br>75<br>13                                                             | 100<br>28<br>120<br>39<br>95<br>16                                                                   | 1,200<br>180<br>870<br>240<br>870<br>210                                                                             | 5.1<br>2.1<br>1.9<br>0.95<br>3.1<br>1.2                                                                            | 0.35 [0.12]                                                                                                         | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37                                                                                                    | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37                                                                                  |
| A :                  | 2003 Warm season<br>2003 Cold season<br>2004 Warm season<br>2004 Cold season<br>2005 Warm season<br>2005 Cold season<br>2006 Warm season                                                                                                                                                                                                                             | 87<br>24<br>72<br>23<br>75<br>13<br>68                                                       | 100<br>28<br>120<br>39<br>95<br>16<br>91                                                             | 1,200<br>180<br>870<br>240<br>870<br>210<br>800                                                                      | 5.1<br>2.1<br>1.9<br>0.95<br>3.1<br>1.2<br>3.0                                                                     | 0.35 [0.12]<br>0.48 [0.16]<br>0.13 [0.044]<br>0.10 [0.03]                                                           | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37                                                                                           | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37                                                                         |
| Air                  | 2003 Warm season<br>2003 Cold season<br>2004 Warm season<br>2004 Cold season<br>2005 Warm season<br>2005 Cold season<br>2006 Warm season<br>2006 Cold season                                                                                                                                                                                                         | 87<br>24<br>72<br>23<br>75<br>13<br>68<br>16<br>72<br>13                                     | 100<br>28<br>120<br>39<br>95<br>16<br>91<br>15<br>96                                                 | 1,200<br>180<br>870<br>240<br>870<br>210<br>800<br>240                                                               | 5.1<br>2.1<br>1.9<br>0.95<br>3.1<br>1.2<br>3.0<br>1.4                                                              | 0.35 [0.12]<br>0.48 [0.16]<br>0.13 [0.044]                                                                          | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37                                                                                  | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37                                                                |
| Air<br>(pg/m³)       | 2003 Warm season<br>2003 Cold season<br>2004 Warm season<br>2004 Cold season<br>2005 Warm season<br>2005 Cold season<br>2006 Warm season<br>2006 Cold season<br>2007 Warm season                                                                                                                                                                                     | 87<br>24<br>72<br>23<br>75<br>13<br>68<br>16<br>72                                           | 100<br>28<br>120<br>39<br>95<br>16<br>91<br>15                                                       | 1,200<br>180<br>870<br>240<br>870<br>210<br>800<br>240<br>940                                                        | 5.1<br>2.1<br>1.9<br>0.95<br>3.1<br>1.2<br>3.0<br>1.4<br>2.5                                                       | 0.35 [0.12]<br>0.48 [0.16]<br>0.13 [0.044]<br>0.10 [0.03]<br>0.09 [0.03]                                            | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36                                                                         | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36                                                                |
|                      | 2003 Warm season<br>2003 Cold season<br>2004 Warm season<br>2004 Cold season<br>2005 Warm season<br>2005 Cold season<br>2006 Warm season<br>2006 Cold season<br>2007 Warm season<br>2007 Cold season                                                                                                                                                                 | 87<br>24<br>72<br>23<br>75<br>13<br>68<br>16<br>72<br>13                                     | 100<br>28<br>120<br>39<br>95<br>16<br>91<br>15<br>96                                                 | 1,200<br>180<br>870<br>240<br>870<br>210<br>800<br>240<br>940<br>190                                                 | 5.1<br>2.1<br>1.9<br>0.95<br>3.1<br>1.2<br>3.0<br>1.4<br>2.5<br>1.1                                                | 0.35 [0.12]<br>0.48 [0.16]<br>0.13 [0.044]<br>0.10 [0.03]                                                           | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36                                                                | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36                                                       |
|                      | 2003 Warm season<br>2003 Cold season<br>2004 Warm season<br>2004 Cold season<br>2005 Warm season<br>2005 Cold season<br>2006 Cold season<br>2006 Cold season<br>2007 Warm season<br>2007 Cold season<br>2008 Warm season                                                                                                                                             | 87<br>24<br>72<br>23<br>75<br>13<br>68<br>16<br>72<br>13<br>59                               | 100<br>28<br>120<br>39<br>95<br>16<br>91<br>15<br>96<br>15<br>91<br>25<br>81                         | 1,200<br>180<br>870<br>240<br>870<br>210<br>800<br>240<br>940<br>190<br>650                                          | 5.1<br>2.1<br>1.9<br>0.95<br>3.1<br>1.2<br>3.0<br>1.4<br>2.5<br>1.1                                                | 0.35 [0.12]<br>0.48 [0.16]<br>0.13 [0.044]<br>0.10 [0.03]<br>0.09 [0.03]                                            | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36<br>37/37                                                       | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36<br>37/37                                              |
|                      | 2003 Warm season<br>2003 Cold season<br>2004 Warm season<br>2004 Cold season<br>2005 Warm season<br>2005 Cold season<br>2006 Warm season<br>2006 Cold season<br>2007 Warm season<br>2007 Cold season<br>2008 Warm season<br>2008 Warm season                                                                                                                         | 87<br>24<br>72<br>23<br>75<br>13<br>68<br>16<br>72<br>13<br>59                               | 100<br>28<br>120<br>39<br>95<br>16<br>91<br>15<br>96<br>15<br>91<br>25<br>81                         | 1,200<br>180<br>870<br>240<br>870<br>210<br>800<br>240<br>940<br>190<br>650<br>170                                   | 5.1<br>2.1<br>1.9<br>0.95<br>3.1<br>1.2<br>3.0<br>1.4<br>2.5<br>1.1<br>1.5                                         | 0.35 [0.12]<br>0.48 [0.16]<br>0.13 [0.044]<br>0.10 [0.03]<br>0.09 [0.03]                                            | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36<br>37/37<br>37/37                                                       | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36<br>37/37<br>37/37                                     |
|                      | 2003 Warm season<br>2003 Cold season<br>2004 Warm season<br>2004 Cold season<br>2005 Warm season<br>2005 Cold season<br>2006 Cold season<br>2007 Warm season<br>2007 Cold season<br>2008 Warm season<br>2008 Warm season<br>2008 Cold season<br>2008 Cold season<br>2009 Warm season                                                                                 | 87<br>24<br>72<br>23<br>75<br>13<br>68<br>16<br>72<br>13<br>59<br>17                         | 100<br>28<br>120<br>39<br>95<br>16<br>91<br>15<br>96<br>15<br>91<br>25<br>81                         | 1,200<br>180<br>870<br>240<br>870<br>210<br>800<br>240<br>940<br>190<br>650<br>170<br>630<br>140<br>520              | 5.1<br>2.1<br>1.9<br>0.95<br>3.1<br>1.2<br>3.0<br>1.4<br>2.5<br>1.1<br>1.5<br>1.3                                  | 0.35 [0.12]<br>0.48 [0.16]<br>0.13 [0.044]<br>0.10 [0.03]<br>0.09 [0.03]<br>0.09 [0.03]                             | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36<br>37/37<br>37/37                                                       | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36<br>37/37<br>37/37<br>37/37                            |
|                      | 2003 Warm season<br>2003 Cold season<br>2004 Warm season<br>2004 Cold season<br>2005 Warm season<br>2005 Cold season<br>2006 Warm season<br>2006 Cold season<br>2007 Warm season<br>2007 Cold season<br>2008 Warm season<br>2008 Cold season<br>2008 Cold season<br>2009 Warm season<br>2009 Warm season                                                             | 87<br>24<br>72<br>23<br>75<br>13<br>68<br>16<br>72<br>13<br>59<br>17<br>54                   | 100<br>28<br>120<br>39<br>95<br>16<br>91<br>15<br>96<br>15<br>91<br>25<br>81                         | 1,200<br>180<br>870<br>240<br>870<br>210<br>800<br>240<br>940<br>190<br>650<br>170<br>630<br>140                     | 5.1<br>2.1<br>1.9<br>0.95<br>3.1<br>1.2<br>3.0<br>1.4<br>2.5<br>1.1<br>1.5<br>1.3<br>2.2<br>0.75                   | 0.35 [0.12]<br>0.48 [0.16]<br>0.13 [0.044]<br>0.10 [0.03]<br>0.09 [0.03]                                            | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36<br>37/37<br>37/37<br>37/37                                              | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36<br>37/37<br>37/37<br>37/37<br>37/37                   |
|                      | 2003 Warm season<br>2003 Cold season<br>2004 Warm season<br>2004 Cold season<br>2005 Warm season<br>2005 Cold season<br>2006 Warm season<br>2006 Cold season<br>2007 Cold season<br>2007 Cold season<br>2008 Warm season<br>2008 Warm season<br>2009 Warm season<br>2009 Cold season<br>2009 Cold season<br>2010 Warm season                                         | 87<br>24<br>72<br>23<br>75<br>13<br>68<br>16<br>72<br>13<br>59<br>17<br>54<br>16             | 100<br>28<br>120<br>39<br>95<br>16<br>91<br>15<br>96<br>15<br>91<br>25<br>81<br>19                   | 1,200<br>180<br>870<br>240<br>870<br>210<br>800<br>240<br>940<br>190<br>650<br>170<br>630<br>140<br>520              | 5.1<br>2.1<br>1.9<br>0.95<br>3.1<br>1.2<br>3.0<br>1.4<br>2.5<br>1.1<br>1.5<br>1.3<br>2.2<br>0.75                   | 0.35 [0.12]<br>0.48 [0.16]<br>0.13 [0.044]<br>0.10 [0.03]<br>0.09 [0.03]<br>0.09 [0.03]<br>0.07 [0.03]<br>0.8 [0.3] | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36<br>37/37<br>37/37<br>37/37<br>37/37                                     | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36<br>37/37<br>37/37<br>37/37<br>37/37                   |
|                      | 2003 Warm season<br>2003 Cold season<br>2004 Warm season<br>2004 Cold season<br>2005 Warm season<br>2005 Cold season<br>2006 Warm season<br>2006 Cold season<br>2007 Cold season<br>2007 Cold season<br>2008 Warm season<br>2008 Warm season<br>2009 Warm season<br>2009 Cold season<br>2010 Warm season<br>2010 Warm season<br>2010 Warm season                     | 87<br>24<br>72<br>23<br>75<br>13<br>68<br>16<br>72<br>13<br>59<br>17<br>54<br>16<br>52<br>15 | 100<br>28<br>120<br>39<br>95<br>16<br>91<br>15<br>96<br>15<br>91<br>25<br>81<br>19<br>78<br>17       | 1,200<br>180<br>870<br>240<br>870<br>210<br>800<br>240<br>940<br>190<br>650<br>170<br>630<br>140<br>520<br>89        | 5.1<br>2.1<br>1.9<br>0.95<br>3.1<br>1.2<br>3.0<br>1.4<br>2.5<br>1.1<br>1.5<br>1.3<br>2.2<br>0.75<br>1.7<br>tr(0.7) | 0.35 [0.12]<br>0.48 [0.16]<br>0.13 [0.044]<br>0.10 [0.03]<br>0.09 [0.03]<br>0.09 [0.03]                             | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37                            | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37 |
|                      | 2003 Warm season<br>2003 Cold season<br>2004 Warm season<br>2004 Cold season<br>2005 Warm season<br>2005 Cold season<br>2006 Cold season<br>2006 Cold season<br>2007 Warm season<br>2007 Cold season<br>2008 Warm season<br>2008 Warm season<br>2009 Warm season<br>2009 Cold season<br>2010 Warm season<br>2010 Warm season<br>2010 Cold season<br>2010 Cold season | 87 24 72 23 75 13 68 16 72 13 59 17 54 16 52 15 53                                           | 100<br>28<br>120<br>39<br>95<br>16<br>91<br>15<br>96<br>15<br>91<br>25<br>81<br>19<br>78<br>17<br>72 | 1,200<br>180<br>870<br>240<br>870<br>210<br>800<br>240<br>940<br>190<br>650<br>170<br>630<br>140<br>520<br>89<br>550 | 5.1<br>2.1<br>1.9<br>0.95<br>3.1<br>1.2<br>3.0<br>1.4<br>2.5<br>1.1<br>1.5<br>1.3<br>2.2<br>0.75<br>1.7<br>tr(0.7) | 0.35 [0.12]<br>0.48 [0.16]<br>0.13 [0.044]<br>0.10 [0.03]<br>0.09 [0.03]<br>0.09 [0.03]<br>0.07 [0.03]<br>0.8 [0.3] | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>35/35 | 35/35<br>34/34<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>36/36<br>36/36<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>35/35 |

### [8] Heptachlors

· History and state of monitoring

Heptachlor and its metabolite, heptachlor epoxide, are a group of organochlorine insecticides applied for agricultural crops such as rice, wheat, barley, potato, sweet potato, tobacco, beans, cruciferous vegetables, alliaceous vegetables, cucurbitaceous vegetables, sugar beet and spinach. The substances were not registrated under the Agricultural Chemicals Regulation Law in FY 1975. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986, since it includes the technical chlordane used as a termitecide.

In previous monitoring series before FY 2001, heptachlor and heptachlor epoxide were measured in FY 1982 (in surface water, sediment and fish) and in FY 1986 (in air) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Heptachlor in water, sediment, and fish has been monitored since FY 2002, and *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide have also been monitored since FY 2003.

Under the framework of the Environmental Monitoring, the substances in sediment, wildlife (bivalves, fish and birds) and air were monitored in FY 2012.

- · Monitoring results
- o heptachlor, cis-heptachlor epoxide, and trans-heptachlor epoxide

<Surface Water>
Stocktaking of the detection of heptachlor, cis-heptachlor epocide and trans-heptachlor epocide in surface water during FY2002~2011

|                | Monitored | Geometric |         |         |         | Quantification       | Detection | Frequency |
|----------------|-----------|-----------|---------|---------|---------|----------------------|-----------|-----------|
| Heptachlor     | year      | mean*     | Median  | Maximum | Minimum | [Detection]<br>limit | Sample    | Site      |
|                | 2002      | tr(1.2)   | tr(1.0) | 25      | nd      | 1.5 [0.5]            | 97/114    | 38/38     |
|                | 2003      | tr(1.8)   | tr(1.6) | 7       | tr(1.0) | 2 [0.5]              | 36/36     | 36/36     |
|                | 2004      | nd        | nd      | 29      | nd      | 5 [2]                | 9/38      | 9/38      |
|                | 2005      | nd        | tr(1)   | 54      | nd      | 3 [1]                | 25/47     | 25/47     |
| Surface Water  | 2006      | nd        | nd      | 6       | nd      | 5 [2]                | 5/48      | 5/48      |
| (pg/L)         | 2007      | nd        | nd      | 5.2     | nd      | 2.4 [0.8]            | 12/48     | 12/48     |
|                | 2008      | nd        | nd      | 4.6     | nd      | 2.1 [0.8]            | 19/48     | 19/48     |
|                | 2009      | tr(0.5)   | nd      | 17      | nd      | 0.8 [0.3]            | 20/49     | 20/49     |
|                | 2010      | nd        | nd      | 43      | nd      | 2.2 [0.7]            | 4/49      | 4/49      |
|                | 2011      | nd        | nd      | 22      | nd      | 1.3 [0.5]            | 6/49      | 6/49      |
| cis-Heptachlor | Monitored | Geometric |         |         |         | Quantification       | Detection | Frequency |
| epoxide        | year      | mean      | Median  | Maximum | Minimum | [Detection]<br>limit | Sample    | Site      |
|                | 2003      | 9.8       | 11      | 170     | 1.2     | 0.7 [0.2]            | 36/36     | 36/36     |
|                | 2004      | 10        | 10      | 77      | 2       | 2 [0.4]              | 38/38     | 38/38     |
|                | 2005      | 7.1       | 6.6     | 59      | 1.0     | 0.7 [0.2]            | 47/47     | 47/47     |
| Surface Water  | 2006      | 7.6       | 6.6     | 47      | 1.1     | 2.0 [0.7]            | 48/48     | 48/48     |
|                | 2007      | 6.1       | 5.8     | 120     | tr(0.9) | 1.3 [0.4]            | 48/48     | 48/48     |
| (pg/L)         | 2008      | 4.7       | 5.0     | 37      | nd      | 0.6 [0.2]            | 46/48     | 46/48     |
|                | 2009      | 5.5       | 4.2     | 72      | 0.8     | 0.5 [0.2]            | 49/49     | 49/49     |
|                | 2010      | 5.9       | 3.9     | 710     | 0.7     | 0.4 [0.2]            | 49/49     | 49/49     |
|                | 2011      | 5.8       | 5.8     | 160     | 0.7     | 0.7 [0.3]            | 49/49     | 49/49     |

| trans-Heptachlor | Monitored | onitored Geometric |        |         |         | Quantification       | Detection I | requency |
|------------------|-----------|--------------------|--------|---------|---------|----------------------|-------------|----------|
| epoxide          | year      | mean               | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
|                  | 2003      | nd                 | nd     | 2       | nd      | 2 [0.4]              | 4/36        | 4/36     |
|                  | 2004      | nd                 | nd     | nd      | nd      | 0.9 [0.3]            | 0/38        | 0/38     |
|                  | 2005      | nd                 | nd     | nd      | nd      | 0.7 [0.2]            | 0/47        | 0/47     |
| Surface Water    | 2006      | nd                 | nd     | nd      | nd      | 1.8 [0.6]            | 0/48        | 0/48     |
|                  | 2007      | nd                 | nd     | tr(0.9) | nd      | 2.0 [0.7]            | 2/48        | 2/48     |
| (pg/L)           | 2008      | nd                 | nd     | nd      | nd      | 1.9 [0.7]            | 0/48        | 0/48     |
|                  | 2009      | nd                 | nd     | nd      | nd      | 0.7 [0.3]            | 0/49        | 0/49     |
|                  | 2010      | nd                 | nd     | 8.0     | nd      | 1.3 [0.5]            | 2/49        | 2/49     |
|                  | 2011      | nd                 | nd     | 2.8     | nd      | 0.8 [0.3]            | 3/49        | 3/49     |

(Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2012.

### <Sediment>

Stocktaking of the detection of heptachlor, cis-heptachlor epocide and trans-heptachlor epocide in sediment during FY2002~2011

|                  | Monitored | Geometric |         |         |         | Quantification       | Detection l | Frequency |
|------------------|-----------|-----------|---------|---------|---------|----------------------|-------------|-----------|
| Heptachlor       | year      | mean*     | Median  | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                  | 2002      | 4.1       | 3.2     | 120     | nd      | 1.8 [0.6]            | 167/189     | 60/63     |
|                  | 2003      | tr(2.7)   | tr(2.2) | 160     | nd      | 3 [1.0]              | 138/186     | 53/62     |
|                  | 2004      | tr(2.8)   | tr(2.3) | 170     | nd      | 3 [0.9]              | 134/189     | 53/63     |
|                  | 2005      | 3.1       | 2.8     | 200     | nd      | 2.5 [0.8]            | 120/189     | 48/63     |
| Sediment         | 2006      | 5.2       | 3.9     | 230     | nd      | 1.9 [0.6]            | 190/192     | 64/64     |
| (pg/g-dry)       | 2007      | tr(1.8)   | tr(1.5) | 110     | nd      | 3.0 [0.7]            | 143/192     | 57/64     |
|                  | 2008      | tr(1)     | nd      | 85      | nd      | 4 [1]                | 59/192      | 27/64     |
|                  | 2009      | 1.6       | 1.3     | 65      | nd      | 1.1 [0.4]            | 144/192     | 59/64     |
|                  | 2010      | 1.2       | tr(0.8) | 35      | nd      | 1.1 [0.4]            | 51/64       | 51/64     |
|                  | 2011      | tr(1.3)   | tr(1.2) | 48      | nd      | 1.8 [0.7]            | 40/64       | 40/64     |
| cis-Heptachlor   | Monitored | Geometric |         |         |         | Quantification       | Detection 1 | Frequency |
| epoxide          | year      | mean*     | Median  | Maximum | Minimum | [Detection]          | Sample      | Site      |
| ероліче          |           |           |         |         |         | limit                |             |           |
|                  | 2003      | 4         | 3       | 160     | nd      | 3 [1]                | 153/186     | 55/62     |
|                  | 2004      | tr(5)     | tr(3)   | 230     | nd      | 6 [2]                | 136/189     | 52/63     |
|                  | 2005      | tr(4)     | tr(3)   | 140     | nd      | 7 [2]                | 119/189     | 49/63     |
| Sediment         | 2006      | 4.0       | 3.2     | 210     | nd      | 3.0 [1.0]            | 157/192     | 58/64     |
| (pg/g-dry)       | 2007      | 3         | tr(2)   | 270     | nd      | 3 [1]                | 141/192     | 53/64     |
| (PS S CI)        | 2008      | 3         | 2       | 180     | nd      | 2 [1]                | 130/192     | 51/64     |
|                  | 2009      | 2.7       | 1.9     | 290     | nd      | 0.7 [0.3]            | 176/192     | 63/64     |
|                  | 2010      | 3.1       | 2.4     | 300     | nd      | 0.8 [0.3]            | 62/64       | 62/64     |
|                  | 2011      | 2.8       | 2.5     | 160     | nd      | 0.6 [0.2]            | 63/64       | 63/64     |
| trans-Heptachlor | Monitored | Geometric |         |         |         | Quantification       | Detection 1 | Frequency |
| epoxide          | year      | mean*     | Median  | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                  | 2003      | nd        | nd      | nd      | nd      | 9 [3]                | 0/186       | 0/62      |
|                  | 2003      | nd        | nd      | tr(2.5) | nd      | 4 [2]                | 1/189       | 1/63      |
|                  | 2004      | nd        | nd      | nd      | nd      | 5 [2]                | 0/189       | 0/63      |
|                  | 2005      | nd        | nd      | 19      | nd      | 7 [2]                | 2/192       | 2/64      |
| Sediment         | 2007      | nd        | nd      | 31      | nd      | 10 [4]               | 2/192       | 2/64      |
| (pg/g-dry)       | 2007      | nd        | nd      | nd      | nd      | 1.7 [0.7]            | 0/192       | 0/64      |
|                  | 2009      | nd        | nd      | nd      | nd      | 1.4 [0.6]            | 0/192       | 0/64      |
|                  | 2010      | nd        | nd      | 4       | nd      | 3 [1]                | 1/64        | 1/64      |
|                  | 2010      | nd        | nd      | 2.4     | nd      | 2.3 [0.9]            | 2/64        | 2/64      |

(Note 1) " \* " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) No monitoring was conducted in FY 2012.

#### <Wildlife>

Heptachlor: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at 4 of the 5 valid areas adopting the detection limit of 1pg/g-wet, and none of the detected concentrations exceeded 13 pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 10 of the 19 valid areas adopting the detection limit of 1pg/g-wet, and none of the detected concentrations exceeded 5 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 2 valid areas adopting the detection range of 1pg/g-wet.

cis-heptachlor epoxide: The presence of the substance in bivalves was monitored in 5 areas, and it was detected all 5 valid areas adopting the detection limit of 0.6pg/g-wet, and the detection range was  $6.2 \sim 180 pg/g$ -wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 0.6 pg/g-wet, and the detection range was  $6.9 \sim 120 pg/g$ -wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 2 valid areas adopting the detection limit of 0.6pg/g-wet, and the detection range was  $150 \sim 170 pg/g$ -wet.

trans-heptachlor epoxide: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at 1 of the 5 valid areas adopting the detection limit of 3pg/g-wet, and none of the detected concentrations exceeded tr(4) pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was not detected at all 19 valid areas adopting the detection limit of 3pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 2 valid areas adopting the detection limit of 3pg/g-wet.

Stocktaking of the detection of heptachlor,  $\emph{cis}$ -heptachlor amd  $\emph{trans}$ -heptachlor in wildlife (bivalves, fish and birds) during FY2002~2012

|                    | M:41                                                                                                                                                                                                                 | C                                                                                                                                                           |                                                                                                                                                        |                                                                                                                           |                                                                                                                                                                 | Quantification                                                                                                                                                                                                                                                                                                                                                                                                                                           | Detection I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Frequency                                                                                                                         |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Heptachlor         | Monitored<br>year                                                                                                                                                                                                    | Geometric<br>mean*                                                                                                                                          | Median                                                                                                                                                 | Maximum                                                                                                                   | Minimum                                                                                                                                                         | [Detection]<br>limit                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Site                                                                                                                              |
|                    | 2002                                                                                                                                                                                                                 | tr(3.5)                                                                                                                                                     | 4.6                                                                                                                                                    | 15                                                                                                                        | nd                                                                                                                                                              | 4.2 [1.4]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28/38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/8                                                                                                                               |
|                    | 2003                                                                                                                                                                                                                 | tr(2.8)                                                                                                                                                     | tr(2.4)                                                                                                                                                | 14                                                                                                                        | nd                                                                                                                                                              | 6.6 [2.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4/6                                                                                                                               |
|                    | 2004                                                                                                                                                                                                                 | tr(3.4)                                                                                                                                                     | 5.2                                                                                                                                                    | 16                                                                                                                        | nd                                                                                                                                                              | 4.1 [1.4]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/7                                                                                                                               |
|                    | 2005                                                                                                                                                                                                                 | tr(2.9)                                                                                                                                                     | tr(2.9)                                                                                                                                                | 24                                                                                                                        | nd                                                                                                                                                              | 6.1 [2.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/7                                                                                                                               |
| Bivalves           | 2006                                                                                                                                                                                                                 | tr(4)                                                                                                                                                       | tr(4)                                                                                                                                                  | 20                                                                                                                        | nd                                                                                                                                                              | 6 [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/7                                                                                                                               |
| (pg/g-wet)         | 2007<br>2008                                                                                                                                                                                                         | tr(3)<br>tr(2)                                                                                                                                              | tr(3)<br>nd                                                                                                                                            | 12<br>9                                                                                                                   | nd<br>nd                                                                                                                                                        | 6 [2]<br>6 [2]                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20/31<br>13/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/7<br>5/7                                                                                                                        |
|                    | 2008                                                                                                                                                                                                                 | tr(4)                                                                                                                                                       | nd                                                                                                                                                     | 120                                                                                                                       | nd                                                                                                                                                              | 5 [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3/ /<br>4/7                                                                                                                       |
|                    | 2010                                                                                                                                                                                                                 | 3                                                                                                                                                           | tr(2)                                                                                                                                                  | 78                                                                                                                        | nd                                                                                                                                                              | 3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5/6                                                                                                                               |
|                    | 2011                                                                                                                                                                                                                 | 4                                                                                                                                                           | 4                                                                                                                                                      | 51                                                                                                                        | nd                                                                                                                                                              | 3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3/4                                                                                                                               |
|                    | 2012                                                                                                                                                                                                                 | tr(3)                                                                                                                                                       | tr(3)                                                                                                                                                  | 13                                                                                                                        | nd                                                                                                                                                              | 4[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4/5                                                                                                                               |
|                    | 2002                                                                                                                                                                                                                 | 4.2                                                                                                                                                         | 4.8                                                                                                                                                    | 20                                                                                                                        | nd                                                                                                                                                              | 4.2 [1.4]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57/70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12/14                                                                                                                             |
|                    | 2003                                                                                                                                                                                                                 | nd                                                                                                                                                          | nd                                                                                                                                                     | 11                                                                                                                        | nd                                                                                                                                                              | 6.6 [2.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29/70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8/14                                                                                                                              |
|                    | 2004                                                                                                                                                                                                                 | tr(2.3)                                                                                                                                                     | tr(2.1)                                                                                                                                                | 460                                                                                                                       | nd                                                                                                                                                              | 4.1 [1.4]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50/70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11/14                                                                                                                             |
|                    | 2005<br>2006                                                                                                                                                                                                         | nd<br>tr(2)                                                                                                                                                 | nd                                                                                                                                                     | 7.6                                                                                                                       | nd<br>nd                                                                                                                                                        | 6.1 [2.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8/16<br>8/16                                                                                                                      |
| Fish               | 2007                                                                                                                                                                                                                 | tr(2)                                                                                                                                                       | nd<br>nd                                                                                                                                               | 8<br>7                                                                                                                    | nd<br>nd                                                                                                                                                        | 6 [2]<br>6 [2]                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36/80<br>28/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/16                                                                                                                              |
| (pg/g-wet)         | 2007                                                                                                                                                                                                                 | nd                                                                                                                                                          | nd                                                                                                                                                     | 9                                                                                                                         | nd                                                                                                                                                              | 6 [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7/17                                                                                                                              |
|                    | 2009                                                                                                                                                                                                                 | tr(2)                                                                                                                                                       | nd                                                                                                                                                     | 8                                                                                                                         | nd                                                                                                                                                              | 5 [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11/18                                                                                                                             |
|                    | 2010                                                                                                                                                                                                                 | tr(2)                                                                                                                                                       | tr(2)                                                                                                                                                  | 5                                                                                                                         | nd                                                                                                                                                              | 3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12/18                                                                                                                             |
|                    | 2011                                                                                                                                                                                                                 | tr(1)                                                                                                                                                       | tr(1)                                                                                                                                                  | 7                                                                                                                         | nd                                                                                                                                                              | 3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13/18                                                                                                                             |
|                    | 2012                                                                                                                                                                                                                 | nd                                                                                                                                                          | tr(1)                                                                                                                                                  | 5                                                                                                                         | nd                                                                                                                                                              | 4[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/19                                                                                                                             |
|                    | 2002                                                                                                                                                                                                                 | tr(1.7)                                                                                                                                                     | tr(2.8)                                                                                                                                                | 5.2                                                                                                                       | nd                                                                                                                                                              | 4.2 [1.4]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/2                                                                                                                               |
|                    | 2003                                                                                                                                                                                                                 | nd                                                                                                                                                          | nd                                                                                                                                                     | nd                                                                                                                        | nd                                                                                                                                                              | 6.6 [2.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0/2                                                                                                                               |
|                    | 2004                                                                                                                                                                                                                 | nd                                                                                                                                                          | nd                                                                                                                                                     | tr(1.5)                                                                                                                   | nd                                                                                                                                                              | 4.1 [1.4]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2                                                                                                                               |
|                    | 2005                                                                                                                                                                                                                 | nd                                                                                                                                                          | nd                                                                                                                                                     | nď                                                                                                                        | nd                                                                                                                                                              | 6.1 [2.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0/2                                                                                                                               |
| D' 1               | 2006                                                                                                                                                                                                                 | nd                                                                                                                                                          | nd                                                                                                                                                     | nd                                                                                                                        | nd                                                                                                                                                              | 6 [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0/2                                                                                                                               |
| Birds              | 2007                                                                                                                                                                                                                 | nd                                                                                                                                                          | nd                                                                                                                                                     | nd                                                                                                                        | nd                                                                                                                                                              | 6 [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0/2                                                                                                                               |
| (pg/g-wet)         | 2008                                                                                                                                                                                                                 | nd                                                                                                                                                          | nd                                                                                                                                                     | nd                                                                                                                        | nd                                                                                                                                                              | 6 [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0/2                                                                                                                               |
|                    | 2009                                                                                                                                                                                                                 | nd                                                                                                                                                          | nd                                                                                                                                                     | nd                                                                                                                        | nd                                                                                                                                                              | 5 [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0/2                                                                                                                               |
|                    | 2010                                                                                                                                                                                                                 | nd                                                                                                                                                          | nd                                                                                                                                                     | tr(1)                                                                                                                     | nd                                                                                                                                                              | 3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2                                                                                                                               |
|                    | 2011                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                        | nd                                                                                                                        | nd                                                                                                                                                              | 3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0/1                                                                                                                               |
|                    | 2012                                                                                                                                                                                                                 | nd                                                                                                                                                          |                                                                                                                                                        | nd                                                                                                                        | nd                                                                                                                                                              | 4 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0/2                                                                                                                               |
| cis-Heptachlor     | Monitored                                                                                                                                                                                                            | Geometric                                                                                                                                                   | M 11                                                                                                                                                   |                                                                                                                           | M                                                                                                                                                               | Quantification                                                                                                                                                                                                                                                                                                                                                                                                                                           | Detection I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |
| epoxide            | year                                                                                                                                                                                                                 | mean*                                                                                                                                                       | Median                                                                                                                                                 | Maximum                                                                                                                   | Minimum                                                                                                                                                         | [Detection]<br>limit                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Site                                                                                                                              |
|                    | 2003                                                                                                                                                                                                                 | 44                                                                                                                                                          | 29                                                                                                                                                     | 880                                                                                                                       | 9.7                                                                                                                                                             | 6.9 [2.3]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/6                                                                                                                               |
|                    | 2004                                                                                                                                                                                                                 | 64                                                                                                                                                          | 34                                                                                                                                                     | 840                                                                                                                       | tr(9.8)                                                                                                                                                         | 9.9 [3.3]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7/7                                                                                                                               |
|                    | 2005                                                                                                                                                                                                                 | 49                                                                                                                                                          | • •                                                                                                                                                    |                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7/7                                                                                                                               |
|                    |                                                                                                                                                                                                                      | 42                                                                                                                                                          | 20                                                                                                                                                     | 590                                                                                                                       | 7.4                                                                                                                                                             | 3.5 [1.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 111                                                                                                                               |
| Bivalves           | 2006                                                                                                                                                                                                                 | 56                                                                                                                                                          | 23                                                                                                                                                     | 1,100                                                                                                                     | 8                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31/31<br>31/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7/7                                                                                                                               |
|                    | 2006<br>2007                                                                                                                                                                                                         | 56<br>37                                                                                                                                                    | 23<br>20                                                                                                                                               | 1,100<br>1,100                                                                                                            | 8<br>8                                                                                                                                                          | 3.5 [1.2]<br>4 [1]<br>4 [1]                                                                                                                                                                                                                                                                                                                                                                                                                              | 31/31<br>31/31<br>31/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7/7<br>7/7                                                                                                                        |
| (pg/g-wet)         | 2006<br>2007<br>2008                                                                                                                                                                                                 | 56<br>37<br>37                                                                                                                                              | 23<br>20<br>19                                                                                                                                         | 1,100<br>1,100<br>510                                                                                                     | 8<br>8<br>8                                                                                                                                                     | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]                                                                                                                                                                                                                                                                                                                                                                                                                     | 31/31<br>31/31<br>31/31<br>31/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/7<br>7/7<br>7/7                                                                                                                 |
| (pg/g-wet)         | 2006<br>2007<br>2008<br>2009                                                                                                                                                                                         | 56<br>37<br>37<br>59                                                                                                                                        | 23<br>20<br>19<br>33                                                                                                                                   | 1,100<br>1,100<br>510<br>380                                                                                              | 8<br>8<br>8<br>10                                                                                                                                               | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]                                                                                                                                                                                                                                                                                                                                                                                                            | 31/31<br>31/31<br>31/31<br>31/31<br>31/31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/7<br>7/7<br>7/7<br>7/7                                                                                                          |
| (pg/g-wet)         | 2006<br>2007<br>2008<br>2009<br>2010                                                                                                                                                                                 | 56<br>37<br>37<br>59<br>170                                                                                                                                 | 23<br>20<br>19<br>33<br>260                                                                                                                            | 1,100<br>1,100<br>510<br>380<br>1,800                                                                                     | 8<br>8<br>8<br>10<br>9.0                                                                                                                                        | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]                                                                                                                                                                                                                                                                                                                                                                                               | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/7<br>7/7<br>7/7<br>7/7<br>6/6                                                                                                   |
| (pg/g-wet)         | 2006<br>2007<br>2008<br>2009<br>2010<br>2011                                                                                                                                                                         | 56<br>37<br>37<br>59<br>170<br>55                                                                                                                           | 23<br>20<br>19<br>33<br>260<br>110                                                                                                                     | 1,100<br>1,100<br>510<br>380<br>1,800<br>320                                                                              | 8<br>8<br>10<br>9.0<br>3.9                                                                                                                                      | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]                                                                                                                                                                                                                                                                                                                                                                                  | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7/7<br>7/7<br>7/7<br>7/7<br>6/6<br>4/4                                                                                            |
| (pg/g-wet)         | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012                                                                                                                                                                 | 56<br>37<br>37<br>59<br>170<br>55<br>48                                                                                                                     | 23<br>20<br>19<br>33<br>260<br>110<br>120                                                                                                              | 1,100<br>1,100<br>510<br>380<br>1,800<br>320<br>180                                                                       | 8<br>8<br>10<br>9.0<br>3.9<br>6.2                                                                                                                               | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]                                                                                                                                                                                                                                                                                                                                                                     | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7/7<br>7/7<br>7/7<br>7/7<br>6/6<br>4/4<br>5/5                                                                                     |
| (pg/g-wet)         | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012                                                                                                                                                                 | 56<br>37<br>37<br>59<br>170<br>55<br>48                                                                                                                     | 23<br>20<br>19<br>33<br>260<br>110<br>120                                                                                                              | 1,100<br>1,100<br>510<br>380<br>1,800<br>320<br>180                                                                       | 8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0                                                                                                                        | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]                                                                                                                                                                                                                                                                                                                                                        | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7/7<br>7/7<br>7/7<br>7/7<br>6/6<br>4/4<br>5/5<br>14/14                                                                            |
| (pg/g-wet)         | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004                                                                                                                                                 | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51                                                                                                         | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49                                                                                                  | 1,100<br>1,100<br>510<br>380<br>1,800<br>320<br>180<br>320<br>620                                                         | 8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)                                                                                                             | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]                                                                                                                                                                                                                                                                                                                                           | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/7<br>7/7<br>7/7<br>7/7<br>6/6<br>4/4<br>5/5<br>14/14<br>14/14                                                                   |
| (pg/g-wet)         | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005                                                                                                                                         | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51                                                                                                         | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45                                                                                            | 1,100<br>1,100<br>510<br>380<br>1,800<br>320<br>180<br>320<br>620<br>390                                                  | 8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9                                                                                                      | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]                                                                                                                                                                                                                                                                                                                              | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/7<br>7/7<br>7/7<br>7/7<br>6/6<br>4/4<br>5/5<br>14/14<br>14/14<br>16/16                                                          |
|                    | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006                                                                                                                                 | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41                                                                                                   | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48                                                                                      | 1,100<br>1,100<br>510<br>380<br>1,800<br>320<br>180<br>320<br>620<br>390<br>270                                           | 8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9                                                                                                      | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]                                                                                                                                                                                                                                                                                                                     | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7/7<br>7/7<br>7/7<br>7/7<br>6/6<br>4/4<br>5/5<br>14/14<br>14/14<br>16/16                                                          |
| Fish               | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007                                                                                                                         | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41<br>42<br>43                                                                                       | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48                                                                                      | 1,100<br>1,100<br>510<br>380<br>1,800<br>320<br>180<br>320<br>620<br>390<br>270<br>390                                    | 8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9<br>4                                                                                                 | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]                                                                                                                                                                                                                                                                                                            | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80<br>80/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7/7<br>7/7<br>7/7<br>7/7<br>6/6<br>4/4<br>5/5<br>14/14<br>14/14<br>16/16<br>16/16                                                 |
|                    | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008                                                                                                                 | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41<br>42<br>43<br>39                                                                                 | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48<br>49<br>46                                                                          | 1,100<br>1,100<br>510<br>380<br>1,800<br>320<br>180<br>320<br>620<br>390<br>270<br>390<br>350                             | 8<br>8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9<br>4<br>tr(3)                                                                                   | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]                                                                                                                                                                                                                                                                                                   | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80<br>80/80<br>85/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/14 14/14 16/16 16/16 17/17                                                                         |
| Fish               | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009                                                                                                         | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41<br>42<br>43<br>39<br>41                                                                           | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48<br>49<br>46<br>50                                                                    | 1,100<br>1,100<br>510<br>380<br>1,800<br>320<br>180<br>320<br>620<br>390<br>270<br>390<br>350<br>310                      | 8<br>8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9<br>4<br>tr(3)<br>4                                                                              | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]                                                                                                                                                                                                                                                                                          | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80<br>80/80<br>85/85<br>90/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/14 16/16 16/16 16/16 17/17 18/18                                                                   |
| Fish               | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010                                                                                                 | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41<br>42<br>43<br>39<br>41<br>39                                                                     | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48<br>49<br>46<br>50<br>49                                                              | 1,100<br>1,100<br>510<br>380<br>1,800<br>320<br>180<br>320<br>620<br>390<br>270<br>390<br>350<br>310<br>230               | 8<br>8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9<br>4<br>tr(3)<br>4<br>5.0                                                                       | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]                                                                                                                                                                                                                                                                             | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80<br>80/80<br>85/85<br>90/90<br>18/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/14 16/16 16/16 16/16 17/17 18/18 18/18                                                             |
| Fish               | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011                                                                                         | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41<br>42<br>43<br>39<br>41<br>39<br>50                                                               | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48<br>49<br>46<br>50<br>49<br>62                                                        | 1,100<br>1,100<br>510<br>380<br>1,800<br>320<br>180<br>320<br>620<br>390<br>270<br>390<br>350<br>310<br>230<br>540        | 8<br>8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9<br>4<br>tr(3)<br>4<br>5.0<br>3.2                                                                | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]                                                                                                                                                                                                                                                                | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80<br>80/80<br>85/85<br>90/90<br>18/18<br>18/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/14 16/16 16/16 16/16 17/17 18/18 18/18                                                             |
| Fish               | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012                                                                                 | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41<br>42<br>43<br>39<br>41<br>39<br>50<br>41                                                         | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48<br>49<br>46<br>50<br>49<br>62<br>62                                                  | 1,100<br>1,100<br>510<br>380<br>1,800<br>320<br>180<br>320<br>620<br>390<br>270<br>390<br>350<br>310<br>230<br>540<br>120 | 8<br>8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9<br>4<br>tr(3)<br>4<br>5.0<br>3.2<br>6.9                                                         | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]                                                                                                                                                                                                                                                   | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80<br>80/80<br>85/85<br>90/90<br>18/18<br>18/18<br>19/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/14 16/16 16/16 16/16 17/17 18/18 18/18 18/18                                                       |
| Fish               | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012                                                                                 | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41<br>42<br>43<br>39<br>41<br>39<br>50<br>41                                                         | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48<br>49<br>46<br>50<br>49<br>62<br>62                                                  | 1,100 1,100 1,100 510 380 1,800 320 180 320 620 390 270 390 350 310 230 540 120 770                                       | 8<br>8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9<br>4<br>tr(3)<br>4<br>5.0<br>3.2<br>6.9                                                         | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]                                                                                                                                                                                                                                      | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80<br>80/80<br>85/85<br>90/90<br>18/18<br>18/18<br>19/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/14 16/16 16/16 16/16 17/17 18/18 18/18 18/18 19/19                                                 |
| Fish               | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012                                                                                 | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41<br>42<br>43<br>39<br>41<br>39<br>50<br>41<br>540<br>270                                           | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48<br>49<br>46<br>50<br>49<br>62<br>62<br>510<br>270                                    | 1,100 1,100 1,100 510 380 1,800 320 180 320 620 390 270 390 350 310 230 540 120 770 350                                   | 8<br>8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9<br>4<br>tr(3)<br>4<br>5.0<br>3.2<br>6.9                                                         | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]                                                                                                                                                                                                                         | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80<br>80/80<br>85/85<br>90/90<br>18/18<br>18/18<br>19/19<br>10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/14 16/16 16/16 16/16 17/17 18/18 18/18 18/18 19/19 2/2 2/2                                     |
| Fish               | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005                                                         | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41<br>42<br>43<br>39<br>41<br>39<br>50<br>41<br>540<br>270<br>370                                    | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48<br>49<br>46<br>50<br>49<br>62<br>62<br>510<br>270<br>340                             | 1,100 1,100 1,100 510 380 1,800 320 180 320 620 390 270 390 350 310 230 540 120 770 350 690                               | 8<br>8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9<br>4<br>tr(3)<br>4<br>5.0<br>3.2<br>6.9<br>370<br>190<br>250                                    | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]                                                                                                                                                                                                            | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80<br>80/80<br>85/85<br>90/90<br>18/18<br>18/18<br>19/19<br>10/10<br>10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/14 16/16 16/16 16/16 17/17 18/18 18/18 18/18 19/19 2/2 2/2 2/2                                 |
| Fish<br>(pg/g-wet) | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012                                                                                 | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41<br>42<br>43<br>39<br>41<br>39<br>50<br>41<br>540<br>270                                           | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48<br>49<br>46<br>50<br>49<br>62<br>62<br>510<br>270                                    | 1,100 1,100 1,100 510 380 1,800 320 180 320 620 390 270 390 350 310 230 540 120 770 350 690 650                           | 8<br>8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9<br>4<br>tr(3)<br>4<br>5.0<br>3.2<br>6.9                                                         | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]                                                                                                                                                                                                   | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80<br>80/80<br>85/85<br>90/90<br>18/18<br>18/18<br>19/19<br>10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/14 16/16 16/16 16/16 17/17 18/18 18/18 18/18 19/19 2/2 2/2 2/2 2/2                             |
| Fish<br>(pg/g-wet) | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008                                 | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41<br>42<br>43<br>39<br>41<br>39<br>50<br>41<br>540<br>270<br>370<br>330<br>280<br>370               | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48<br>49<br>46<br>50<br>49<br>62<br>62<br>510<br>270<br>340<br>310                      | 1,100 1,100 1,100 510 380 1,800 320 180 320 620 390 270 390 350 310 230 540 120 770 350 690 650 350 560                   | 8<br>8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9<br>4<br>tr(3)<br>4<br>5.0<br>3.2<br>6.9<br>370<br>190<br>250<br>240                             | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>4 [1]<br>4 [1]                                                                                                                                                                        | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80<br>80/80<br>85/85<br>90/90<br>18/18<br>18/18<br>19/19<br>10/10<br>10/10<br>10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/14 16/16 16/16 16/16 17/17 18/18 18/18 18/18 19/19 2/2 2/2 2/2                                 |
| Fish<br>(pg/g-wet) | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2006<br>2007<br>2008<br>2009 | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41<br>42<br>43<br>39<br>41<br>39<br>50<br>41<br>540<br>270<br>370<br>330<br>280<br>370<br>220        | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48<br>49<br>46<br>50<br>49<br>62<br>62<br>510<br>270<br>340<br>310<br>270<br>370<br>210 | 1,100 1,100 1,100 510 380 1,800 320 180 320 620 390 270 390 350 310 230 540 120 770 350 690 650 350 560 390               | 8<br>8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9<br>4<br>tr(3)<br>4<br>5.0<br>3.2<br>6.9<br>370<br>190<br>250<br>240<br>250<br>180<br>160        | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2 [2.3]<br>9 [3.3]<br>3 [1]<br>2 [3]<br>9 [3.3]<br>3 [1]<br>4 [1]<br>5 [2]<br>6 [2.3]<br>9 [3.3]<br>6 [2.3]<br>9 [3.3]<br>3 [1]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1] | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80<br>85/85<br>90/90<br>18/18<br>18/18<br>19/19<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 18/18 18/18 19/19 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 |
| Fish (pg/g-wet)    | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2010<br>2011<br>2012                 | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41<br>42<br>43<br>39<br>41<br>39<br>50<br>41<br>540<br>270<br>370<br>330<br>280<br>370<br>220<br>290 | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48<br>49<br>46<br>50<br>49<br>62<br>62<br>510<br>270<br>340<br>310<br>270<br>370        | 1,100 1,100 1,100 510 380 1,800 320 180 320 620 390 270 390 350 310 230 540 120 770 350 690 650 350 560 390 360           | 8<br>8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9<br>4<br>tr(3)<br>4<br>5.0<br>3.2<br>6.9<br>370<br>190<br>250<br>240<br>250<br>180<br>160<br>240 | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]                                                                                                                                 | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80<br>80/80<br>85/85<br>90/90<br>18/18<br>18/18<br>19/19<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10<br>1 | 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/14 16/16 16/16 16/16 17/17 18/18 18/18 18/18 19/19 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2         |
| Fish<br>(pg/g-wet) | 2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2006<br>2007<br>2008<br>2009 | 56<br>37<br>37<br>59<br>170<br>55<br>48<br>43<br>51<br>41<br>42<br>43<br>39<br>41<br>39<br>50<br>41<br>540<br>270<br>370<br>330<br>280<br>370<br>220        | 23<br>20<br>19<br>33<br>260<br>110<br>120<br>43<br>49<br>45<br>48<br>49<br>46<br>50<br>49<br>62<br>62<br>510<br>270<br>340<br>310<br>270<br>370<br>210 | 1,100 1,100 1,100 510 380 1,800 320 180 320 620 390 270 390 350 310 230 540 120 770 350 690 650 350 560 390               | 8<br>8<br>8<br>10<br>9.0<br>3.9<br>6.2<br>7.0<br>tr(3.3)<br>4.9<br>4<br>tr(3)<br>4<br>5.0<br>3.2<br>6.9<br>370<br>190<br>250<br>240<br>250<br>180<br>160        | 3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.4 [0.9]<br>2.0 [0.8]<br>1.5 [0.6]<br>6.9 [2.3]<br>9.9 [3.3]<br>3.5 [1.2]<br>4 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>2.1 [1]<br>4 [1]<br>5 [2]<br>3 [1]<br>4 [1]<br>5 [2]<br>6 [2.3]<br>9 [3.3]<br>9 [3.3]<br>1.5 [0.6]                                                                  | 31/31<br>31/31<br>31/31<br>31/31<br>31/31<br>6/6<br>4/4<br>5/5<br>70/70<br>70/70<br>80/80<br>80/80<br>85/85<br>90/90<br>18/18<br>18/18<br>19/19<br>10/10<br>10/10<br>10/10<br>10/10<br>10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 18/18 19/19 2/2 2/2 2/2 2/2 2/2 2/2 2/2           |

| trans-Heptachlor | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
|------------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| epoxide          | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                  | 2003      | nd        | nd     | 48      | nd      | 13 [4.4]             | 5/30        | 1/6       |
|                  | 2004      | nd        | nd     | 55      | nd      | 12 [4.0]             | 9/31        | 2/7       |
|                  | 2005      | nd        | nd     | 37      | nd      | 23 [7.5]             | 5/31        | 1/7       |
|                  | 2006      | nd        | nd     | 45      | nd      | 13 [5]               | 5/31        | 1/7       |
| Bivalves         | 2007      | nd        | nd     | 61      | nd      | 13 [5]               | 5/31        | 1/7       |
| (pg/g-wet)       | 2008      | nd        | nd     | 33      | nd      | 10 [4]               | 5/31        | 1/7       |
|                  | 2009      | tr(3)     | nd     | 24      | nd      | 8 [3]                | 13/31       | 3/7       |
|                  | 2010      | 3         | tr(2)  | 24      | nd      | 3 [1]                | 3/6         | 3/6       |
|                  | 2011      | nd        | nd     | tr(6)   | nd      | 7 [3]                | 1/4         | 1/4       |
|                  | 2012      | nd        | nd     | tr(4)   | nd      | 8 [3]                | 1/5         | 1/5       |
|                  | 2003      | nd        | nd     | nd      | nd      | 13 [4.4]             | 0/70        | 0/14      |
|                  | 2004      | nd        | nd     | tr(10)  | nd      | 12 [4.0]             | 2/70        | 2/14      |
|                  | 2005      | nd        | nd     | nd      | nd      | 23 [7.5]             | 0/80        | 0/16      |
|                  | 2006      | nd        | nd     | nd      | nd      | 13 [5]               | 0/80        | 0/16      |
| Fish             | 2007      | nd        | nd     | nd      | nd      | 13 [5]               | 0/80        | 0/16      |
| (pg/g-wet)       | 2008      | nd        | nd     | nd      | nd      | 10 [4]               | 0/85        | 0/17      |
|                  | 2009      | nd        | nd     | nd      | nd      | 8 [3]                | 0/90        | 0/18      |
|                  | 2010      | nd        | nd     | nd      | nd      | 3 [1]                | 0/18        | 0/18      |
|                  | 2011      | nd        | nd     | nd      | nd      | 7 [3]                | 0/18        | 0/18      |
|                  | 2012      | nd        | nd     | nd      | nd      | 8 [3]                | 0/19        | 0/19      |
|                  | 2003      | nd        | nd     | nd      | nd      | 13 [4.4]             | 0/10        | 0/2       |
|                  | 2004      | nd        | nd     | nd      | nd      | 12 [4.0]             | 0/10        | 0/2       |
|                  | 2005      | nd        | nd     | nd      | nd      | 23 [7.5]             | 0/10        | 0/2       |
|                  | 2006      | nd        | nd     | nd      | nd      | 13 [5]               | 0/10        | 0/2       |
| Birds            | 2007      | nd        | nd     | nd      | nd      | 13 [5]               | 0/10        | 0/2       |
| (pg/g-wet)       | 2008      | nd        | nd     | nd      | nd      | 10 [4]               | 0/10        | 0/2       |
|                  | 2009      | nd        | nd     | nd      | nd      | 8 [3]                | 0/10        | 0/2       |
|                  | 2010      | nd        | nd     | nd      | nd      | 3 [1]                | 0/2         | 0/2       |
|                  | 2011      |           |        | nd      | nd      | 7 [3]                | 0/1         | 0/1       |
|                  | 2012      | nd        |        | nd      | nd      | 8 [3]                | 0/2         | 0/2       |

(Note) "\*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

### <Air>

Heptachlor: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of 0.14pg/m³, and the detection range was 0.46 ~ 58 pg/m³. For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 35 of the 36 valid sites adopting the detection limit of 0.14pg/m³, and the detection value was 20 pg/m³. As results of the inter-annual trend analysis from FY 2002 to FY 2012, reduction tendencies in specimens at the warm season and the cold season were identified as statistically significant.

cis-heptachlor epoxide: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.02 \,\mathrm{pg/m^3}$ , and the detection range was  $0.37 \sim 6.3 \,\mathrm{pg/m^3}$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.02 \,\mathrm{pg/m^3}$ , and the detection range was  $0.30 \sim 1.9 \,\mathrm{pg/m^3}$ .

trans-heptachlor epoxide: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at 8 of the 36 valid sites adopting the detection limit of  $0.05 \, \mathrm{pg/m^3}$ , and none of the detected concentrations exceeded tr(0.08) pg/gm<sup>3</sup>. For air in the cold season, the presence of the substance was monitored at 36 sites, and it was not detected at all 36 valid sites adopting the detection limit of  $0.05 \, \mathrm{pg/m^3}$ .

Stocktaking of the detection of heptachlor, cis-heptachlor epocide and trans-heptachlor epocide in air during FY2002~2012

| .002 2012          |                                                                                                                                                                                  | Geometric                                        |                                                          |                                                           |                                                      | Quantification                              | Detection 1                                                 | Frequency                                                   |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Heptachlor         | Monitored year                                                                                                                                                                   | mean                                             | Median                                                   | Maximum                                                   | Minimum                                              | [Detection]<br>limit                        | Sample                                                      | Site                                                        |
|                    | 2002                                                                                                                                                                             | 11                                               | 14                                                       | 220                                                       | 0.20                                                 | 0.12 [0.04]                                 | 102/102                                                     | 34/34                                                       |
|                    | 2003 Warm season                                                                                                                                                                 | 27                                               | 41                                                       | 240                                                       | 1.1                                                  | 0.25 [0.085]                                | 35/35                                                       | 35/35                                                       |
|                    | 2003 Cold season                                                                                                                                                                 | 10                                               | 16                                                       | 65                                                        | 0.39                                                 |                                             | 34/34                                                       | 34/34                                                       |
|                    | 2004 Warm season                                                                                                                                                                 | 23                                               | 36                                                       | 200                                                       | 0.46                                                 | 0.23 [0.078]                                | 37/37                                                       | 37/37                                                       |
|                    | 2004 Cold season                                                                                                                                                                 | 11                                               | 18                                                       | 100                                                       | 0.53                                                 |                                             | 37/37                                                       | 37/37                                                       |
|                    | 2005 Warm season                                                                                                                                                                 | 25                                               | 29                                                       | 190                                                       | 1.1                                                  | 0.16 [0.054]                                | 37/37                                                       | 37/37                                                       |
|                    | 2005 Cold season                                                                                                                                                                 | 6.5                                              | 7.9                                                      | 61                                                        | 0.52                                                 |                                             | 37/37                                                       | 37/37                                                       |
|                    | 2006 Warm season                                                                                                                                                                 | 20                                               | 27                                                       | 160                                                       | 0.88                                                 | 0.11 [0.04]                                 | 37/37                                                       | 37/37                                                       |
|                    | 2006 Cold season                                                                                                                                                                 | 6.8                                              | 7.2                                                      | 56                                                        | 0.32                                                 |                                             | 37/37                                                       | 37/37                                                       |
| Air                | 2007 Warm season                                                                                                                                                                 | 22                                               | 27                                                       | 320                                                       | 1.1                                                  | 0.07 [0.03]                                 | 36/36                                                       | 36/36                                                       |
| $(pg/m^3)$         | 2007 Cold season                                                                                                                                                                 | 6.3                                              | 8.0                                                      | 74                                                        | 0.42                                                 |                                             | 36/36                                                       | 36/36                                                       |
| (Pg/III )          | 2008 Warm season                                                                                                                                                                 | 20                                               | 31                                                       | 190                                                       | 0.92                                                 | 0.06 [0.02]                                 | 37/37                                                       | 37/37                                                       |
|                    | 2008 Cold season                                                                                                                                                                 | 7.5                                              | 12                                                       | 60                                                        | 0.51                                                 |                                             | 37/37                                                       | 37/37                                                       |
|                    | 2009 Warm season                                                                                                                                                                 | 18                                               | 30                                                       | 110                                                       | 0.48                                                 | 0.04 [0.01]                                 | 37/37                                                       | 37/37                                                       |
|                    | 2009 Cold season                                                                                                                                                                 | 6.3                                              | 7.8                                                      | 48                                                        | 0.15                                                 |                                             | 37/37                                                       | 37/37                                                       |
|                    | 2010 Warm season                                                                                                                                                                 | 17                                               | 26                                                       | 160                                                       | 0.69                                                 | 0.11 [0.04]                                 | 37/37                                                       | 37/37                                                       |
|                    | 2010 Cold season                                                                                                                                                                 | 7.2                                              | 9.5                                                      | 53                                                        | 0.22                                                 |                                             | 37/37                                                       | 37/37                                                       |
|                    | 2011 Warm season                                                                                                                                                                 | 16                                               | 25                                                       | 110                                                       | 0.73                                                 | 0.30 [0.099]                                | 35/35                                                       | 35/35                                                       |
|                    | 2011 Cold season                                                                                                                                                                 | 6.1                                              | 10                                                       | 56                                                        | tr(0.13)                                             |                                             | 37/37                                                       | 37/37                                                       |
|                    | 2012 Warm season                                                                                                                                                                 | 13                                               | 21                                                       | 58                                                        | 0.46                                                 | 0.41 [0.14]                                 | 36/36                                                       | 36/36                                                       |
|                    | 2012 Warm season                                                                                                                                                                 | 3.2                                              | 4.9                                                      | 20                                                        | nd                                                   |                                             | 35/36                                                       | 35/36                                                       |
| cis-               |                                                                                                                                                                                  | Geometric                                        |                                                          |                                                           |                                                      | Quantification                              | Detection 1                                                 | Frequency                                                   |
| Heptachlor epoxide | Monitored year                                                                                                                                                                   | mean                                             | Median                                                   | Maximum                                                   | Minimum                                              | [Detection]<br>limit                        | Sample                                                      | Site                                                        |
|                    | 2002                                                                                                                                                                             | 3.5                                              | 3.5                                                      | 28                                                        | 0.45                                                 | 0.015 [0.0048]                              | 35/35                                                       | 35/35                                                       |
|                    | 2003 Warm season                                                                                                                                                                 | 1.3                                              | 1.3                                                      | 6.6                                                       | 0.49                                                 | 0.013 [0.0048]                              | 34/34                                                       | 34/34                                                       |
|                    | 2003 Cold season                                                                                                                                                                 | 2.8                                              | 2.9                                                      | 9.7                                                       | 0.65                                                 | 0.052 [0.017]                               | 37/37                                                       | 37/37                                                       |
|                    | 2004 Warm season                                                                                                                                                                 | 1.1                                              | 1.1                                                      | 7.0                                                       | 0.44                                                 | 0.052 [0.017]                               | 37/37                                                       | 37/37                                                       |
|                    | 2004 Cold season                                                                                                                                                                 | 1.5                                              | 1.7                                                      | 11                                                        | tr(0.10)                                             | 0.12 [0.044]                                | 37/37                                                       | 37/37                                                       |
|                    | 2005 Warm season                                                                                                                                                                 | 0.91                                             | 0.81                                                     | 2.9                                                       | 0.43                                                 | 0.12 [0.044]                                | 37/37                                                       | 37/37                                                       |
|                    | 2005 Cold season                                                                                                                                                                 | 1.7                                              | 2.0                                                      | 6.7                                                       | 0.13                                                 | 0.11 [0.04]                                 | 37/37                                                       | 37/37                                                       |
|                    | 2006 Warm season                                                                                                                                                                 | 0.74                                             | 0.88                                                     | 3.2                                                       | nd                                                   | 0.11 [0.04]                                 | 36/37                                                       | 36/37                                                       |
|                    | 2006 Cold season                                                                                                                                                                 | 2.0                                              | 2.0                                                      | 1.2                                                       | 0.54                                                 | 0.02.50.013                                 | 36/36                                                       | 36/36                                                       |
|                    |                                                                                                                                                                                  | 2.9                                              | 2.8                                                      | 13                                                        |                                                      |                                             |                                                             | 2 ( 12 (                                                    |
| Air                | 2007 Warm season                                                                                                                                                                 | 0.93                                             | 0.82                                                     | 3.0                                                       | 0.41                                                 | 0.03 [0.01]                                 | 36/36                                                       | 36/36                                                       |
|                    |                                                                                                                                                                                  | 0.93<br>2.4                                      | <u>0.82</u><br>2.2                                       | 3.0<br>9.9                                                | 0.41 0.53                                            |                                             | 37/37                                                       | 37/37                                                       |
| Air<br>(pg/m³)     | 2007 Warm season<br>2007 Cold season<br>2008 Warm season                                                                                                                         | 0.93<br>2.4<br>0.91                              | 0.82<br>2.2<br>0.84                                      | 3.0<br>9.9<br>3.0                                         | 0.41<br>0.53<br>0.37                                 | 0.03 [0.01]                                 | 37/37<br>37/37                                              | 37/37<br>37/37                                              |
|                    | 2007 Warm season<br>2007 Cold season<br>2008 Warm season<br>2008 Cold season                                                                                                     | 0.93<br>2.4<br>0.91<br>2.5                       | 0.82<br>2.2<br>0.84<br>2.6                               | 3.0<br>9.9<br>3.0<br>16                                   | 0.41<br>0.53<br>0.37<br>0.37                         | 0.022 [0.008]                               | 37/37<br>37/37<br>37/37                                     | 37/37<br>37/37<br>37/37                                     |
|                    | 2007 Warm season<br>2007 Cold season<br>2008 Warm season<br>2008 Cold season<br>2009 Warm season                                                                                 | 0.93<br>2.4<br>0.91<br>2.5<br>1.0                | 0.82<br>2.2<br>0.84<br>2.6<br>0.91                       | 3.0<br>9.9<br>3.0<br>16<br>3.8                            | 0.41<br>0.53<br>0.37<br>0.37<br>0.42                 |                                             | 37/37<br>37/37<br>37/37<br>37/37                            | 37/37<br>37/37<br>37/37<br>37/37                            |
|                    | 2007 Warm season<br>2007 Cold season<br>2008 Warm season<br>2008 Cold season<br>2009 Warm season<br>2009 Cold season                                                             | 0.93<br>2.4<br>0.91<br>2.5<br>1.0<br>2.3         | 0.82<br>2.2<br>0.84<br>2.6<br>0.91<br>2.3                | 3.0<br>9.9<br>3.0<br>16<br>3.8<br>10                      | 0.41<br>0.53<br>0.37<br>0.37<br>0.42<br>0.38         | 0.022 [0.008]                               | 37/37<br>37/37<br>37/37<br>37/37<br>37/37                   | 37/37<br>37/37<br>37/37<br>37/37<br>37/37                   |
|                    | 2007 Warm season<br>2007 Cold season<br>2008 Warm season<br>2008 Cold season<br>2009 Warm season<br>2009 Cold season<br>2010 Warm season                                         | 0.93<br>2.4<br>0.91<br>2.5<br>1.0<br>2.3<br>0.93 | 0.82<br>2.2<br>0.84<br>2.6<br>0.91<br>2.3<br>0.85        | 3.0<br>9.9<br>3.0<br>16<br>3.8<br>10<br>4.3               | 0.41<br>0.53<br>0.37<br>0.37<br>0.42<br>0.38<br>0.33 | 0.022 [0.008]                               | 37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37          | 37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37          |
|                    | 2007 Warm season<br>2007 Cold season<br>2008 Warm season<br>2008 Cold season<br>2009 Warm season<br>2009 Cold season<br>2010 Warm season<br>2011 Warm season                     | 0.93<br>2.4<br>0.91<br>2.5<br>1.0<br>2.3<br>0.93 | 0.82<br>2.2<br>0.84<br>2.6<br>0.91<br>2.3<br>0.85<br>2.3 | 3.0<br>9.9<br>3.0<br>16<br>3.8<br>10<br>4.3<br>6.0        | 0.41<br>0.53<br>0.37<br>0.37<br>0.42<br>0.38<br>0.33 | 0.022 [0.008]<br>0.03 [0.01]<br>0.02 [0.01] | 37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>35/35 | 37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>35/35 |
|                    | 2007 Warm season<br>2007 Cold season<br>2008 Warm season<br>2008 Cold season<br>2009 Warm season<br>2009 Cold season<br>2010 Warm season<br>2011 Warm season<br>2011 Cold season | 0.93<br>2.4<br>0.91<br>2.5<br>1.0<br>2.3<br>0.93 | 0.82<br>2.2<br>0.84<br>2.6<br>0.91<br>2.3<br>0.85        | 3.0<br>9.9<br>3.0<br>16<br>3.8<br>10<br>4.3<br>6.0<br>2.8 | 0.41<br>0.53<br>0.37<br>0.37<br>0.42<br>0.38<br>0.33 | 0.022 [0.008]                               | 37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37          | 37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37          |
|                    | 2007 Warm season<br>2007 Cold season<br>2008 Warm season<br>2008 Cold season<br>2009 Warm season<br>2009 Cold season<br>2010 Warm season<br>2011 Warm season                     | 0.93<br>2.4<br>0.91<br>2.5<br>1.0<br>2.3<br>0.93 | 0.82<br>2.2<br>0.84<br>2.6<br>0.91<br>2.3<br>0.85<br>2.3 | 3.0<br>9.9<br>3.0<br>16<br>3.8<br>10<br>4.3<br>6.0        | 0.41<br>0.53<br>0.37<br>0.37<br>0.42<br>0.38<br>0.33 | 0.022 [0.008]<br>0.03 [0.01]<br>0.02 [0.01] | 37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>35/35 | 37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>37/37<br>35/35 |

| trans-             |                  | Geometric |           |           |         | Quantification       | Detection 1 | Frequency |
|--------------------|------------------|-----------|-----------|-----------|---------|----------------------|-------------|-----------|
| Heptachlor epoxide | Monitored year   | mean      | Median    | Maximum   | Minimum | [Detection]<br>limit | Sample      | Site      |
|                    | 2003 Warm season | tr(0.036) | tr(0.038) | 0.30      | nd      | 0.000 [0.022]        | 18/35       | 18/35     |
|                    | 2003 Cold season | nd        | nd        | tr(0.094) | nd      | 0.099 [0.033]        | 3/34        | 3/34      |
|                    | 2004 Warm season | nd        | nd        | tr(0.38)  | nd      | 0.6 [0.2]            | 4/37        | 4/37      |
|                    | 2004 Cold season | nd        | nd        | nd        | nd      | 0.0 [0.2]            | 0/37        | 0/37      |
|                    | 2005 Warm season | tr(0.10)  | tr(0.12)  | 1.2       | nd      | 0.16 [0.05]          | 27/37       | 27/37     |
|                    | 2005 Cold season | nd        | nd        | 0.32      | nd      | 0.10 [0.03]          | 3/37        | 3/37      |
|                    | 2006 Warm season | nd        | nd        | 0.7       | nd      | 0.3 [0.1]            | 2/37        | 2/37      |
|                    | 2006 Cold season | nd        | nd        | tr(0.1)   | nd      | 0.5 [0.1]            | 1/37        | 1/37      |
|                    | 2007 Warm season | nd        | nd        | 0.16      | nd      | 0.14 [0.06]          | 8/36        | 8/36      |
| Air                | 2007 Cold season | nd        | nd        | tr(0.06)  | nd      | 0.14 [0.06]          | 1/36        | 1/36      |
| $(pg/m^3)$         | 2008 Warm season | nd        | nd        | 0.17      | nd      | 0.16 [0.06]          | 6/37        | 6/37      |
|                    | 2008 Cold season | nd        | nd        | nd        | nd      | 0.16 [0.06]          | 0/37        | 0/37      |
|                    | 2009 Warm season | nd        | nd        | 0.18      | nd      | 0.14 [0.05]          | 10/37       | 10/37     |
|                    | 2009 Cold season | nd        | nd        | tr(0.06)  | nd      | 0.14 [0.05]          | 1/37        | 1/37      |
|                    | 2010 Warm season | nd        | nd        | 0.16      | nd      | 0.17 [0.07]          | 6/37        | 6/37      |
|                    | 2010 Warm season | nd        | nd        | nd        | nd      | 0.16 [0.06]          | 0/37        | 0/37      |
|                    | 2011 Warm season | nd        | nd        | 0.14      | nd      | 0.12 [0.05]          | 5/35        | 5/35      |
|                    | 2011 Cold season | nd        | nd        | nd        | nd      | 0.13 [0.05]          | 0/37        | 0/37      |
|                    | 2012 Warm season | nd        | nd        | tr(0.08)  | nd      | 0.12 [0.05]          | 8/36        | 8/36      |
|                    | 2012 Warm season | nd        | nd        | nd        | nd      | 0.12 [0.05]          | 0/36        | 0/36      |

# [9] Toxaphenes (reference)

· History and state of monitoring

Toxaphenes are a group of organochlorine insecticides. No domestic record of manufacture/import of the substances was reported since those were historically never registrated under the Agricultural Chemicals Regulation Law. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002.

In previous monitoring series before FY 2001, the substance was measured in FY 1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Parlar-26, Parlar-50 and Parlar-62 had been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY 2003 to FY 2009.

No monitoring was conducted from FY 2010 to FY 2012. For reference, the monitoring results up to FY 2009 are given below.

- Monitoring results until FY 2009
- o Parlar-26, Parlar-50, and Parlar-62

#### <Surface Water>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in surface water during FY2003~2009

|               | Monitored | Geometric |        |         |         | Quantification       | Detection l | requency |
|---------------|-----------|-----------|--------|---------|---------|----------------------|-------------|----------|
| Parlar-26     | year      | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
|               | 2003      | nd        | nd     | nd      | nd      | 40 [20]              | 0/36        | 0/36     |
|               | 2004      | nd        | nd     | nd      | nd      | 9 [3]                | 0/38        | 0/38     |
| Surface Water | 2005      | nd        | nd     | nd      | nd      | 10 [4]               | 0/47        | 0/47     |
| (pg/L)        | 2006      | nd        | nd     | nd      | nd      | 16 [5]               | 0/48        | 0/48     |
| (pg/L)        | 2007      | nd        | nd     | nd      | nd      | 20 [5]               | 0/48        | 0/48     |
|               | 2008      | nd        | nd     | nd      | nd      | 8 [3]                | 0/48        | 0/48     |
|               | 2009      | nd        | nd     | nd      | nd      | 5 [2]                | 0/49        | 0/49     |
|               | Monitored | Geometric |        |         |         | Quantification       | Detection l | requency |
| Parlar-50     | year      | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
|               | 2003      | nd        | nd     | nd      | nd      | 70 [30]              | 0/36        | 0/36     |
|               | 2004      | nd        | nd     | nd      | nd      | 20 [7]               | 0/38        | 0/38     |
| C             | 2005      | nd        | nd     | nd      | nd      | 20 [5]               | 0/47        | 0/47     |
| Surface Water | 2006      | nd        | nd     | nd      | nd      | 16 [5]               | 0/48        | 0/48     |
| (pg/L)        | 2007      | nd        | nd     | nd      | nd      | 9 [3]                | 0/48        | 0/48     |
|               | 2008      | nd        | nd     | nd      | nd      | 7 [3]                | 0/48        | 0/48     |
|               | 2009      | nd        | nd     | nd      | nd      | 7 [3]                | 0/49        | 0/49     |
|               | Monitored | Geometric |        |         |         | Quantification       | Detection l | requency |
| Parlar-62     | year      | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
|               | 2003      | nd        | nd     | nd      | nd      | 300 [90]             | 0/36        | 0/36     |
|               | 2004      | nd        | nd     | nd      | nd      | 90 [30]              | 0/38        | 0/38     |
| Surface Water | 2005      | nd        | nd     | nd      | nd      | 70[30]               | 0/47        | 0/47     |
|               | 2006      | nd        | nd     | nd      | nd      | 60 [20]              | 0/48        | 0/48     |
| (pg/L)        | 2007      | nd        | nd     | nd      | nd      | 70 [30]              | 0/48        | 0/48     |
|               | 2008      | nd        | nd     | nd      | nd      | 40 [20]              | 0/48        | 0/48     |
|               | 2009      | nd        | nd     | nd      | nd      | 40 [20]              | 0/49        | 0/49     |

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in sediment during FY2003~2009

|            | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
|------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| Parlar-26  | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|            | 2003      | nd        | nd     | nd      | nd      | 90 [30]              | 0/186       | 0/62      |
|            | 2004      | nd        | nd     | nd      | nd      | 60 [20]              | 0/189       | 0/63      |
| Sediment   | 2005      | nd        | nd     | nd      | nd      | 60 [30]              | 0/189       | 0/63      |
| (pg/g-dry) | 2006      | nd        | nd     | nd      | nd      | 12 [4]               | 0/192       | 0/64      |
| (pg/g-dry) | 2007      | nd        | nd     | nd      | nd      | 7 [3]                | 0/192       | 0/64      |
|            | 2008      | nd        | nd     | nd      | nd      | 12 [5]               | 0/192       | 0/64      |
|            | 2009      | nd        | nd     | nd      | nd      | 10 [4]               | 0/192       | 0/64      |
|            | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
| Parlar-50  | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|            | 2003      | nd        | nd     | nd      | nd      | 200 [50]             | 0/186       | 0/62      |
|            | 2004      | nd        | nd     | nd      | nd      | 60 [20]              | 0/189       | 0/63      |
| Sediment   | 2005      | nd        | nd     | nd      | nd      | 90 [40]              | 0/189       | 0/63      |
| (pg/g-dry) | 2006      | nd        | nd     | nd      | nd      | 24 [7]               | 0/192       | 0/64      |
| (pg/g-dry) | 2007      | nd        | nd     | nd      | nd      | 30 [10]              | 0/192       | 0/64      |
|            | 2008      | nd        | nd     | nd      | nd      | 17 [6]               | 0/192       | 0/64      |
|            | 2009      | nd        | nd     | nd      | nd      | 12 [5]               | 0/192       | 0/64      |
|            | Monitored | Geometric |        |         |         | Quantification       | Detection l | Frequency |
| Parlar-62  | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|            | 2003      | nd        | nd     | nd      | nd      | 4,000 [2,000]        | 0/186       | 0/62      |
|            | 2004      | nd        | nd     | nd      | nd      | 2,000 [400]          | 0/189       | 0/63      |
| Sediment   | 2005      | nd        | nd     | nd      | nd      | 2,000 [700]          | 0/189       | 0/63      |
|            | 2006      | nd        | nd     | nd      | nd      | 210 [60]             | 0/192       | 0/64      |
| (pg/g-dry) | 2007      | nd        | nd     | nd      | nd      | 300 [70]             | 0/192       | 0/64      |
|            | 2008      | nd        | nd     | nd      | nd      | 90 [40]              | 0/192       | 0/64      |
|            | 2009      | nd        | nd     | nd      | nd      | 80 [30]              | 0/192       | 0/64      |

<sup>(</sup>Note) "\*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~FY2009.

# <Wildlife>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in wildlife (bivalves, fish and birds) during FY2003~2009

|            | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
|------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| Parlar-26  | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|            | 2003      | nd        | nd     | tr(39)  | nd      | 45 [15]              | 11/30       | 3/6       |
|            | 2004      | nd        | nd     | tr(32)  | nd      | 42 [14]              | 15/31       | 3/7       |
| Bivalves   | 2005      | nd        | nd     | tr(28)  | nd      | 47 [16]              | 7/31        | 4/7       |
| (pg/g-wet) | 2006      | tr(9)     | tr(12) | 25      | nd      | 18 [7]               | 21/31       | 5/7       |
| (pg/g-wet) | 2007      | tr(7)     | tr(8)  | 20      | nd      | 10 [4]               | 26/31       | 6/7       |
|            | 2008      | tr(7)     | tr(8)  | 22      | nd      | 9 [3]                | 27/31       | 7/7       |
|            | 2009      | 9         | 9      | 23      | nd      | 7 [3]                | 27/31       | 7/7       |
|            | 2003      | tr(28)    | tr(24) | 810     | nd      | 45 [15]              | 44/70       | 11/14     |
|            | 2004      | 43        | tr(41) | 1,000   | nd      | 42 [14]              | 54/70       | 13/14     |
| Fish       | 2005      | tr(42)    | 53     | 900     | nd      | 47 [16]              | 50/75       | 13/16     |
|            | 2006      | 41        | 44     | 880     | nd      | 18 [7]               | 70/80       | 15/16     |
| (pg/g-wet) | 2007      | 24        | 32     | 690     | nd      | 10 [4]               | 64/80       | 14/16     |
|            | 2008      | 35        | 33     | 730     | nd      | 9 [3]                | 79/85       | 17/17     |
|            | 2009      | 25        | 20     | 690     | nd      | 7 [3]                | 82/90       | 18/18     |
|            | 2003      | 120       | 650    | 2,500   | nd      | 45 [15]              | 5/10        | 1/2       |
|            | 2004      | 70        | 340    | 810     | nd      | 42 [14]              | 5/10        | 1/2       |
| D: 1       | 2005      | 86        | 380    | 1,200   | nd      | 47 [16]              | 5/10        | 1/2       |
| Birds      | 2006      | 48        | 290    | 750     | nd      | 18 [7]               | 5/10        | 1/2       |
| (pg/g-wet) | 2007      | 34        | 280    | 650     | nd      | 10 [4]               | 5/10        | 1/2       |
|            | 2008      | 38        | 320    | 1,200   | nd      | 9 [3]                | 6/10        | 2/2       |
|            | 2009      | 26        | 200    | 500     | nd      | 7 [3]                | 6/10        | 2/2       |

| Dorlar 50                                   | Monitored                                                                                                                | Geometric                                                                       |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Quantification                                                                                                                                                                          | Detection l                                                                               | Frequency                                                                                   |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Parlar-50                                   | year                                                                                                                     | mean*                                                                           | Median                                                                                                                                                                                             | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum                                         | [Detection]<br>limit                                                                                                                                                                    | Sample                                                                                    | Site                                                                                        |
|                                             | 2003                                                                                                                     | tr(12)                                                                          | tr(12)                                                                                                                                                                                             | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nd                                              | 33 [11]                                                                                                                                                                                 | 17/30                                                                                     | 4/6                                                                                         |
|                                             | 2004                                                                                                                     | tr(15)                                                                          | nd                                                                                                                                                                                                 | tr(45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd                                              | 46 [15]                                                                                                                                                                                 | 15/31                                                                                     | 3/7                                                                                         |
| D:1                                         | 2005                                                                                                                     | nd                                                                              | nd                                                                                                                                                                                                 | tr(38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd                                              | 54 [18]                                                                                                                                                                                 | 9/31                                                                                      | 4/7                                                                                         |
| Bivalves                                    | 2006                                                                                                                     | tr(10)                                                                          | 14                                                                                                                                                                                                 | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nd                                              | 14 [5]                                                                                                                                                                                  | 24/31                                                                                     | 6/7                                                                                         |
| (pg/g-wet)                                  | 2007                                                                                                                     | 9                                                                               | 10                                                                                                                                                                                                 | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nd                                              | 9 [3]                                                                                                                                                                                   | 27/31                                                                                     | 7/7                                                                                         |
|                                             | 2008                                                                                                                     | tr(7)                                                                           | tr(6)                                                                                                                                                                                              | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nd                                              | 10 [4]                                                                                                                                                                                  | 23/31                                                                                     | 6/7                                                                                         |
|                                             | 2009                                                                                                                     | 9                                                                               | 9                                                                                                                                                                                                  | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nd                                              | 8 [3]                                                                                                                                                                                   | 27/31                                                                                     | 7/7                                                                                         |
|                                             | 2003                                                                                                                     | 35                                                                              | 34                                                                                                                                                                                                 | 1,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd                                              | 33 [11]                                                                                                                                                                                 | 55/70                                                                                     | 14/14                                                                                       |
|                                             | 2004                                                                                                                     | 60                                                                              | 61                                                                                                                                                                                                 | 1,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd                                              | 46 [15]                                                                                                                                                                                 | 59/70                                                                                     | 14/14                                                                                       |
| Fish                                        | 2005                                                                                                                     | tr(52)                                                                          | 66                                                                                                                                                                                                 | 1,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd                                              | 54 [18]                                                                                                                                                                                 | 55/80                                                                                     | 13/16                                                                                       |
|                                             | 2006                                                                                                                     | 56                                                                              | 52                                                                                                                                                                                                 | 1,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd                                              | 14 [5]                                                                                                                                                                                  | 79/80                                                                                     | 16/16                                                                                       |
| (pg/g-wet)                                  | 2007                                                                                                                     | 35                                                                              | 41                                                                                                                                                                                                 | 1,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd                                              | 9 [3]                                                                                                                                                                                   | 77/80                                                                                     | 16/16                                                                                       |
|                                             | 2008                                                                                                                     | 44                                                                              | 45                                                                                                                                                                                                 | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd                                              | 10 [4]                                                                                                                                                                                  | 77/85                                                                                     | 17/17                                                                                       |
|                                             | 2009                                                                                                                     | 30                                                                              | 23                                                                                                                                                                                                 | 910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd                                              | 8 [3]                                                                                                                                                                                   | 85/90                                                                                     | 18/18                                                                                       |
|                                             | 2003                                                                                                                     | 110                                                                             | 850                                                                                                                                                                                                | 3,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd                                              | 33 [11]                                                                                                                                                                                 | 5/10                                                                                      | 1/2                                                                                         |
|                                             | 2004                                                                                                                     | 83                                                                              | 440                                                                                                                                                                                                | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd                                              | 46 [15]                                                                                                                                                                                 | 5/10                                                                                      | 1/2                                                                                         |
| D:1-                                        | 2005                                                                                                                     | 100                                                                             | 480                                                                                                                                                                                                | 1,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd                                              | 54 [18]                                                                                                                                                                                 | 5/10                                                                                      | 1/2                                                                                         |
| Birds<br>(pg/g-wet)                         | 2006                                                                                                                     | 46                                                                              | 380                                                                                                                                                                                                | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd                                              | 14 [5]                                                                                                                                                                                  | 5/10                                                                                      | 1/2                                                                                         |
| (pg/g-wet)                                  | 2007                                                                                                                     | 34                                                                              | 360                                                                                                                                                                                                | 930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd                                              | 9 [3]                                                                                                                                                                                   | 5/10                                                                                      | 1/2                                                                                         |
|                                             | 2008                                                                                                                     | 49                                                                              | 410                                                                                                                                                                                                | 1,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd                                              | 10 [4]                                                                                                                                                                                  | 5/10                                                                                      | 1/2                                                                                         |
|                                             |                                                                                                                          |                                                                                 |                                                                                                                                                                                                    | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                                                                                                                         | 5/10                                                                                      | 1 /2                                                                                        |
|                                             | 2009                                                                                                                     | 29                                                                              | 250                                                                                                                                                                                                | 620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd                                              | 8 [3]                                                                                                                                                                                   | 5/10                                                                                      | 1/2                                                                                         |
|                                             |                                                                                                                          |                                                                                 | 250                                                                                                                                                                                                | 620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd                                              | 8 [3] Quantification                                                                                                                                                                    | Detection 1                                                                               |                                                                                             |
| Parlar-62                                   | Monitored<br>year                                                                                                        | Geometric mean*                                                                 | 250<br>Median                                                                                                                                                                                      | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum                                         |                                                                                                                                                                                         |                                                                                           |                                                                                             |
| Parlar-62                                   | Monitored                                                                                                                | Geometric                                                                       |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Quantification<br>[Detection]                                                                                                                                                           | Detection l                                                                               | Frequency                                                                                   |
| Parlar-62                                   | Monitored<br>year                                                                                                        | Geometric mean*                                                                 | Median                                                                                                                                                                                             | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum                                         | Quantification<br>[Detection]<br>limit                                                                                                                                                  | Detection l<br>Sample                                                                     | Frequency<br>Site                                                                           |
|                                             | Monitored<br>year<br>2003                                                                                                | Geometric<br>mean*                                                              | Median<br>nd                                                                                                                                                                                       | Maximum<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minimum                                         | Quantification [Detection] limit 120 [40]                                                                                                                                               | Detection l<br>Sample                                                                     | Frequency<br>Site                                                                           |
| Bivalves                                    | Monitored<br>year<br>2003<br>2004                                                                                        | Geometric<br>mean*<br>nd<br>nd                                                  | Median<br>nd<br>nd                                                                                                                                                                                 | Maximum<br>nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Minimum<br>nd<br>nd                             | Quantification [Detection] limit 120 [40] 98 [33]                                                                                                                                       | Detection I<br>Sample<br>0/30<br>0/31                                                     | Site  0/6 0/7                                                                               |
|                                             | Monitored<br>year<br>2003<br>2004<br>2005                                                                                | Geometric<br>mean*<br>nd<br>nd<br>nd                                            | Median<br>nd<br>nd                                                                                                                                                                                 | Maximum<br>nd<br>nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum<br>nd<br>nd<br>nd                       | Quantification [Detection] limit 120 [40] 98 [33] 100 [34]                                                                                                                              | Detection I<br>Sample<br>0/30<br>0/31<br>0/31                                             | Site  0/6 0/7 0/7                                                                           |
| Bivalves                                    | Monitored<br>year<br>2003<br>2004<br>2005<br>2006                                                                        | Geometric<br>mean*<br>nd<br>nd<br>nd<br>nd                                      | Median  nd  nd  nd  nd                                                                                                                                                                             | Maximum<br>nd<br>nd<br>nd<br>nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum<br>nd<br>nd<br>nd<br>nd                 | Quantification [Detection] limit 120 [40] 98 [33] 100 [34] 70 [30]                                                                                                                      | Detection I<br>Sample<br>0/30<br>0/31<br>0/31<br>0/31                                     | Site  0/6 0/7 0/7 0/7                                                                       |
| Bivalves                                    | Monitored<br>year<br>2003<br>2004<br>2005<br>2006<br>2007                                                                | Geometric<br>mean*<br>nd<br>nd<br>nd<br>nd<br>nd                                | Median  nd  nd  nd  nd  nd  nd                                                                                                                                                                     | Maximum  nd  nd  nd  nd  nd  nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum  nd nd nd nd nd nd                      | Quantification [Detection] limit 120 [40] 98 [33] 100 [34] 70 [30] 70 [30]                                                                                                              | Detection 1<br>Sample<br>0/30<br>0/31<br>0/31<br>0/31<br>0/31                             | Site  0/6 0/7 0/7 0/7 0/7 0/7                                                               |
| Bivalves                                    | Monitored<br>year<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008                                                        | Geometric<br>mean*  nd nd nd nd nd nd nd nd nd                                  | Median  nd nd nd nd nd nd nd                                                                                                                                                                       | Maximum  nd  nd  nd  nd  nd  nd  nd  nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum  nd nd nd nd nd nd nd                   | Quantification [Detection] limit 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20]                                                                                              | Detection I<br>Sample<br>0/30<br>0/31<br>0/31<br>0/31<br>0/31<br>0/31                     | Site  0/6 0/7 0/7 0/7 0/7 0/7 0/7                                                           |
| Bivalves                                    | Monitored<br>year<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009                                                | Geometric<br>mean*  nd nd nd nd nd nd nd nd nd nd nd                            | Median  nd nd nd nd nd nd nd                                                                                                                                                                       | Maximum  nd  nd  nd  nd  nd  nd  nd  nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum  nd nd nd nd nd nd nd                   | Quantification [Detection] limit 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30]                                                                                                      | Detection I<br>Sample<br>0/30<br>0/31<br>0/31<br>0/31<br>0/31<br>0/31<br>0/31             | Site  0/6 0/7 0/7 0/7 0/7 0/7 0/7 0/7 0/7                                                   |
| Bivalves<br>(pg/g-wet)                      | Monitored year  2003 2004 2005 2006 2007 2008 2009                                                                       | Geometric mean*  nd nd nd nd nd nd nd nd nd nd nd nd nd                         | Median  nd nd nd nd nd nd nd nd nd nd                                                                                                                                                              | Maximum  nd nd nd nd nd nd nd nd solution nd nd solution nd solution nd solution nd solution nd solution nd solution nd solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution solution  | Minimum  nd nd nd nd nd nd nd nd nd nd          | Quantification [Detection] limit  120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40]                                                                                    | Detection I Sample  0/30  0/31  0/31  0/31  0/31  0/31  0/31  0/31  9/70                  | Frequency<br>Site<br>0/6<br>0/7<br>0/7<br>0/7<br>0/7<br>0/7<br>0/7<br>0/7<br>3/14           |
| Bivalves<br>(pg/g-wet)                      | Monitored year  2003 2004 2005 2006 2007 2008 2009 2003 2004                                                             | Geometric mean*  nd nd nd nd nd nd nd nd nd nd nd nd nd                         | Median  nd nd nd nd nd nd nd nd nd nd                                                                                                                                                              | Maximum  nd nd nd nd nd nd nd s80 870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minimum  nd nd nd nd nd nd nd nd nd nd          | Quantification [Detection] limit  120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34]                                                                   | Detection I Sample  0/30 0/31 0/31 0/31 0/31 0/31 0/31 0/3                                | Site  0/6 0/7 0/7 0/7 0/7 0/7 0/7 0/7 13/14 7/14                                            |
| Bivalves<br>(pg/g-wet)                      | Monitored year  2003 2004 2005 2006 2007 2008 2009 2003 2004 2005                                                        | Geometric mean*  nd nd nd nd nd nd nd nd nd nd nd nd nd                         | Median  nd nd nd nd nd nd nd nd nd nd                                                                                                                                                              | Maximum  nd nd nd nd nd nd self-self-self-self-self-self-self-self-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Minimum  nd nd nd nd nd nd nd nd nd nd          | Quantification [Detection] limit  120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33]                                                                            | Detection I Sample  0/30 0/31 0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80                   | Site  0/6 0/7 0/7 0/7 0/7 0/7 0/7 0/7 13/14 7/14 8/16                                       |
| Bivalves<br>(pg/g-wet)                      | Monitored year  2003 2004 2005 2006 2007 2008 2009 2003 2004 2005 2006                                                   | Geometric mean*  nd nd nd nd nd nd nd nd tr(30) tr(30)                          | Median  nd nd nd nd nd nd nd nd nd nd                                                                                                                                                              | Maximum  nd nd nd nd nd nd state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat | Minimum  nd nd nd nd nd nd nd nd nd nd nd       | Quantification [Detection] limit  120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 70 [30]                                           | Detection I Sample  0/30 0/31 0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80 28/80             | Site  0/6 0/7 0/7 0/7 0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16                                  |
| Bivalves<br>(pg/g-wet)                      | Monitored year  2003 2004 2005 2006 2007 2008 2009 2003 2004 2005 2006 2007                                              | Geometric mean*  nd nd nd nd nd nd nd nd nd tr(30)                              | Median  nd nd nd nd nd nd nd nd nd nd nd nd n                                                                                                                                                      | Maximum  nd nd nd nd nd nd s80 870 830 870 530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Minimum  nd nd nd nd nd nd nd nd nd nd nd nd    | Quantification [Detection] limit  120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30]                                                           | Detection I Sample  0/30 0/31 0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80 28/80 22/80       | Site  0/6 0/7 0/7 0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16 7/16                                 |
| Bivalves<br>(pg/g-wet)                      | Monitored year  2003 2004 2005 2006 2007 2008 2009 2003 2004 2005 2006 2007 2008                                         | Geometric mean*  nd nd nd nd nd nd nd tr(30) tr(30)                             | Median  nd nd nd nd nd nd nd nd nd nd nd nd n                                                                                                                                                      | Maximum  nd nd nd nd nd nd s80 870 830 870 530 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Minimum  nd nd nd nd nd nd nd nd nd nd nd nd nd | Quantification [Detection] limit  120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 70 [30] 80 [30]                                   | Detection I Sample  0/30 0/31 0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80 28/80 22/80 31/85 | Site  0/6 0/7 0/7 0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16 7/16 8/17                            |
| Bivalves<br>(pg/g-wet)                      | Monitored year  2003 2004 2005 2006 2007 2008 2009 2003 2004 2005 2006 2007 2008 2009                                    | Geometric mean*  nd nd nd nd nd nd nd tr(30) tr(30) tr(20)                      | Median  nd nd nd nd nd nd nd nd nd nd nd nd n                                                                                                                                                      | nd nd nd nd nd nd s80 870 830 870 530 590 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minimum  nd nd nd nd nd nd nd nd nd nd nd nd nd | Quantification [Detection] limit  120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [30] 80 [30] 70 [20]                   | Detection I Sample  0/30 0/31 0/31 0/31 0/31 0/31 0/31 0/3                                | Site  0/6 0/7 0/7 0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16 7/16 8/17 8/18                       |
| Bivalves<br>(pg/g-wet)                      | Monitored year  2003 2004 2005 2006 2007 2008 2009 2003 2004 2005 2006 2007 2008 2009 2003 2004                          | Geometric mean*  nd nd nd nd nd nd nd tr(30) tr(30) tr(20) tr(96) tr(64)        | Median  nd nd nd nd nd nd nd nd nd nd nd nd 1 nd nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 nd 1 1 1 1 | Maximum  nd nd nd nd nd nd s80 870 830 870 530 590 660 530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum  nd nd nd nd nd nd nd nd nd nd nd nd nd | Quantification [Detection] limit  120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33]                  | Detection I Sample  0/30 0/31 0/31 0/31 0/31 0/31 0/31 0/3                                | Site  0/6 0/7 0/7 0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16 8/17 8/18 1/2                        |
| Bivalves (pg/g-wet)  Fish (pg/g-wet)  Birds | Monitored year  2003 2004 2005 2006 2007 2008 2009 2003 2004 2005 2006 2007 2008 2009 2003 2004 2005                     | Geometric mean*  nd nd nd nd nd nd nd tr(30) tr(30) tr(20) tr(96)               | Median  nd nd nd nd nd nd nd nd nd nd 1d nd nd 1d 1d 1d 1d 1d 130                                                                                                                                  | nd nd nd nd nd nd s80 870 830 870 530 590 660 530 280 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum  nd nd nd nd nd nd nd nd nd nd nd nd nd | Quantification [Detection] limit  120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34]         | Detection I Sample  0/30 0/31 0/31 0/31 0/31 0/31 0/31 0/3                                | Site  0/6 0/7 0/7 0/7 0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16 8/17 8/18 1/2 1/2 1/2            |
| Bivalves<br>(pg/g-wet)                      | Monitored year  2003 2004 2005 2006 2007 2008 2009 2003 2004 2005 2006 2007 2008 2009 2003 2004 2005 2006 2007 2008 2009 | Geometric mean*  nd nd nd nd nd nd nd tr(30) tr(30) tr(20) tr(96) tr(64) tr(78) | Median  nd nd nd nd nd nd nd nd nd nd 10 110 130 120                                                                                                                                               | nd nd nd nd nd nd nd nd nd nd nd nd nd n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Minimum  nd nd nd nd nd nd nd nd nd nd nd nd nd | Quantification [Detection] limit  120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [20] | Detection I Sample  0/30 0/31 0/31 0/31 0/31 0/31 0/31 0/3                                | Site  0/6 0/7 0/7 0/7 0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16 8/17 8/18 1/2 1/2 1/2 1/2        |
| Bivalves (pg/g-wet)  Fish (pg/g-wet)  Birds | Monitored year  2003 2004 2005 2006 2007 2008 2009 2003 2004 2005 2006 2007 2008 2009 2003 2004 2005                     | Geometric mean*  nd nd nd nd nd nd nd tr(30) tr(30) tr(20) tr(96) tr(64) tr(78) | Median  nd nd nd nd nd nd nd nd nd nd 1d nd nd 1d 1d 1d 1d 1d 130                                                                                                                                  | nd nd nd nd nd nd s80 870 830 870 530 590 660 530 280 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum  nd nd nd nd nd nd nd nd nd nd nd nd nd | Quantification [Detection] limit  120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34]         | Detection I Sample  0/30 0/31 0/31 0/31 0/31 0/31 0/31 0/3                                | Frequency Site  0/6 0/7 0/7 0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16 7/16 8/17 8/18 1/2 1/2 1/2 |

(Note) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~FY2009.

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in air during FY2003~2009

| Parlar-26  | Monitored year    | Geometric<br>mean | Median         | Maximum        | Minimum        | Quantification<br>[Detection]<br>limit | Detection I Sample   | Frequency<br>Site |
|------------|-------------------|-------------------|----------------|----------------|----------------|----------------------------------------|----------------------|-------------------|
|            | 2003 Warm season  | 0.31              | 0.31           | 0.77           | tr(0.17)       | 0.20 [0.066]                           | 35/35                | 35/35             |
|            | 2003 Cold season  | tr(0.17)          | tr(0.17)       | 0.27           | tr(0.091)      | 0.20 [0.066]                           | 34/34                | 34/34             |
|            | 2004 Warm season  | 0.27              | 0.26           | 0.46           | tr(0.17)       | 0.20.50.0661                           | 37/37                | 37/37             |
|            | 2004 Cold season  | tr(0.15)          | tr(0.15)       | 0.50           | tr(0.094)      | 0.20 [0.066]                           | 37/37                | 37/37             |
|            | 2005 Warm season  | nd                | nd             | nd             | nd             | 0.2.50.13                              | 0/37                 | 0/37              |
|            | 2005 Cold season  | nd                | nd             | nd             | nd             | 0.3 [0.1]                              | 0/37                 | 0/37              |
| Air        | 2006 Warm season  | nd                | nd             | nd             | nd             | 1.0.50.63                              | 0/37                 | 0/37              |
| $(pg/m^3)$ | 2006 Cold season  | nd                | nd             | nd             | nd             | 1.8 [0.6]                              | 0/37                 | 0/37              |
|            | 2007 Warm season  | nd                | nd             | tr(0.3)        | nd             |                                        | 18/36                | 18/36             |
|            | 2007 Cold season  | nd                | nd             | nd             | nd             | 0.6 [0.2]                              | 0/36                 | 0/36              |
|            | 2008 Warm season  | tr(0.21)          | 0.22           | 0.58           | tr(0.12)       |                                        | 37/37                | 37/37             |
|            | 2008 Cold season  | tr(0.11)          | tr(0.12)       | tr(0.20)       | nd             | 0.22 [0.08]                            | 36/37                | 36/37             |
|            | 2009 Warm season  | tr(0.18)          | tr(0.19)       | 0.26           | tr(0.11)       |                                        | 37/37                | 37/37             |
|            | 2009 Cold season  | tr(0.13)          | tr(0.13)       | 0.27           | nd             | 0.23 [0.09]                            | 33/37                | 33/37             |
|            | 2007 Cold Scuson  |                   | 4(0.13)        | 0.27           | IIG            | Quantification                         | Detection 1          |                   |
| Parlar-50  | Monitored year    | Geometric<br>mean | Median         | Maximum        | Minimum        | [Detection]<br>limit                   | Sample               | Site              |
|            | 2003 Warm season  | nd                | nd             | tr(0.37)       | nd             | 0.01.[0.27]                            | 2/35                 | 2/35              |
|            | 2003 Cold season  | nd                | nd             | nd             | nd             | 0.81 [0.27]                            | 0/34                 | 0/34              |
|            | 2004 Warm season  | nd                | nd             | nd             | nd             | 1.2.50.43                              | 0/37                 | 0/37              |
|            | 2004 Cold season  | nd                | nd             | nd             | nd             | 1.2 [0.4]                              | 0/37                 | 0/37              |
|            | 2005 Warm season  | nd                | nd             | nd             | nd             | 0 6 50 23                              | 0/37                 | 0/37              |
|            | 2005 Cold season  | nd                | nd             | nd             | nd             | 0.6 [0.2]                              | 0/37                 | 0/37              |
| Air        | 2006 Warm season  | nd                | nd             | nd             | nd             |                                        | 0/37                 | 0/37              |
| $(pg/m^3)$ | 2006 Cold season  | nd                | nd             | nd             | nd             | 1.6 [0.5]                              | 0/37                 | 0/37              |
|            | 2007 Warm season  | nd                | tr(0.1)        | tr(0.2)        | nd             |                                        | 29/36                | 29/36             |
|            | 2007 Cold season  | nd                | nd             | nd             | nd             | 0.3 [0.1]                              | 0/36                 | 0/36              |
|            | 2008 Warm season  | nd                | nd             | tr(0.19)       | nd             |                                        | 15/37                | 15/37             |
|            | 2008 Cold season  | nd                | nd             | nd             | nd             | 0.25 [0.09]                            | 0/37                 | 0/37              |
|            | 2009 Warm season  | nd                | nd             | tr(0.1)        | nd             |                                        | 11/37                | 11/37             |
|            | 2009 Cold season  | nd                | nd             | tr(0.1)        | nd             | 0.3 [0.1]                              | 1/37                 | 1/37              |
|            | 2007 Cold Scasoli |                   | IIG            | u(0.1)         | na             | Quantification                         | Detection 1          |                   |
| Parlar-62  | Monitored year    | Geometric<br>mean | Median         | Maximum        | Minimum        | [Detection]<br>limit                   | Sample               | Site              |
|            | 2003 Warm season  | nd                | nd             | nd             | nd             | 1.6.[0.52]                             | 0/35                 | 0/35              |
|            | 2003 Cold season  | nd                | nd             | nd             | nd             | 1.6 [0.52]                             | 0/34                 | 0/34              |
|            | 2004 Warm season  | nd                | nd             | nd             | nd             | 2.4.50.013                             | 0/37                 | 0/37              |
|            | 2004 Cold season  | nd                | nd             | nd             | nd             | 2.4 [0.81]                             | 0/37                 | 0/37              |
|            | 2005 Warm season  | nd                | nd             | nd             | nd             | 1.0.50.43                              | 0/37                 | 0/37              |
|            | 2005 Cold season  | nd                | nd             | nd             | nd             | 1.2 [0.4]                              | 0/37                 | 0/37              |
| Air        | 2006 Warm season  | nd                | nd             | nd             | nd             |                                        | 0/37                 | 0/37              |
| $(pg/m^3)$ | 2006 Cold season  | nd                | nd             | nd             | nd             | 8 [3]                                  | 0/37                 | 0/37              |
| 10 /       | 2007 Warm season  | nd                | nd             | nd             | nd             |                                        | 0/36                 | 0/36              |
|            | 2007 Cold season  | nd                | nd             | nd             | nd             | 1.5 [0.6]                              | 0/36                 | 0/36              |
|            |                   | 114               |                |                |                |                                        |                      |                   |
|            |                   | nd                | nd             | nd             | nd             |                                        |                      |                   |
|            | 2008 Warm season  | nd<br>nd          | nd<br>nd       | nd<br>nd       | nd<br>nd       | 1.6 [0.6]                              | 0/37                 | 0/37              |
|            |                   | nd<br>nd<br>nd    | nd<br>nd<br>nd | nd<br>nd<br>nd | nd<br>nd<br>nd | 1.6 [0.6]<br>1.6 [0.6]                 | 0/37<br>0/37<br>0/37 | 0/37              |

### [10] Mirex (reference)

· History and state of monitoring

Mirex was developed as an organochlorine insecticide chemical in the United States, and it was also used as a flame retardant. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002.

Before FY 2001, the substance was measured in FY 1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Mirex has been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY 2003 ~2009, and FY 2011.

No monitoring was conducted in FY 2012. For reference, the monitoring results up to FY 2011 are given below.

Monitoring results until FY 2011

#### <Surface Water>

Stocktaking of the detection of mirex in surface water during FY2003~2009,2011

|               | Monitored | Geometric |          |         |         | Quantification       | Detection 1 | Frequency |
|---------------|-----------|-----------|----------|---------|---------|----------------------|-------------|-----------|
| Mirex         | year      | mean      |          | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|               | 2003      | tr(0.13)  | tr(0.12) | 0.8     | nd      | 0.3 [0.09]           | 25/36       | 25/36     |
|               | 2004      | nd        | nd       | 1.1     | nd      | 0.4 [0.2]            | 18/38       | 18/38     |
|               | 2005      | nd        | nd       | 1.0     | nd      | 0.4 [0.1]            | 14/47       | 14/47     |
| Surface Water | 2006      | nd        | nd       | 0.07    | nd      | 1.6 [0.5]            | 1/48        | 1/48      |
| (pg/L)        | 2007      | nd        | nd       | tr(0.5) | nd      | 1.1 [0.4]            | 2/48        | 2/48      |
|               | 2008      | nd        | nd       | 0.7     | nd      | 0.6 [0.2]            | 4/48        | 4/48      |
|               | 2009      | nd        | nd       | 0.5     | nd      | 0.4 [0.2]            | 8/49        | 8/49      |
|               | 2011      | nd        | nd       | 0.8     | nd      | 0.5 [0.2]            | 3/49        | 3/49      |

(Note) No monitoring was conducted in FY 2010.

# <Sediment>

Stocktaking of the detection of mirex in sediment during FY2003~2009,2011

|            | Monitored | Geometric |         |         |         | Quantification       | Detection I | Frequency |
|------------|-----------|-----------|---------|---------|---------|----------------------|-------------|-----------|
| Mirex      | year      | mean*     | Median  | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|            | 2003      | 2         | tr(1.6) | 1,500   | nd      | 2 [0.4]              | 137/186     | 51/62     |
|            | 2004      | 2         | tr(1.6) | 220     | nd      | 2 [0.5]              | 153/189     | 55/63     |
|            | 2005      | 1.8       | 1.2     | 5,300   | nd      | 0.9 [0.3]            | 134/189     | 48/63     |
| Sediment   | 2006      | 1.7       | 1.2     | 640     | nd      | 0.6 [0.2]            | 156/192     | 57/64     |
| (pg/g-dry) | 2007      | 1.5       | 0.9     | 200     | nd      | 0.9 [0.3]            | 147/192     | 55/64     |
|            | 2008      | 1.4       | 1.1     | 820     | nd      | 0.7 [0.3]            | 117/192     | 48/64     |
|            | 2009      | 1.4       | 1.3     | 620     | nd      | 1.0 [0.4]            | 126/192     | 49/64     |
|            | 2011      | 1.2       | 0.9     | 1,900   | nd      | 0.9 [0.4]            | 42/64       | 42/64     |

(Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~FY2009.

(Note 2) No monitoring was conducted in FY 2010.

# <Wildlife>

Stocktaking of the detection of mirex in wildlife (bivalves, fish and birds) during FY2003~2009,2011

|            | Monitored | Geometric |        | <del></del> | ·       | Quantification       | Detection 1 | Frequency |
|------------|-----------|-----------|--------|-------------|---------|----------------------|-------------|-----------|
| Mirex      | year      | mean*     | Median | Maximum     | Minimum | [Detection]<br>limit | Sample      | Site      |
|            | 2003      | 4.9       | 4.2    | 19          | tr(1.6) | 2.4 [0.81]           | 30/30       | 6/6       |
|            | 2004      | 4.4       | 4.3    | 12          | tr(1.1) | 2.5 [0.82]           | 31/31       | 7/7       |
|            | 2005      | 5.4       | 5.2    | 20          | tr(1.9) | 3.0 [0.99]           | 31/31       | 7/7       |
| Bivalves   | 2006      | 5         | 4      | 19          | tr(2)   | 3 [1]                | 31/31       | 7/7       |
| (pg/g-wet) | 2007      | 5         | 4      | 18          | tr(2)   | 3 [1]                | 31/31       | 7/7       |
|            | 2008      | 4         | tr(3)  | 18          | tr(2)   | 4 [1]                | 31/31       | 7/7       |
|            | 2009      | 5.9       | 5.2    | 21          | tr(1.7) | 2.1 [0.8]            | 31/31       | 7/7       |
|            | 2011      | 10        | 7.1    | 44          | 5.2     | 1.9 [0.8]            | 4/4         | 4/4       |
|            | 2003      | 8.3       | 9.0    | 25          | tr(1.7) | 2.4 [0.81]           | 70/70       | 14/14     |
|            | 2004      | 13        | 11     | 180         | 3.8     | 2.5 [0.82]           | 70/70       | 14/14     |
|            | 2005      | 13        | 13     | 78          | tr(1.0) | 3.0 [0.99]           | 80/80       | 16/16     |
| Fish       | 2006      | 11        | 10     | 53          | tr(2)   | 3 [1]                | 80/80       | 16/16     |
| (pg/g-wet) | 2007      | 9         | 11     | 36          | tr(1)   | 3 [1]                | 80/80       | 16/16     |
|            | 2008      | 11        | 13     | 48          | tr(1)   | 4 [1]                | 85/85       | 17/17     |
|            | 2009      | 8.6       | 9.6    | 37          | tr(0.9) | 2.1 [0.8]            | 90/90       | 18/18     |
|            | 2011      | 12        | 15     | 41          | tr(1.3) | 1.9 [0.8]            | 18/18       | 18/18     |
|            | 2003      | 120       | 150    | 450         | 31      | 2.4 [0.81]           | 10/10       | 2/2       |
|            | 2004      | 61        | 64     | 110         | 33      | 2.5 [0.82]           | 10/10       | 2/2       |
|            | 2005      | 77        | 66     | 180         | 41      | 3.0 [0.99]           | 10/10       | 2/2       |
| Birds      | 2006      | 77        | 70     | 280         | 39      | 3 [1]                | 10/10       | 2/2       |
| (pg/g-wet) | 2007      | 57        | 59     | 100         | 32      | 3 [1]                | 10/10       | 2/2       |
|            | 2008      | 74        | 68     | 260         | 27      | 4 [1]                | 10/10       | 2/2       |
|            | 2009      | 49        | 50     | 79          | 32      | 2.1 [0.8]            | 10/10       | 2/2       |
|            | 2011      |           |        | 58          | 58      | 1.9 [0.8]            | 1/1         | 1/1       |

<sup>(</sup>Note 1) "\*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~FY2009.

(Note 2) No monitoring was conducted in FY2010.

<Air>

Stocktaking of the detection of mirex in air during FY2003~2009,2011

|            |                                      | Geometric |           |          | ) (f      | Quantification       | Detection 1 | Frequency |
|------------|--------------------------------------|-----------|-----------|----------|-----------|----------------------|-------------|-----------|
| Mirex      | Monitored year                       | mean      | Median    | Maximum  | Minimum   | [Detection]<br>limit | Sample      | Site      |
|            | 2003 Warm season                     | 0.11      | 0.12      | 0.19     | 0.047     | 0.0084               | 35/35       | 35/35     |
|            | 2003 Cold season                     | 0.044     | 0.043     | 0.099    | 0.024     | [0.0028]             | 34/34       | 34/34     |
|            | 2004 Warm season<br>2004 Cold season | 0.099     | 0.11      | 0.16     | tr(0.042) | 0.05 [0.017]         | 37/37       | 37/37     |
|            |                                      | tr(0.046) | tr(0.047) | 0.23     | tr(0.019) | 0.03 [0.017]         | 37/37       | 37/37     |
|            | 2005 Warm season                     | tr(0.09)  | tr(0.09)  | 0.24     | tr(0.05)  | 0.10 [0.03]          | 37/37       | 37/37     |
|            | 2005 Cold season                     | tr(0.04)  | tr(0.04)  | tr(0.08) | nd        | 0.10 [0.03]          | 29/37       | 29/37     |
|            | 2006 Warm season                     | tr(0.07)  | tr(0.10)  | 0.22     | nd        | 0.13 [0.04]          | 29/37       | 29/37     |
| Air        | 2006 Cold season                     | tr(0.07)  | tr(0.07)  | 2.1      | nd        | 0.13 [0.04]          | 27/37       | 27/37     |
| $(pg/m^3)$ | 2007 Warm season                     | 0.11      | 0.11      | 0.28     | 0.04      | 0.02.00.013          | 36/36       | 36/36     |
|            | 2007 Cold season                     | 0.04      | 0.04      | 0.09     | tr(0.02)  | 0.03 [0.01]          | 36/36       | 36/36     |
|            | 2008 Warm season                     | 0.09      | 0.09      | 0.25     | 0.03      | 0.02.50.013          | 37/37       | 37/37     |
|            | 2008 Cold season                     | 0.05      | 0.04      | 0.08     | 0.03      | 0.03 [0.01]          | 37/37       | 37/37     |
|            | 2009 Warm season                     | 0.12      | 0.13      | 0.48     | 0.049     | 0.015.50.0063        | 37/37       | 37/37     |
|            | 2009 Cold season                     | 0.058     | 0.054     | 0.18     | 0.030     | 0.015 [0.006]        | 37/37       | 37/37     |
|            | 2011 Warm season                     | 0.14      | 0.13      | 0.25     | 0.08      | 0.04.50.013          | 35/35       | 35/35     |
|            | 2011 Cold season                     | 0.07      | 0.07      | 0.11     | tr(0.03)  | 0.04 [0.01]          | 37/37       | 37/37     |

(Note) No monitoring was conducted in FY 2010.

### [11] HCHs

· History and state of monitoring

HCHs were used as plant protection products, pesticides, household insecticides, and termitecides, etc. Even after their registration under the Agricultural Chemicals Regulation Law was expired in FY 1971, they continue to be used as termitecides and wood preservatives.  $\alpha$ -HCH,  $\beta$ -HCH, and  $\gamma$ -HCH (synonym:Lindane) were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Among many HCH isomers,  $\alpha$ -HCH,  $\beta$ -HCH,  $\gamma$ -HCH (synonym: Lindane) and  $\delta$ -HCH have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air.

Before FY 2001, the substances were measured in FY 1974 (in surface water, sediment and fish) under the framework of "the Environmental Survey and Monitoring of Chemicals."  $\alpha$ -HCH and  $\beta$ -HCH had been the target chemicals, and surface water and sediment had been the monitored media during the period of FY 1986 ~ 1998 and FY 1986 ~ 2001, respectively. Under the framework of the Wildlife Monitoring, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY 1978 ~ 1996 and in FY 1998, FY 2000 and FY 2001 ( $\gamma$ -HCH (synonym:Lindane) and  $\delta$ -HCH had not been monitored since FY 1997 and FY 1993, respectively.)

Under the framework of the Environmental Monitoring,  $\alpha$ -HCH and  $\beta$ -HCH have been monitored in surface water, sediment, and wildlife (bivalves, fish and birds) since FY 2002.  $\alpha$ -HCH and  $\beta$ -HCH have also been monitored in air, and  $\gamma$ -HCH (synonym:Lindane) and  $\delta$ -HCH have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air since FY 2003.

- · Monitoring results
- ο  $\alpha$ -HCH,  $\beta$ -HCH,  $\gamma$ -HCH (synonym:Lindane) and  $\delta$ -HCH

### <Surface Water>

 $\alpha$ -HCH: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.5pg/L, and the detection range was 9.5 ~ 2,200 pg/L.

 $\beta$ -HCH: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.5pg/L, and the detection range was 17 ~ 820 pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2012, reduction tendencies in specimens from lake areas was identified as statistically significant.

 $\gamma$ -HCH(synonym:Lindane): The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.4pg/L, and the detection range was 3.0 ~ 440 pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2012, reduction tendencies in specimens from river areas, lake areas, river mouth areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall surface waters was also identified as statistically significant.

 $\delta$ -HCH: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.4pg/L, and the detection range was tr(0.5) ~ 220 pg/L.

Stocktaking of the detection of  $\alpha$ -HCH,  $\beta$ -HCH,  $\gamma$ -HCH (synonym: Lindane) and  $\delta$ -HCH in surface water during FY2002~2012

| .002~2012     | Monitored         | Geometric       |            |          |         | Quantification       | Detection 1 | Frequen |
|---------------|-------------------|-----------------|------------|----------|---------|----------------------|-------------|---------|
| α-НСН         | year              | mean*           | Median     | Maximum  | Minimum | [Detection]<br>limit | Sample      | Site    |
|               | 2002              | 86              | 76         | 6,500    | 1.9     | 0.9 [0.3]            | 114/114     | 38/38   |
|               | 2003              | 120             | 120        | 970      | 13      | 3 [0.9]              | 36/36       | 36/36   |
|               | 2004              | 150             | 145        | 5,700    | 13      | 6 [2]                | 38/38       | 38/38   |
|               | 2005              | 90              | 81         | 660      | 16      | 4 [1]                | 47/47       | 47/47   |
| C C W         | 2006              | 110             | 90         | 2,100    | 25      | 3 [1]                | 48/48       | 48/48   |
| Surface Water | 2007              | 76              | 73         | 720      | 13      | 1.9 [0.6]            | 48/48       | 48/48   |
| (pg/L)        | 2008              | 78              | 75         | 1,100    | 9       | 4 [2]                | 48/48       | 48/48   |
|               | 2009              | 74              | 73         | 560      | 14      | 1.2 [0.4]            | 49/49       | 49/49   |
|               | 2010              | 94              | 75         | 1,400    | 14      | 4[1]                 | 49/49       | 49/49   |
|               | 2011              | 67              | 60         | 1,000    | 11      | 7 [3]                | 49/49       | 49/49   |
|               | 2012              | 65              | 56         | 2,200    | 9.5     | 1.4 [0.5]            | 48/48       | 48/48   |
|               |                   |                 |            | ĺ        |         | Quantification       | Detection l |         |
| $\beta$ -HCH  | Monitored<br>year | Geometric mean* | Median     | Maximum  | Minimum | [Detection]<br>limit | Sample      | Site    |
|               | 2002              | 210             | 180        | 1,600    | 24      | 0.9 [0.3]            | 114/114     | 38/38   |
|               | 2003              | 250             | 240        | 1,700    | 14      | 3 [0.7]              | 36/36       | 36/3    |
|               | 2004              | 260             | 250        | 3,400    | 31      | 4 [2]                | 38/38       | 38/3    |
|               | 2005              | 200             | 170        | 2,300    | 25      | 2.6 [0.9]            | 47/47       | 47/4    |
|               | 2006              | 200             | 160        | 2,000    | 42      | 1.7 [0.6]            | 48/48       | 48/4    |
| Surface Water | 2007              | 170             | 150        | 1,300    | 18      | 2.7[0.9]             | 48/48       | 48/4    |
| (pg/L)        | 2008              | 150             | 150        | 1,800    | 15      | 1.0 [0.4]            | 48/48       | 48/4    |
|               | 2009              | 150             | 150        | 1,100    | 18      | 0.6 [0.2]            | 49/49       | 49/4    |
|               | 2010              | 180             | 160        | 2,500    | 33      | 2.0 [0.7]            | 49/49       | 49/49   |
|               | 2011              | 130             | 120        | 840      | 28      | 2.0 [0.8]            | 49/49       | 49/4    |
|               | 2012              | 150             | 130        | 820      | 17      | 1.4 [0.5]            | 48/48       | 48/4    |
| γ-НСН         |                   |                 | 150        | 020      | 1,      | Quantification       | Detection 1 |         |
| ( synonym:    | Monitored         | Geometric       | Median     | Maximum  | Minimum | [Detection]          |             | -       |
| Lindane)      | year              | mean            | Wicdian    | Maximum  | William | limit                | Sample      | Site    |
|               | 2003              | 92              | 90         | 370      | 32      | 7 [2]                | 36/36       | 36/3    |
|               | 2004              | 91              | 76         | 8,200    | 21      | 20 [7]               | 38/38       | 38/3    |
|               | 2005              | 48              | 40         | 250      | tr(8)   | 14 [5]               | 47/47       | 47/4    |
|               | 2006              | 44              | 43         | 460      | tr(9)   | 18 [6]               | 48/48       | 48/4    |
| Surface Water | 2007              | 34              | 32         | 290      | 5.2     | 2.1 [0.7]            | 48/48       | 48/4    |
| (pg/L)        | 2008              | 34              | 32         | 340      | 4       | 3 [1]                | 48/48       | 48/4    |
| (PB 2)        | 2009              | 32              | 26         | 280      | 5.1     | 0.6 [0.2]            | 49/49       | 49/4    |
|               | 2010              | 26              | 22         | 190      | tr(5)   | 6 [2]                | 49/49       | 49/4    |
|               | 2010              | 23              | 20         | 170      | 3       | 3 [1]                | 49/49       | 49/4    |
|               | 2011              | 22              | 21         | 440      | 3.0     | 1.3 [0.4]            | 48/48       | 48/4    |
|               | 2012              |                 | <i>L</i> 1 | <u> </u> | 3.0     |                      | Detection   |         |
| SHOTE         | Monitored         | Geometric       | M - 1'     | M'       | M::     | Quantification       | у           | _       |
| δ-НСН         | year              | mean            | Median     | Maximum  | Minimum | [Detection]<br>limit | Sample      | Site    |
|               | 2003              | 14              | 14         | 200      | tr(1.1) | 2 [0.5]              | 36/36       | 36/3    |
|               | 2004              | 24              | 29         | 670      | tr(1.4) | 2 [0.7]              | 38/38       | 38/3    |
|               | 2005              | 1.8             | nd         | 62       | nd      | 1.5 [0.5]            | 23/47       | 23/4    |
|               | 2006              | 24              | 18         | 1,000    | 2.2     | 2.0 [0.8]            | 48/48       | 48/4    |
| Surface Water | 2007              | 11              | 9.7        | 720      | tr(0.7) | 1.2 [0.4]            | 48/48       | 48/4    |
| (pg/L)        | 2008              | 11              | 10         | 1,900    | tr(1.1) | 2.3 [0.9]            | 48/48       | 48/4    |
| 4.0           | 2009              | 10              | 11         | 450      | tr(0.7) | 0.9 [0.4]            | 49/49       | 49/4    |
|               | 2010              | 16              | 17         | 780      | 0.9     | 0.8 [0.3]            | 49/49       | 49/4    |
|               | 2011              | 8.6             | 8.9        | 300      | 0.7     | 0.4 [0.2]            | 49/49       | 49/4    |
|               |                   |                 |            |          |         |                      |             |         |

(Note) "\*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

# <Sediment>

 $\alpha$ -HCH: The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63valid sites adopting the detection limit of 0.5pg/g-dry, and the detection range was tr(1.1) ~ 3,900 pg/g-dry. As results of the inter-annual trend analysis from FY 2002 to FY 2012, reduction tendencies in specimens from river areas was

identified as statistically significant.

 $\beta$ -HCH: The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.6pg/g-dry, and the detection range was 3.7 ~ 8,300 pg/g-dry.

 $\gamma$ -HCH(synonym:Lindane): The presence of the substance in sediment was monitored at 63 sites, and it was detected at 61 of the 63 valid sites adopting the detection limit of 0.4pg/g-dry, and none of the detected concentrations exceeded 3,500pg/g-dry.

 $\delta$ -HCH: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 62 of the 63 valid sites adopting the detection limit of 0.3 pg/g-dry, and none of the detected concentrations exceeded 3,100 pg/g-dry.

Stocktaking of the detection of  $\alpha$ -HCH,  $\beta$ -HCH,  $\gamma$ -HCH (synonym: Lindane) and  $\delta$ -HCH in sediment during FY2002~2012

|              | Monitored | Geometric       |        |         |         | Quantification       | Detection 1 | Frequency |
|--------------|-----------|-----------------|--------|---------|---------|----------------------|-------------|-----------|
| α-НСН        | year      | mean*           | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|              | 2002      | 150             | 170    | 8,200   | 2.0     | 1.2 [0.4]            | 189/189     | 63/63     |
|              | 2003      | 160             | 170    | 9,500   | 2       | 2 [0.5]              | 186/186     | 62/62     |
|              | 2004      | 160             | 180    | 5,700   | tr(1.5) | 2 [0.6]              | 189/189     | 63/63     |
|              | 2005      | 140             | 160    | 7,000   | 3.4     | 1.7 [0.6]            | 189/189     | 63/63     |
| G 1' 4       | 2006      | 140             | 160    | 4,300   | tr(2)   | 5 [2]                | 192/192     | 64/64     |
| Sediment     | 2007      | 140             | 150    | 12,000  | tr(1.3) | 1.8 [0.6]            | 192/192     | 64/64     |
| (pg/g-dry)   | 2008      | 140             | 190    | 5,200   | nd      | 1.6 [0.6]            | 191/192     | 64/64     |
|              | 2009      | 120             | 120    | 6,300   | nd      | 1.1 [0.4]            | 191/192     | 64/64     |
|              | 2010      | 140             | 140    | 3,700   | 3.1     | 2.0 [0.8]            | 64/64       | 64/64     |
|              | 2011      | 120             | 140    | 5,100   | 1.6     | 1.5 [0.6]            | 64/64       | 64/64     |
|              | 2012      | 100             | 100    | 3,900   | tr(1.1) | 1.6 [0.5]            | 63/63       | 63/63     |
| -            | Monitored | Geometric       |        |         |         | Quantification       | Detection 1 | Frequency |
| $\beta$ -HCH | year      | mean*           | Median | Maximum | Minimum | [Detection]          | Sample      | Site      |
|              |           | ilicali         |        |         |         | limit                |             |           |
|              | 2002      | 230             | 230    | 11,000  | 3.9     | 0.9 [0.3]            | 189/189     | 63/63     |
|              | 2003      | 250             | 220    | 39,000  | 5       | 2 [0.7]              | 186/186     | 62/62     |
|              | 2004      | 240             | 230    | 53,000  | 4       | 3 [0.8]              | 189/189     | 63/63     |
|              | 2005      | 200             | 220    | 13,000  | 3.9     | 2.6 [0.9]            | 189/189     | 63/63     |
| Sediment     | 2006      | 190             | 210    | 21,000  | 2.3     | 1.3 [0.4]            | 192/192     | 64/64     |
| (pg/g-dry)   | 2007      | 200             | 190    | 59,000  | 1.6     | 0.9 [0.3]            | 192/192     | 64/64     |
| (pg/g-dry)   | 2008      | 190             | 200    | 8,900   | 2.8     | 0.8 [0.3]            | 192/192     | 64/64     |
|              | 2009      | 180             | 170    | 10,000  | 2.4     | 1.3 [0.5]            | 192/192     | 64/64     |
|              | 2010      | 230             | 210    | 8,200   | 11      | 2.4 [0.8]            | 64/64       | 64/64     |
|              | 2011      | 180             | 210    | 14,000  | 3       | 3 [1]                | 64/64       | 64/64     |
|              | 2012      | 160             | 170    | 8,300   | 3.7     | 1.5 [0.6]            | 63/63       | 63/63     |
| γ-НСН        | M 7 1     | C               |        |         |         | Quantification       | Detection 1 | Frequency |
| ( synonym:   | Monitored | Geometric mean* | Median | Maximum | Minimum | [Detection]          | Sample      | Site      |
| Lindane)     | year      | mean            |        |         |         | limit                | Sumpre.     | 2110      |
|              | 2003      | 51              | 47     | 4,000   | tr(1.4) | 2 [0.4]              | 186/186     | 62/62     |
|              | 2004      | 53              | 48     | 4,100   | tr(0.8) | 2 [0.5]              | 189/189     | 63/63     |
|              | 2005      | 49              | 46     | 6,400   | tr(1.8) | 2.0 [0.7]            | 189/189     | 63/63     |
|              | 2006      | 48              | 49     | 3,500   | tr(1.4) | 2.1 [0.7]            | 192/192     | 64/64     |
| Sediment     | 2007      | 42              | 41     | 5,200   | tr(0.6) | 1.2 [0.4]            | 192/192     | 64/64     |
| (pg/g-dry)   | 2008      | 40              | 43     | 2,200   | tr(0.7) | 0.9 [0.4]            | 192/192     | 64/64     |
|              | 2009      | 38              | 43     | 3,800   | nd      | 0.6[0.2]             | 191/192     | 64/64     |
|              | 2010      | 35              | 30     | 2,300   | tr(1.5) | 2.0[0.7]             | 64/64       | 64/64     |
|              | 2011      | 35              | 42     | 3,500   | nd      | 3 [1]                | 62/64       | 62/64     |
|              | 2012      | 30              | 29     | 3,500   | nd      | 1.3 [0.4]            | 61/63       | 61/63     |

|               | Monitored | Geometric |        |         |         | Quantification       | Detection l | Frequency |
|---------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| $\delta$ -HCH | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|               | 2003      | 42        | 46     | 5,400   | nd      | 2 [0.7]              | 180/186     | 61/62     |
|               | 2004      | 55        | 55     | 5,500   | tr(0.5) | 2 [0.5]              | 189/189     | 63/63     |
|               | 2005      | 52        | 63     | 6,200   | nd      | 1.0 [0.3]            | 188/189     | 63/63     |
|               | 2006      | 45        | 47     | 6,000   | nd      | 1.7 [0.6]            | 189/192     | 64/64     |
| Sediment      | 2007      | 26        | 28     | 5,400   | nd      | 5 [2]                | 165/192     | 60/64     |
| (pg/g-dry)    | 2008      | 41        | 53     | 3,300   | nd      | 2 [1]                | 186/192     | 64/64     |
|               | 2009      | 36        | 37     | 5,000   | nd      | 1.2 [0.5]            | 190/192     | 64/64     |
|               | 2010      | 39        | 40     | 3,800   | 1.3     | 1.2 [0.5]            | 64/64       | 64/64     |
|               | 2011      | 37        | 47     | 5,000   | nd      | 1.4 [0.5]            | 63/64       | 63/64     |
|               | 2012      | 28        | 28     | 3,100   | nd      | 0.8 [0.3]            | 62/63       | 62/63     |

(Note) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

#### <Wildlife>

 $\alpha$ -HCH: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 1.2pg/g-wet, and the detection range was 4.0 ~ 340 pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 1.2pg/g-wet, and none of the detected concentrations exceeded 170 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 1.2pg/g-wet, and the detection range was 32 ~ 39 pg/g-wet. As results of the inter-annual trend analysis from FY 2003 to FY 2012, reduction tendencies in specimens from bivalves was identified as statistically significant.

 $\beta$ -HCH: The presence of the substance in bivalves was monitored in 5 areas, and it was detected all 5 valid areas adopting the detection limit of 0.8pg/g-wet, and the detection range was  $15 \sim 980$  pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 0.8pg/g-wet, and the detection range was  $6.5 \sim 510$  pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 0.8pg/g-wet, and the detection value was  $730 \sim 2,600$  pg/g-wet.

 $\gamma$ -HCH(synonym:Lindane): The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 0.9pg/g-wet, and the detection range was 3.0 ~ 68 pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 0.9pg/g-wet, and none of the detected concentrations exceeded 43 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 0.9pg/g-wet, and the detection range was 6.3 ~ 19 pg/g-wet. As results of the inter-annual trend analysis from FY 2003 to FY 2012, reduction tendencies in specimens from fishes was identified as statistically significant.

 $\delta$ -HCH: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at 3 of the 5 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 580 pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 14 of the 19 valid areas adopting the detection limit of 1pg/g-wet, and none of the detected concentrations exceeded 12 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was tr(2) ~ 7 pg/g-wet.

Stocktaking of the detection of  $\alpha$ -HCH,  $\beta$ -HCH ,  $\gamma$ -HCH (synonym: Lindane) and  $\delta$ -HCH in wildlife (bivalves,) during FY2002~2012

|            | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
|------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| α-НСН      | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|            | 2002      | 67        | 64     | 1,100   | 12      | 4.2 [1.4]            | 38/38       | 8/8       |
|            | 2003      | 45        | 30     | 610     | 9.9     | 1.8 [0.61]           | 30/30       | 6/6       |
|            | 2004      | 56        | 25     | 1,800   | tr(12)  | 13 [4.3]             | 31/31       | 7/7       |
|            | 2005      | 38        | 25     | 1,100   | tr(7.1) | 11 [3.6]             | 31/31       | 7/7       |
| Bivalves   | 2006      | 30        | 21     | 390     | 6       | 3 [1]                | 31/31       | 7/7       |
|            | 2007      | 31        | 17     | 1,400   | 8       | 7 [2]                | 31/31       | 7/7       |
| (pg/g-wet) | 2008      | 26        | 16     | 380     | 7       | 6 [2]                | 31/31       | 7/7       |
|            | 2009      | 45        | 21     | 2,200   | 9       | 5 [2]                | 31/31       | 7/7       |
|            | 2010      | 35        | 20     | 730     | 13      | 3 [1]                | 6/6         | 6/6       |
|            | 2011      | 64        | 33     | 1,200   | 13      | 3 [1]                | 4/4         | 4/4       |
|            | 2012      | 23        | 12     | 340     | 4.0     | 3.7 [1.2]            | 5/5         | 5/5       |
|            | 2002      | 57        | 56     | 590     | tr(1.9) | 4.2 [1.4]            | 70/70       | 14/14     |
|            | 2003      | 43        | 58     | 590     | 2.6     | 1.8 [0.61]           | 70/70       | 14/14     |
|            | 2004      | 57        | 55     | 2,900   | nd      | 13 [4.3]             | 63/70       | 14/14     |
|            | 2005      | 42        | 43     | 1,000   | nd      | 11 [3.6]             | 75/80       | 16/16     |
| Fish       | 2006      | 44        | 53     | 360     | tr(2)   | 3 [1]                | 80/80       | 16/16     |
| (pg/g-wet) | 2007      | 39        | 40     | 730     | tr(2)   | 7 [2]                | 80/80       | 16/16     |
| (pg/g-wei) | 2008      | 36        | 47     | 410     | nd      | 6 [2]                | 84/85       | 17/17     |
|            | 2009      | 39        | 32     | 830     | tr(2)   | 5 [2]                | 90/90       | 18/18     |
|            | 2010      | 27        | 39     | 250     | tr(1)   | 3 [1]                | 18/18       | 18/18     |
|            | 2011      | 37        | 54     | 690     | tr(2)   | 3 [1]                | 18/18       | 18/18     |
|            | 2012      | 24        | 32     | 170     | nd      | 3.7 [1.2]            | 18/19       | 18/19     |
|            | 2002      | 170       | 130    | 360     | 93      | 4.2 [1.4]            | 10/10       | 2/2       |
|            | 2003      | 73        | 74     | 230     | 30      | 1.8 [0.61]           | 10/10       | 2/2       |
|            | 2004      | 190       | 80     | 1,600   | 58      | 13 [4.3]             | 10/10       | 2/2       |
|            | 2005      | 76        | 77     | 85      | 67      | 11 [3.6]             | 10/10       | 2/2       |
| Birds      | 2006      | 76        | 75     | 100     | 55      | 3 [1]                | 10/10       | 2/2       |
|            | 2007      | 75        | 59     | 210     | 43      | 7 [2]                | 10/10       | 2/2       |
| (pg/g-wet) | 2008      | 48        | 48     | 61      | 32      | 6 [2]                | 10/10       | 2/2       |
|            | 2009      | 43        | 42     | 56      | 34      | 5 [2]                | 10/10       | 2/2       |
|            | 2010      | 260       |        | 430     | 160     | 3 [1]                | 2/2         | 2/2       |
|            | 2011      |           |        | 48      | 48      | 3 [1]                | 1/1         | 1/1       |
|            | 2012      | 35        |        | 39      | 32      | 3.7 [1.2]            | 2/2         | 2/2       |

|              | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | requency |
|--------------|-----------|-----------|--------|---------|---------|----------------------|-------------|----------|
| $\beta$ -HCH | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
|              | 2002      | 88        | 62     | 1,700   | 32      | 12 [4]               | 38/38       | 8/8      |
|              | 2003      | 78        | 50     | 1,100   | 23      | 9.9 [3.3]            | 30/30       | 6/6      |
|              | 2004      | 100       | 74     | 1,800   | 22      | 6.1 [2.0]            | 31/31       | 7/7      |
|              | 2005      | 85        | 56     | 2,000   | 20      | 2.2 [0.75]           | 31/31       | 7/7      |
| D' 1         | 2006      | 81        | 70     | 880     | 11      | 3 [1]                | 31/31       | 7/7      |
| Bivalves     | 2007      | 79        | 56     | 1,800   | 21      | 7 [3]                | 31/31       | 7/7      |
| (pg/g-wet)   | 2008      | 73        | 51     | 1,100   | 23      | 6 [2]                | 31/31       | 7/7      |
|              | 2009      | 83        | 55     | 1,600   | 27      | 6 [2]                | 31/31       | 7/7      |
|              | 2010      | 89        | 56     | 1,500   | 27      | 3 [1]                | 6/6         | 6/6      |
|              | 2011      | 130       | 68     | 2,000   | 39      | 3 [1]                | 4/4         | 4/4      |
|              | 2012      | 65        | 37     | 980     | 15      | 2 [0.8]              | 5/5         | 5/5      |
|              | 2002      | 110       | 120    | 1,800   | tr(5)   | 12 [4]               | 70/70       | 14/14    |
|              | 2003      | 81        | 96     | 1,100   | tr(3.5) | 9.9 [3.3]            | 70/70       | 14/14    |
|              | 2004      | 110       | 140    | 1,100   | tr(3.9) | 6.1 [2.0]            | 70/70       | 14/14    |
|              | 2005      | 95        | 110    | 1,300   | 6.7     | 2.2 [0.75]           | 80/80       | 16/16    |
|              | 2006      | 89        | 110    | 1,100   | 4       | 3 [1]                | 80/80       | 16/16    |
| Fish         | 2007      | 110       | 120    | 810     | 7       | 7 [3]                | 80/80       | 16/16    |
| (pg/g-wet)   | 2008      | 94        | 150    | 750     | tr(4)   | 6 [2]                | 85/85       | 17/17    |
|              | 2009      | 98        | 130    | 970     | tr(5)   | 6 [2]                | 90/90       | 18/18    |
|              | 2010      | 81        | 110    | 760     | 5       | 3 [1]                | 18/18       | 18/18    |
|              | 2011      | 100       | 140    | 710     | 4       | 3 [1]                | 18/18       | 18/18    |
|              | 2012      | 72        | 100    | 510     | 6.5     | 2 [0.8]              | 19/19       | 19/19    |
|              | 2002      | 3,000     | 3,000  | 7,300   | 1,600   | 12 [4]               | 10/10       | 2/2      |
|              | 2003      | 3,400     | 3,900  | 5,900   | 1,800   | 9.9 [3.3]            | 10/10       | 2/2      |
|              | 2004      | 2,300     | 2,100  | 4,800   | 1,100   | 6.1 [2.0]            | 10/10       | 2/2      |
|              | 2005      | 2,500     | 2,800  | 6,000   | 930     | 2.2 [0.75]           | 10/10       | 2/2      |
| D: 1         | 2006      | 2,100     | 2,400  | 4,200   | 1,100   | 3 [1]                | 10/10       | 2/2      |
| Birds        | 2007      | 2,000     | 1,900  | 3,200   | 1,400   | 7 [3]                | 10/10       | 2/2      |
| (pg/g-wet)   | 2008      | 2,400     | 2,000  | 5,600   | 1,300   | 6 [2]                | 10/10       | 2/2      |
|              | 2009      | 1,600     | 1,400  | 4,200   | 870     | 6 [2]                | 10/10       | 2/2      |
|              | 2010      | 1,600     | ·      | 2,800   | 910     | 3 [1]                | 2/2         | 2/2      |
|              | 2011      | ·         |        | 4,500   | 4,500   | 3 [1]                | 1/1         | 1/1      |
|              | 2012      | 1,400     |        | 2,600   | 730     | 2 [0.8]              | 2/2         | 2/2      |

| Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lindane    Synonym:Lin   | γ-НСН               |           | Geometric | Median  | Maximum     | Minimum    | Quantification [Detection] | Detection 1 | -          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|-----------|---------|-------------|------------|----------------------------|-------------|------------|
| 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( synonym:Lindane ) | year      | mean*     | Median  | Maxilliulli | Willilliam |                            | Sample      | Site       |
| Bivalves   2005   23   13   370   tr(5.7)   8.4 [2.8]   31/31   77.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | 2003      | 19        | 18      | 130         | 5.2        |                            | 30/30       | 6/6        |
| Bivalves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 2004      | tr(24)    | tr(16)  | 230         | nd         |                            | 28/31       | 7/7        |
| Bivalves   2007   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |           |           |         | 370         | tr(5.7)    | 8.4 [2.8]                  | 31/31       | 7/7        |
| Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   Career   C   |                     | 2006      | 18        | 12      | 140         | 7          | 4 [2]                      | 31/31       | 7/7        |
| 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bivalves            |           | 16        | 10      |             | tr(4)      |                            |             | 7/7        |
| 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (pg/g-wet)          |           | 12        | 10      | 98          | tr(3)      | 9 [3]                      | 31/31       | 7/7        |
| 2011   26   17   320   5   3   1   4/4   4/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |           | 14        | 12      | 89          | tr(3)      | 7 [3]                      | 31/31       | 7/7        |
| 2012   8.1   3.5   68   3.0   2.3   0.9   5.75   5.75   142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |           |           |         |             | 5          |                            |             | 6/6        |
| 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |           |           |         | 320         | 5          | 3 [1]                      | 4/4         | 4/4        |
| 2004   tr(28)   tr(24)   660   nd   31   10   557/0   11   11   1   11   21   tr(6)   7   33   16   7   8080   16/1   17   18   18   16/1   18   18   16/1   18   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |           |           |         |             |            |                            |             | 5/5        |
| 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |           |           |         |             | tr(1.7)    |                            |             | 14/14      |
| Fish   2007   15   15   15   190   nd   9   3]   71/80   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15/16   15    |                     |           |           |         |             |            |                            |             | 11/14      |
| Fish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |           |           |         |             |            |                            |             | 16/16      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |           |           |         |             |            |                            |             | 16/16      |
| 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |           |           |         |             |            |                            |             | 15/16      |
| 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (pg/g-wet)          |           |           |         |             |            |                            |             | 15/17      |
| 2011   12   15   160   tr(1)   3   1   18/18   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/19   18/1    |                     |           |           |         |             |            |                            |             | 17/18      |
| 2012   7.8   12   43   nd   2.3   0.9   181/9   181/9   2003   14   19   40   3.7   3.3   1.1   10/10   2/2   2005   18   2005   18   20   32   9.6   8.4   12.8   10/10   2/2   2006   16   17   29   8   4   12   10/10   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2      |                     |           |           |         |             |            |                            |             | 18/18      |
| 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |           |           |         |             | tr(1)      |                            |             | 18/18      |
| Birds   2005   18   20   32   9.6   8.4   [2.8]   10/10   22/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |           |           |         |             |            |                            |             | 18/19      |
| Birds   2006   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |           |           |         |             |            |                            |             | 2/2        |
| Birds   2007   21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |           |           | tr(21)  |             |            |                            |             | 2/2        |
| Birds   2007   21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |           |           |         |             |            |                            |             | 2/2        |
| (pg/g-wet)   2008   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |           |           |         |             |            |                            |             | 2/2        |
| 2009   11   11   21   tr(6)   7   3   10/10   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2   2/2      |                     |           |           |         |             |            |                            |             | 2/2        |
| 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (pg/g-wet)          |           |           |         |             |            |                            |             | 2/2        |
| Detection   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Property   Personal Pr    |                     |           |           | 11      |             |            |                            |             | 2/2        |
| δ-HCH         Monitored year         Geometric mean*         Median mean*         Maximum Maximum         Minimum Minimum         Quantification [Detection] limit         Sample Site           2003         7.4         tr(2.6)         1,300         nd         3.9 [1.3]         29/30         6/6           2004         6.3         tr(2.1)         1,500         nd         4.6 [1.5]         22/31         6/7           2005         5.4         tr(2.1)         1,600         nd         5.1 [1.7]         23/31         6/7           2006         6         tr(2.2)         890         tr(1)         3 [1]         31/31         7/7           Bivalves         2007         4         nd         750         nd         4 [2]         12/31         4/7           (pg/g-wet)         2008         tr(3)         nd         610         nd         6[2]         7/31         3/7           2010         4         tr(2)         870         nd         3 [1]         5/6         5/6           2011         9         tr(2)         1,400         tr(1)         3 [1]         3/5         3/5           2012         3         tr(1)         580         nd         3 [1] <t< td=""><td rowspan="2"></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td>2/2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |           | 10        |         |             |            |                            |             | 2/2        |
| δ-HCH         Monitored year         Geometric year*         Median mean*         Maximum minimum         Minimum minimum minimum         Quantification [Detection] minimum         Detection Freque Sample Situation [Inimit minimum]           2003         7.4         tr(2.6)         1,300         nd         3.9 [1.3]         29/30         6/6           2004         6.3         tr(2.1)         1,500         nd         4.6 [1.5]         25/31         6/7           2005         5.4         tr(2.1)         1,600         nd         5.1 [1.7]         23/31         6/7           2006         6         tr(2.1)         1,600         nd         5.1 [1.7]         23/31         6/7            Bivalves         2007         4         nd         750         nd         4 [2]         12/31         4/7           (pg/g-wet)         2008         tr(3)         nd         610         nd         6 [2]         7/31         3/7           2010         4         tr(2)         870         nd         5 [2]         14/31         4/4           42011         9         tr(2)         1,400         tr(1)         3 [1]         3/5         3/5           2012         3         tr(1)         580 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |           |           |         |             |            |                            |             |            |
| δ-HCH         Monitored Year         Geometric mean*         Median mean*         Maximum Minimum [Inimit]         [Detection] [limit]         Sample Situation         Situation           2003         7.4         tr(2.6)         1,300         nd         3.9 [1.3]         29/30         6/6           2004         6.3         tr(2.1)         1,500         nd         4.6 [1.5]         25/31         6/7           2005         5.4         tr(2.1)         1,600         nd         5.1 [1.7]         23/31         6/7           2006         6         tr(2.1)         890         tr(1)         3 [1]         31/31         7/7           Bivalves         2007         4         nd         750         nd         4 [2]         12/31         4/7           (pg/g-wet)         2008         tr(3)         nd         610         nd         6 [2]         7/31         3/7           2010         4         tr(2)         870         nd         5 [2]         14/31         4/7           2011         9         tr(2)         1,400         tr(1)         3 [1]         3/5         3/5           2012         3         tr(1)         580         nd         3 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | 2012      | 11        |         | 19          | 6.3        |                            |             |            |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | Monitored | Geometric |         |             |            |                            | Detection l | Frequenc   |
| 2003   7.4   tr(2.6)   1,300   nd   3.9 [1.3]   29/30   6/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\delta$ -HCH       |           |           | Median  | Maximum     | Minimum    |                            | Sample      | Site       |
| 2004   6.3   tr(2.1)   1,500   nd   4.6 [1.5]   25/31   6/7     2005   5.4   tr(2.1)   1,600   nd   5.1 [1.7]   23/31   6/7     2006   6   tr(2)   890   tr(1)   3 [1]   31/31   7/7     3   13   31/31   7/7     3   14   12   12/31   4/7     4   nd   750   nd   4 [2]   12/31   4/7     5   2009   tr(4)   nd   700   nd   6 [2]   7/31   3/7     2010   4   tr(2)   870   nd   3 [1]   5/6   5/6     2011   9   tr(2)   1,400   tr(1)   3 [1]   3/5   3/5     2012   3   tr(1)   580   nd   3 [1]   3/5   3/5     2003   tr(3.6)   4.0   16   nd   3.9 [1.3]   59/70   13/1     2004   tr(4.2)   tr(3.5)   270   nd   4.6 [1.5]   54/70   11/1     2005   tr(3.2)   tr(3.1)   32   nd   5.1 [1.7]   55/80   12/1     2006   4   3   35   nd   3 [1]   72/80   16/1     Fish   2007   tr(3)   tr(2)   31   nd   4 [2]   42/80   10/1     (pg/g-wet)   2008   tr(4)   tr(3)   77   nd   6 [2]   54/85   12/1     2009   tr(3)   tr(2)   36   nd   3 [1]   13/18   13/1     2011   3   4   19   nd   3 [1]   14/18   14/1     2012   tr(2)   tr(2)   36   nd   3 [1]   13/18   13/1     2003   19   18   31   12   3.9 [1.3]   10/10   2/2     2004   30   14   260   6.4   4.6 [1.5]   10/10   2/2     2005   16   15   30   10   5.1 [1.7]   10/10   2/2     2006   13   12   21   9   3 [1]   10/10   2/2     (pg/g-wet)   2008   9   8   31   tr(3)   6 [2]   10/10   2/2     (pg/g-wet)   2008   9   8   31   tr(3)   6 [2]   10/10   2/2     (pg/g-wet)   2008   9   8   31   tr(3)   6 [2]   10/10   2/2     (pg/g-wet)   2008   9   8   31   tr(3)   6 [2]   10/10   2/2     (pg/g-wet)   2008   9   8   31   tr(3)   6 [2]   10/10   2/2     (pg/g-wet)   2008   9   8   31   tr(3)   6 [2]   10/10   2/2     (pg/g-wet)   2008   9   8   31   tr(3)   6 [2]   10/10   2/2     (pg/g-wet)   2008   9   8   31   tr(3)   6 [2]   10/10   2/2     (pg/g-wet)   2008   9   8   31   tr(3)   6 [2]   10/10   2/2     (pg/g-wet)   2008   9   8   31   tr(3)   6 [2]   10/10   2/2     (pg/g-wet)   2008   9   8   31   tr(3)   6 [2]   10/10   2/2     (pg/g-wet)   2008   9   8   31   tr(3)   6 [2]   10/10     200   |                     |           |           | . (2.6) | 1 200       |            |                            | 20/20       | 616        |
| Bivalves   2005   5.4   tr(2.1)   1,600   nd   5.1 [1.7]   23/31   6/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |           |           |         |             |            |                            |             |            |
| Bivalves 2006 6 tr(2) 890 tr(1) 3 [1] 31/31 7/7  Bivalves 2007 4 nd 750 nd 4 [2] 12/31 4/7  (pg/g-wet) 2008 tr(3) nd 610 nd 6 [2] 7/31 3/7  2009 tr(4) nd 700 nd 5 [2] 14/31 4/7  2010 4 tr(2) 870 nd 3 [1] 5/6 5/6  2011 9 tr(2) 1,400 tr(1) 3 [1] 4/4 4/4  2012 3 tr(3.6) 4.0 16 nd 3.9 [1.3] 59/70 13/1  2004 tr(4.2) tr(3.5) 270 nd 4.6 [1.5] 54/70 11/1  2005 tr(3.2) tr(3.1) 32 nd 5.1 [1.7] 55/80 12/1  2006 4 3 3 35 nd 3 [1] 72/80 16/1  Fish 2007 tr(3) tr(2) 31 nd 4 [2] 42/80 10/1  (pg/g-wet) 2008 tr(4) tr(3) 77 nd 6 [2] 54/85 12/1  2010 tr(2) tr(2) 36 nd 3 [1] 13/18 13/1  2011 3 4 19 nd 3 [1] 13/18 13/1  2012 tr(2) tr(2) 36 nd 3 [1] 13/18 13/1  2013 tr(2) tr(2) 12 nd 3 [1] 14/18 14/1  2004 30 14 260 6.4 4.6 [1.5] 10/10 2/2  2005 16 15 30 10 5.1 [1.7] 10/10 2/2  2006 13 12 21 9 3 [1] 10/10 2/2  2007 12 10 22 4 4 [2] 10/10 2/2  Birds 2007 12 10 22 4 4 [2] 10/10 2/2  (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2  (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2  (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2  (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2  (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2  (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2  (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2  (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2  (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2  (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2  (pg/g-wet) 2008 9 5 6 6 9 tr(3) 5 [2] 10/10 2/2  (pg/g-wet) 2009 5 6 6 9 tr(3) 5 [2] 10/10 2/2  (pg/g-wet) 2009 5 6 6 9 tr(3) 5 [2] 10/10 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |           |           |         |             |            |                            |             |            |
| Bivalves 2007 4 nd 750 nd 4 [2] 12/31 4/7 (pg/g-wet) 2008 tr(3) nd 610 nd 6[2] 7/31 3/7 2009 tr(4) nd 700 nd 5[2] 14/31 4/7 2010 4 tr(2) 870 nd 3[1] 5/6 5/6 5/6 2011 9 tr(2) 1,400 tr(1) 3[1] 4/4 4/4 2012 3 tr(1) 580 nd 3[1] 3/5 3/5 2003 tr(3.6) 4.0 16 nd 3.9 [1.3] 59/70 13/1 2004 tr(4.2) tr(3.5) 270 nd 4.6 [1.5] 54/70 11/1 2005 tr(3.2) tr(3.1) 32 nd 5.1 [1.7] 55/80 12/1 2006 4 3 35 nd 3[1] 72/80 16/1 Fish 2007 tr(3) tr(2) 31 nd 4 [2] 42/80 10/1 (pg/g-wet) 2008 tr(4) tr(3) 77 nd 6[2] 54/85 12/1 2009 tr(3) tr(2) 36 nd 3[1] 13/18 13/1 2011 3 4 19 nd 3[1] 13/18 13/1 2011 3 4 19 nd 3[1] 14/18 14/1 2003 19 18 31 12 3.9 [1.3] 10/10 2/2 2004 30 14 260 6.4 4.6 [1.5] 10/10 2/2 2006 13 12 21 9 3[1] 10/10 2/2 2006 13 12 21 9 3[1] 10/10 2/2 2006 13 12 21 9 3[1] 10/10 2/2 2006 13 12 21 9 3[1] 10/10 2/2 2006 13 12 21 9 3[1] 10/10 2/2 2006 13 12 21 9 3[1] 10/10 2/2 2006 13 12 22 4 4[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2009 5 6 6 9 tr(3) 5[2] 10/10 2/2 2/2 2/2 2009 5 6 6 6 9 tr(3) 5[2] 10/10 2/2 2/2 2/2 2000 5 16 5 5 |                     |           |           |         |             |            |                            |             |            |
| (pg/g-wet)         2008         tr(3)         nd         610         nd         6 [2]         7/31         3/7           2009         tr(4)         nd         700         nd         5 [2]         14/31         4/7           2010         4         tr(2)         870         nd         3 [1]         5/6         5/6           2011         9         tr(2)         1,400         tr(1)         3 [1]         4/4         4/4           2012         3         tr(1)         580         nd         3 [1]         3/5         3/5           2003         tr(3.6)         4.0         16         nd         3.9 [1.3]         59/70         13/1           2004         tr(4.2)         tr(3.5)         270         nd         4.6 [1.5]         54/70         11/1           2005         tr(3.2)         tr(3.1)         32         nd         5.1 [1.7]         55/80         12/1           Fish         2007         tr(3)         tr(2)         31         nd         4 [2]         42/80         10/1           (pg/g-wet)         2008         tr(4)         tr(3)         77         nd         6 [2]         54/85         12/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D: 1                |           |           |         |             |            |                            |             |            |
| 2009   tr(4)   nd   700   nd   5 [2]   14/31   4/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |           |           |         |             |            |                            |             |            |
| 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (pg/g-wet)          |           |           |         |             |            |                            |             |            |
| 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |           |           |         |             |            |                            |             |            |
| 2012   3   tr(1)   580   nd   3   1   3/5   3/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |           |         |             |            |                            |             |            |
| 2003 tr(3.6) 4.0 16 nd 3.9 [1.3] 59/70 13/1 2004 tr(4.2) tr(3.5) 270 nd 4.6 [1.5] 54/70 11/1 2005 tr(3.2) tr(3.1) 32 nd 5.1 [1.7] 55/80 12/1 2006 4 3 3 35 nd 3 [1] 72/80 16/1 Fish 2007 tr(3) tr(2) 31 nd 4 [2] 42/80 10/1 (pg/g-wet) 2008 tr(4) tr(3) 77 nd 6 [2] 54/85 12/1 2009 tr(3) tr(3) 18 nd 5 [2] 57/90 13/1 2010 tr(2) tr(2) 36 nd 3 [1] 13/18 13/1 2011 3 4 19 nd 3 [1] 13/18 14/1 2012 tr(2) tr(2) 12 nd 3 [1] 14/19 14/1 2003 19 18 31 12 3.9 [1.3] 10/10 2/2 2004 30 14 260 6.4 4.6 [1.5] 10/10 2/2 2005 16 15 30 10 5.1 [1.7] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 Birds 2007 12 10 22 4 4 [2] 10/10 2/2 (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |           |           |         |             |            |                            |             |            |
| 2004 tr(4.2) tr(3.5) 270 nd 4.6 [1.5] 54/70 11/1 2005 tr(3.2) tr(3.1) 32 nd 5.1 [1.7] 55/80 12/1 2006 4 3 35 nd 3 [1] 72/80 16/1 Fish 2007 tr(3) tr(2) 31 nd 4 [2] 42/80 10/1 (pg/g-wet) 2008 tr(4) tr(3) 77 nd 6 [2] 54/85 12/1 2009 tr(3) tr(2) 36 nd 3 [1] 13/18 13/1 2010 tr(2) tr(2) 36 nd 3 [1] 13/18 13/1 2011 3 4 19 nd 3 [1] 14/18 14/1 2012 tr(2) tr(2) 12 nd 3 [1] 14/18 14/1 2003 19 18 31 12 3.9 [1.3] 10/10 2/2 2004 30 14 260 6.4 4.6 [1.5] 10/10 2/2 2005 16 15 30 10 5.1 [1.7] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 Birds 2007 12 10 22 4 4 [2] 10/10 2/2 (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |           |           |         |             |            |                            |             |            |
| 2005   tr(3.2)   tr(3.1)   32   nd   5.1 [1.7]   55/80   12/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |           |           |         |             |            |                            |             | 13/14      |
| Fish 2007 tr(3) tr(2) 31 nd 4 [2] 42/80 10/1 (pg/g-wet) 2008 tr(4) tr(3) 77 nd 6 [2] 54/85 12/1 2009 tr(3) tr(3) 18 nd 5 [2] 57/90 13/1 2010 tr(2) tr(2) 36 nd 3 [1] 13/18 13/1 2011 3 4 19 nd 3 [1] 14/18 14/1 2012 tr(2) tr(2) 12 nd 3 [1] 14/19 14/1 2003 19 18 31 12 3.9 [1.3] 10/10 2/2 2004 30 14 260 6.4 4.6 [1.5] 10/10 2/2 2005 16 15 30 10 5.1 [1.7] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 10 22 4 4 4 [2] 10/10 2/2 2009 5 6 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 6 9 tr(3) 5 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 12 13 11 3 [1] 2/2 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |           |           |         |             |            |                            |             | 11/14      |
| Fish 2007 tr(3) tr(2) 31 nd 4 [2] 42/80 10/1 (pg/g-wet) 2008 tr(4) tr(3) 77 nd 6 [2] 54/85 12/1 2009 tr(3) tr(3) 18 nd 5 [2] 57/90 13/1 2010 tr(2) tr(2) 36 nd 3 [1] 13/18 13/1 2011 3 4 19 nd 3 [1] 14/18 14/1 2012 tr(2) tr(2) 12 nd 3 [1] 14/19 14/1 2003 19 18 31 12 3.9 [1.3] 10/10 2/2 2004 30 14 260 6.4 4.6 [1.5] 10/10 2/2 2005 16 15 30 10 5.1 [1.7] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 2006 13 12 21 10 22 4 4 [2] 10/10 2/2 2006 12 2009 5 6 9 8 31 tr(3) 6 [2] 10/10 2/2 2009 5 6 9 17(3) 5 [2] 10/10 2/2 2009 5 6 9 17(3) 5 [2] 10/10 2/2 2009 12 13 11 3 [1] 2/2 2/2 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |           |           |         |             |            |                            |             | 12/16      |
| (pg/g-wet)         2008         tr(4)         tr(3)         77         nd         6 [2]         54/85         12/1           2009         tr(3)         tr(3)         18         nd         5 [2]         57/90         13/1           2010         tr(2)         tr(2)         36         nd         3 [1]         13/18         13/1           2011         3         4         19         nd         3 [1]         14/18         14/1           2012         tr(2)         tr(2)         12         nd         3 [1]         14/19         14/1           2012         tr(2)         tr(2)         12         nd         3 [1]         14/19         14/1           2012         tr(2)         tr(2)         12         nd         3 [1]         14/19         14/1           2012         tr(2)         tr(2)         12         nd         3 [1]         14/19         14/1           2003         19         18         31         12         3.9 [1.3]         10/10         2/2           2004         30         14         260         6.4         4.6 [1.5]         10/10         2/2           2005         16         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |           |           |         |             |            |                            |             | 16/16      |
| 2009 tr(3) tr(3) 18 nd 5 [2] 57/90 13/1 2010 tr(2) tr(2) 36 nd 3 [1] 13/18 13/1 2011 3 4 19 nd 3 [1] 14/18 14/1 2012 tr(2) tr(2) 12 nd 3 [1] 14/19 14/1 2003 19 18 31 12 3.9 [1.3] 10/10 2/2 2004 30 14 260 6.4 4.6 [1.5] 10/10 2/2 2005 16 15 30 10 5.1 [1.7] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 Birds 2007 12 10 22 4 4 [2] 10/10 2/2 (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2009 15 6 9 tr(3) 5 [2] 10/10 2/2 2010 12 13 11 3 [1] 2/2 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |           |           |         |             |            |                            |             | 10/16      |
| 2010 tr(2) tr(2) 36 nd 3 [1] 13/18 13/1<br>2011 3 4 19 nd 3 [1] 14/18 14/1<br>2012 tr(2) tr(2) 12 nd 3 [1] 14/19 14/1<br>2003 19 18 31 12 3.9 [1.3] 10/10 2/2<br>2004 30 14 260 6.4 4.6 [1.5] 10/10 2/2<br>2005 16 15 30 10 5.1 [1.7] 10/10 2/2<br>2006 13 12 21 9 3 [1] 10/10 2/2<br>2006 13 12 21 9 3 [1] 10/10 2/2<br>(pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2<br>2009 5 6 9 tr(3) 5 [2] 10/10 2/2<br>2010 12 13 11 3 [1] 2/2 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (pg/g-wet)          |           |           |         |             |            |                            |             | 12/17      |
| 2011 3 4 19 nd 3 [1] 14/18 14/1<br>2012 tr(2) tr(2) 12 nd 3 [1] 14/19 14/1<br>2003 19 18 31 12 3.9 [1.3] 10/10 2/2<br>2004 30 14 260 6.4 4.6 [1.5] 10/10 2/2<br>2005 16 15 30 10 5.1 [1.7] 10/10 2/2<br>2006 13 12 21 9 3 [1] 10/10 2/2<br>Birds 2007 12 10 22 4 4 [2] 10/10 2/2<br>(pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2<br>2009 5 6 9 tr(3) 5 [2] 10/10 2/2<br>2010 12 13 11 3 [1] 2/2 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |           |           |         |             |            |                            |             |            |
| 2012         tr(2)         tr(2)         12         nd         3 [1]         14/19         14/19         14/19           2003         19         18         31         12         3.9 [1.3]         10/10         2/2           2004         30         14         260         6.4         4.6 [1.5]         10/10         2/2           2005         16         15         30         10         5.1 [1.7]         10/10         2/2           2006         13         12         21         9         3 [1]         10/10         2/2           Birds         2007         12         10         22         4         4 [2]         10/10         2/2           (pg/g-wet)         2008         9         8         31         tr(3)         6 [2]         10/10         2/2           2009         5         6         9         tr(3)         5 [2]         10/10         2/2           2010         12          13         11         3 [1]         2/2         2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |           |           |         |             |            |                            |             | 13/18      |
| 2003 19 18 31 12 3.9 [1.3] 10/10 2/2 2004 30 14 260 6.4 4.6 [1.5] 10/10 2/2 2005 16 15 30 10 5.1 [1.7] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 Birds 2007 12 10 22 4 4 [2] 10/10 2/2 (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2010 12 13 11 3 [1] 2/2 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |           |           |         |             |            |                            |             | 14/18      |
| 2004 30 14 260 6.4 4.6 [1.5] 10/10 2/2 2005 16 15 30 10 5.1 [1.7] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 Birds 2007 12 10 22 4 4 [2] 10/10 2/2 (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2010 12 13 11 3 [1] 2/2 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |           |           |         |             |            |                            |             | 14/19      |
| 2005 16 15 30 10 5.1 [1.7] 10/10 2/2 2006 13 12 21 9 3 [1] 10/10 2/2 Birds 2007 12 10 22 4 4 [2] 10/10 2/2 (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2010 12 13 11 3 [1] 2/2 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |           |           |         |             |            |                            |             | 2/2        |
| Birds 2006 13 12 21 9 3 [1] 10/10 2/2 (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2/2 2010 12 13 11 3 [1] 2/2 2/2 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |           |           |         |             |            |                            |             | 2/2        |
| Birds 2007 12 10 22 4 4 [2] 10/10 2/2 (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2010 12 13 11 3 [1] 2/2 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |           |         |             |            |                            |             | 2/2        |
| (pg/g-wet) 2008 9 8 31 tr(3) 6 [2] 10/10 2/2 2009 5 6 9 tr(3) 5 [2] 10/10 2/2 2010 12 13 11 3 [1] 2/2 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |           |           |         |             |            |                            |             | 2/2        |
| 2009 5 6 9 tr(3) 5 [2] 10/10 2/2<br>2010 12 13 11 3 [1] 2/2 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |           |         |             |            |                            |             | 2/2        |
| 2010 12 13 11 3 [1] 2/2 2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (pg/g-wet)          |           |           |         |             |            |                            |             | 2/2        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |           | 6       |             |            |                            |             | 2/2        |
| 2011 5 5 2 [1] 1/1 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |           | 12        |         |             |            |                            |             | 2/2        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 2011      |           |         | 5           | 5          | 3 [1]                      | 1/1         | 1/1<br>2/2 |

(Note) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Air>

 $\alpha$ -HCH: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.7 \text{pg/m}^3$ , and the detection range was  $15 \sim 250 \text{ pg/m}^3$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.7 \text{pg/m}^3$ , and the detection range was  $4.4 \sim 120 \text{ pg/m}^3$ .

 $\beta$ -HCH: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.12 \text{pg/m}^3$ , and the detection range was  $0.65 \sim 32 \text{ pg/m}^3$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.12 \text{pg/m}^3$ , and the detection range was  $\text{tr}(0.26) \sim 8.5 \text{ pg/m}^3$ .

 $\gamma$ -HCH(synonym: Lindane): The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.32 \text{pg/m}^3$ , and the detection range was  $2.3 \sim 55 \text{ pg/m}^3$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.32 \text{pg/m}^3$ , and the detection range was  $\text{tr}(0.63) \sim 19 \text{ pg/m}^3$ .

 $\delta$ -HCH: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.03 \text{pg/m}^3$ , and the detection range was  $\text{tr}(0.06) \sim 20 \text{ pg/m}^3$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 35 of the 36 valid sites adopting the detection limit of  $0.03 \text{pg/m}^3$ , and none of the detected concentrations exceeded 7.3 pg/m<sup>3</sup>.

In addition, it was found that there were some problems in collection of HCHs because of some parts of the air sampler that was used between FY2003 and FY2008 were contaminated by HCHs and affected monitored concentration. Therefore all samples in the air were recognized as undetectable in calculation of data for that period.

Stocktaking of the detection of  $\alpha$ -HCH,  $\beta$ -HCH,  $\gamma$ -HCH (synonym: Lindane) and  $\delta$ -HCH in air during FY2009~2012

|            |                  | Geometric |        |         |          | Quantification       | Detection 1 | Frequency |
|------------|------------------|-----------|--------|---------|----------|----------------------|-------------|-----------|
| α-НСН      | Monitored year   | mean      | Median | Maximum | Minimum  | [Detection]<br>limit | Sample      | Site      |
|            | 2009 Warm season | 58        | 58     | 340     | 19       | 0.12 [0.05]          | 37/37       | 37/37     |
|            | 2009 Cold season | 21        | 18     | 400     | 7.8      | 0.12 [0.05]          | 37/37       | 37/37     |
|            | 2010 Warm season | 46        | 51     | 280     | 14       | 1 4 [0 47]           | 37/37       | 37/37     |
| Air        | 2010 Cold season | 19        | 16     | 410     | 6.8      | 1.4 [0.47]           | 37/37       | 37/37     |
| $(pg/m^3)$ | 2011 Warm season | 43        | 44     | 410     | 9.5      | 2.5.[0.92]           | 35/35       | 35/35     |
|            | 2011 Cold season | 18        | 15     | 680     | 6.5      | 2.5 [0.83]           | 37/37       | 37/37     |
|            | 2012 Warm season | 37        | 37     | 250     | 15       | 2 1 [0 7]            | 36/36       | 36/36     |
|            | 2012 Cold season | 12        | 11     | 120     | 4.4      | 2.1 [0.7]            | 36/36       | 36/36     |
|            |                  | Geometric | Median |         |          | Quantification       | Detection 1 | Frequency |
| β-НСН      | Monitored year   | mean      |        | Maximum | Minimum  | [Detection]<br>limit | Sample      | Site      |
|            | 2009 Warm season | 5.6       | 5.6    | 28      | 0.96     | 0.00.00.021          | 37/37       | 37/37     |
|            | 2009 Cold season | 1.8       | 1.8    | 24      | 0.31     | 0.09 [0.03]          | 37/37       | 37/37     |
|            | 2010 Warm season | 5.6       | 6.2    | 34      | 0.89     | 0.27 [0.00]          | 37/37       | 37/37     |
| Air        | 2010 Cold season | 1.7       | 1.7    | 29      | tr(0.26) | 0.27 [0.09]          | 37/37       | 37/37     |
| $(pg/m^3)$ | 2011 Warm season | 5.0       | 5.2    | 49      | 0.84     | 0.20 [0.12]          | 35/35       | 35/35     |
|            | 2011 Cold season | 1.7       | 1.7    | 91      | tr(0.31) | 0.39 [0.13]          | 37/37       | 37/37     |
|            | 2012 Warm season | 5.0       | 5.5    | 32      | 0.65     | 0.26 [0.12]          | 36/36       | 36/36     |
|            | 2012 Cold season | 0.93      | 1.1    | 8.5     | tr(0.26) | 0.36 [0.12]          | 36/36       | 36/36     |

| γ-НСН                   |                  | C                 |        |         |           | Quantification       | Detection Frequency |           |
|-------------------------|------------------|-------------------|--------|---------|-----------|----------------------|---------------------|-----------|
| ( synonym<br>Lindane )  | : Monitored year | Geometric<br>mean | Median | Maximum | Minimum   | [Detection]<br>limit | Sample              | Site      |
|                         | 2009 Warm season | 17                | 19     | 65      | 2.9       | 0.06 [0.02]          | 37/37               | 37/37     |
|                         | 2009 Cold season | 5.6               | 4.6    | 55      | 1.5       | 0.00 [0.02]          | 37/37               | 37/37     |
|                         | 2010 Warm season | 14                | 16     | 66      | 2.3       | 0.25 [0.12]          | 37/37               | 37/37     |
| Air                     | 2010 Cold season | 4.8               | 4.4    | 60      | 1.1       | 0.35 [0.12]          | 37/37               | 37/37     |
| $(pg/m^3)$              | 2011 Warm season | 14                | 17     | 98      | 2.7       | 1.6 [0.52]           | 35/35               | 35/35     |
|                         | 2011 Cold season | 5.1               | 4.8    | 67      | tr(1.1)   | 1.0 [0.32]           | 37/37               | 37/37     |
|                         | 2012 Warm season | 13                | 15     | 55      | 2.3       | 0.95 [0.32]          | 36/36               | 36/36     |
|                         | 2012 Cold season | 3.1               | 3.2    | 19      | tr(0.63)  | 0.93 [0.32]          | 36/36               | 36/36     |
|                         | Monitored year   | Geometric         |        |         |           | Quantification       | Detection 1         | Frequency |
| $\delta$ -HCH           |                  | mean              | Median | Maximum | Minimum   | [Detection]<br>limit | Sample              | Site      |
|                         | 2009 Warm season | 1.3               | 1.3    | 21      | 0.09      | 0.04.00.021          | 37/37               | 37/37     |
|                         | 2009 Cold season | 0.36              | 0.33   | 20      | 0.04      | 0.04 [0.02]          | 37/37               | 37/37     |
|                         | 2010 Warm season | 1.4               | 1.3    | 25      | 0.11      | 0.05 [0.02]          | 37/37               | 37/37     |
| Air                     | 2010 Cold season | 0.38              | 0.35   | 22      | 0.05      | 0.05 [0.02]          | 37/37               | 37/37     |
| $(pg/m^3)  \frac{2}{2}$ | 2011 Warm season | 1.1               | 1.1    | 33      | 0.11      | 0.062 [0.021]        | 35/35               | 35/35     |
|                         | 2011 Cold season | 0.35              | 0.34   | 26      | tr(0.050) | 0.063 [0.021]        | 37/37               | 37/37     |
|                         | 2012 Warm season | 1.0               | 1.3    | 20      | tr(0.06)  | 0 07 [0 02]          | 36/36               | 36/36     |
|                         | 2012 Cold season | 0.18              | 0.19   | 7.3     | nd        | 0.07 [0.03]          | 35/36               | 35/36     |

### [12] Chlordecone(reference)

#### · History and state of monitoring

Chlordecone is a group of organochlorine insecticides. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. Chlordecone was adopted as a target chemical at the Fourth Meeting of the Conference of Parties (COP4) on Stockholm convention on Persistent Organic Pollutants in May 2009.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY 2008, and surface water, sediment and wildlife (bivalves, fish and birds) air in FY 2010 ~ 2011. For reference, the monitoring results up to FY 2011 are given below.

### Monitoring results until FY 2011

### <Surface Water>

Stocktaking of the detection of Chlordecone in surface water during FY2008, 2010, 2011

|               | Monitored Geometric |          |        |         |         | Quantification       | Detection 1 | Frequency |
|---------------|---------------------|----------|--------|---------|---------|----------------------|-------------|-----------|
| Chlordecone   | year                | mean     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
| Surface Water | 2008                | nd       | nd     | 0.76    | nd      | 0.14 [0.05]          | 13/46       | 13/46     |
|               | 2010                | tr(0.04) | nd     | 1.6     | nd      | 0.09 [0.04]          | 13/49       | 13/49     |
| (pg/L)        | 2011                | nd       | nd     | 0.70    | nd      | 0.20 [0.05]          | 15/49       | 15/49     |

<sup>(</sup>Note) No monitoring was conducted in FY2009.

#### <Sediment>

Stocktaking of the detection of Chlordecone in sediment during FY2008, 2010, 2011

| Chlordecone            | Monitored | Ionitored Geometric |        |         |         | Quantification       | Detection l | requency |
|------------------------|-----------|---------------------|--------|---------|---------|----------------------|-------------|----------|
|                        | year      | mean*               | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
| Sediment<br>(pg/g-dry) | 2008      | nd                  | nd     | 5.8     | nd      | 0.42 [0.16]          | 23/129      | 10/49    |
|                        | 2010      | nd                  | nd     | 2.8     | nd      | 0.4 [0.2]            | 9/64        | 9/64     |
|                        | 2011      | nd                  | nd     | 1.5     | nd      | 0.40 [0.20]          | 9/64        | 9/64     |

<sup>(</sup>Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

## <Wildlife>

Stocktaking of the detection of Chlordecone in wildlife during FY2008, 2010, 2011

|             | Monitored | Geometric |        |         |         | Quantification       | Detection I | requency |
|-------------|-----------|-----------|--------|---------|---------|----------------------|-------------|----------|
| Chlordecone | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
| Bivalves    | 2008      | nd        | nd     | nd      | nd      | 5.6 [2.2]            | 0/31        | 0/7      |
| (pg/g-wet)  | 2010      | nd        | nd     | nd      | nd      | 5.9 [2.3]            | 0/6         | 0/6      |
|             | 2011      | nd        | nd     | nd      | nd      | 0.5 [0.2]            | 0/4         | 0/4      |
| Fish        | 2008      | nd        | nd     | nd      | nd      | 5.6 [2.2]            | 0/85        | 0/17     |
| (pg/g-wet)  | 2010      | nd        | nd     | nd      | nd      | 5.9 [2.3]            | 0/18        | 0/18     |
|             | 2011      | nd        | nd     | nd      | nd      | 0.5 [0.2]            | 0/18        | 0/18     |
| Birds       | 2008      | nd        | nd     | nd      | nd      | 5.6 [2.2]            | 0/10        | 0/2      |
| (pg/g-wet)  | 2010      | nd        |        | nd      | nd      | 5.9 [2.3]            | 0/2         | 0/2      |
|             | 2011      | <b></b>   |        | nd      | nd      | 0.5 [0.2]            | 0/1         | 0/1      |

<sup>(</sup>Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

<sup>(</sup>Note 2) No monitoring was conducted in FY2009.

<sup>(</sup>Note 2) No monitoring was conducted in FY2009.

<Air>
Stocktaking of the detection of Chlordecone in air during FY2010~2011

|             | Monitored year   | Geometric |        |         |         | Quantification       | Detection I | requency |
|-------------|------------------|-----------|--------|---------|---------|----------------------|-------------|----------|
| Chlordecone |                  | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
| '           | 2010 Warm season | nd        | nd     | nd      | nd      | - 0.04 [0.02]        | 0/37        | 0/37     |
| Air         | 2010 Cold season | nd        | nd     | nd      | nd      | - 0.04 [0.02]        | 0/37        | 0/37     |
| $(pg/m^3)$  | 2011 Warm season | nd        | nd     | nd      | nd      | - 0.04 [0.02]        | 0/35        | 0/35     |
|             | 2011 Cold season | nd        | nd     | nd      | nd      | 0.04 [0.02]          | 0/37        | 0/37     |

### [13] Hexabromobiphenyls(reference)

· History and state of monitoring

Hexabromobiphenyls have been used as flame retardants for plastics products. Hexabromobiphenyls were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY 2009 and air in FY 2010 ~ 2011. For reference, the monitoring results up to FY 2011 are given below.

· Monitoring results until FY 2011

#### <Surface Water>

Stocktaking of the detection of Hexabromobiphenyls in surface water during FY2009~2011

|                      | Monitored | Geometric |        |         |         | Quantification        | Detection I | requency |
|----------------------|-----------|-----------|--------|---------|---------|-----------------------|-------------|----------|
| Hexabromobiphenyls   | year      | mean      | Median | Maximum | Minimum | [Detection]<br>Limit* | Sample      | Site     |
| C                    | 2009      | nd        | nd     | nd      | nd      | 5.7 [2.2]             | 0/49        | 0/49     |
| Surface Water (pg/L) | 2010      | nd        | nd     | nd      | nd      | 3 [1]                 | 0/49        | 0/49     |
|                      | 2011      | nd        | nd     | nd      | nd      | 2.2 [0.9]             | 0/49        | 0/49     |

(Note 1) "\*" indicates the sum value of the Quantification [Detection] limits of each congener in FY2009. (Note 2) No monitoring was conducted in FY2012.

#### <Sediment>

Stocktaking of the detection of Hexabromobiphenyls in sediment during FY2009~2011

| Hexabromobiphenyls | Monitored Geometric |        |         |         |                        | Quantification | Detection 1 | Frequency |
|--------------------|---------------------|--------|---------|---------|------------------------|----------------|-------------|-----------|
|                    | year mean*          | Median | Maximum | Minimum | [Detection]<br>Limit** | Sample         | Site        |           |
| Sediment           | 2009                | nd     | nd      | 12      | nd                     | 1.1 [0.40]     | 45/190      | 21/64     |
| (pg/g-dry)         | 2010                | nd     | nd      | 18      | nd                     | 1.5 [0.6]      | 10/64       | 10/64     |
|                    | 2011                | nd     | nd      | 6.3     | nd                     | 3.6 [1.4]      | 8/64        | 8/64      |

(Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) " \*\* " indicates the sum value of the Quantification [Detection] limits of each congener in FY2009.

(Note 3) No monitoring was conducted in FY2012.

### <Wildlife>

Stocktaking of the detection of Hexabromobiphenyls in wildlife (bivalves, fish and birds) during FY2009~2011

|                    | Monitored | Geometric |          |          | 3.61. 1 | Quantification      | Detection l | Frequency |
|--------------------|-----------|-----------|----------|----------|---------|---------------------|-------------|-----------|
| Hexabromobiphenyls | year      | mean*     | Median   | Maximum  | Minimum | [Detection] Limit** | Sample      | Site      |
| Bivalves           | 2009      | nd        | nd       | tr(0.53) | nd      | 1.3 [0.43]          | 1/31        | 1/7       |
|                    | 2010      | nd        | nd       | nd       | nd      | 24 [10]             | 0/6         | 0/6       |
| (pg/g-wet)         | 2011      | nd        | nd       | nd       | nd      | 3 [1]               | 0/4         | 0/4       |
| Fish               | 2009      | tr(0.49)  | tr(0.43) | 6.0      | nd      | 1.3 [0.43]          | 46/90       | 12/18     |
|                    | 2010      | nd        | nd       | nd       | nd      | 24 [10]             | 0/18        | 0/18      |
| (pg/g-wet)         | 2011      | nd        | nd       | 3        | nd      | 3 [1]               | 5/18        | 5/18      |
| Birds              | 2009      | 1.6       | 1.6      | 2.1      | tr(1.2) | 1.3 [0.43]          | 10/10       | 2/2       |
| (pg/g-wet)         | 2010      | nd        |          | nd       | nd      | 24 [10]             | 0/2         | 0/2       |
|                    | 2011      |           |          | 3        | 3       | 3 [1]               | 1/1         | 1/1       |

(Note 1) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) " \*\* " indicates the sum value of the Quantification [Detection] limits of each congener in FY2009.

(Note 3) No monitoring was conducted in FY2012.

# <Air>

Stocktaking of the detection of Hexabromobiphenyls in air during FY2010~2011

| Hexabromo<br>biphenyls | Monitored year   | Geometric<br>mean | Median | Maximum | Minimum | Quantification<br>[Detection]<br>Limit | Detection I<br>Sample | Frequency<br>Site |
|------------------------|------------------|-------------------|--------|---------|---------|----------------------------------------|-----------------------|-------------------|
| Air<br>(pg/m³)         | 2010 Warm season | nd                | nd     | nd      | nd      | 0.2 [0.1]                              | 0/37                  | 0/37              |
|                        | 2010 Cold season | nd                | nd     | nd      | nd      | 0.3 [0.1]                              | 0/37                  | 0/37              |
|                        | 2011 Warm season | nd                | nd     | nd      | nd      | 0.2 [0.1]                              | 0/35                  | 0/35              |
|                        | 2011 Cold season | nd                | nd     | nd      | nd      | 0.3 [0.1]                              | 0/37                  | 0/37              |

(Note) No monitoring was conducted in FY2012.

# [14] Polybromodiphenyl ethers ( $Br_4 \sim Br_{10}$ )

· History and state of monitoring

Polybrominated diphenyl ethers have been used as flame retardants for plastics products. Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, and Heptabromodiphenyl ethers were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Under the framework of the Environmental Monitoring, the substance was monitored in wildlife (bivalves, fish and birds) in FY 2008, and in surface water, sediment and wildlife (bivalves, fish and birds) and air in FY 2010 ~ 2012.

- · Monitoring results
- Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, Heptabromodiphenyl ethers,
   Octabromodiphenyl ethers, Nonabromodiphenyl ethers and Decabromodiphenyl ether

#### <Surface Water>

Tetrabromodiphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 47 of the 48 valid sites adopting the detection limit of 1pg/L, and none of the detected concentrations exceeded 22 pg/L.

Pentabromodiphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 32 of the 48 valid sites adopting the detection limit of 1pg/L, and none of the detected concentrations exceeded 20 pg/L.

Hexabromodiphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 6 of the 48 valid sites adopting the detection limit of 1pg/L, and none of the detected concentrations exceeded 7 pg/L.

Heptabromodiphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 9 of the 48 valid sites adopting the detection limit of 1pg/L, and none of the detected concentrations exceeded 10 pg/L.

Octabromodiphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 16 of the 48 valid sites adopting the detection limit of 2pg/L, and none of the detected concentrations exceeded 35 pg/L.

Nonabromodiphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 30 of the 48 valid sites adopting the detection limit of 13 pg/L, and none of the detected concentrations exceeded 320 pg/L.

Decabromodiphenyl ether: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 31 of the 48 valid sites adopting the detection limit of 220pg/L, and none of the detected concentrations exceeded 12,000 pg/L.

Stocktaking of the detection of Polybromodiphenyl ethers (Br<sub>4</sub> ~ Br<sub>10</sub>) in surface water during FY2009~2012

| Tetrabromodiphenyl        | Monitored         | Geometric         |         |         |         | Quantification       | Detection | Frequency |
|---------------------------|-------------------|-------------------|---------|---------|---------|----------------------|-----------|-----------|
| ethers                    | year              | mean              | Median  | Maximum | Minimum | [Detection]<br>limit | Sample    | Site      |
|                           | 2009              | 17                | 16      | 160     | nd      | 8 [3]                | 44/49     | 44/49     |
| Surface Water             | 2010              | nd                | nd      | 390     | nd      | 9 [3]                | 17/49     | 17/49     |
| (pg/L)                    | 2011              | 11                | 10      | 180     | nd      | 4 [2]                | 48/49     | 48/49     |
|                           | 2012              | tr(3)             | tr(3)   | 22      | nd      | 4 [1]                | 47/48     | 47/48     |
| Dontohuomo dinhonvil      | Manitanad         | Caamatuia         |         |         |         | Quantification       | Detection | Frequency |
| Pentabromodiphenyl ethers | Monitored<br>year | Geometric<br>mean | Median  | Maximum | Minimum | [Detection]<br>limit | Sample    | Site      |
|                           | 2009              | 11                | 12      | 87      | nd      | 11 [4]               | 43/49     | 43/49     |
| Surface Water             | 2010              | tr(1)             | tr(1)   | 130     | nd      | 3 [1]                | 25/49     | 25/49     |
| (pg/L)                    | 2011              | 5                 | 4       | 180     | nd      | 3 [1]                | 48/49     | 48/49     |
| 40 /                      | 2012              | tr(1)             | tr(1)   | 20      | nd      | 2 [1]                | 32/48     | 32/48     |
| TT 1 1' 1 1               |                   |                   |         |         |         | Quantification       | Detection |           |
| Hexabromodiphenyl ethers  | Monitored<br>year | Geometric<br>mean | Median  | Maximum | Minimum | [Detection]<br>limit | Sample    | Site      |
|                           | 2009              | tr(0.9)           | tr(0.7) | 18      | nd      | 1.4 [0.6]            | 26/49     | 26/49     |
| Surface Water             | 2010              | nd                | nd      | 51      | nd      | 4 [2]                | 16/49     | 16/49     |
| (pg/L)                    | 2011              | tr(1)             | nd      | 39      | nd      | 3 [1]                | 21/49     | 21/49     |
| 40 /                      | 2012              | nd                | nd      | 7       | nd      | 3 [1]                | 6/48      | 6/48      |
| **                        |                   |                   |         | •       |         | Quantification       | Detection |           |
| Heptabromodiphenyl ethers | Monitored<br>year | Geometric<br>mean | Median  | Maximum | Minimum | [Detection]          | Sample    | Site      |
|                           | 2009              | nd                | nd      | 40      | nd      | 4 [2]                | 9/49      | 9/49      |
| Surface Water             | 2010              | nd                | nd      | 14      | nd      | 3 [1]                | 17/49     | 17/49     |
| (pg/L)                    | 2011              | tr(1)             | nd      | 39      | nd      | 3 [1]                | 21/49     | 21/49     |
| (18)                      | 2012              | nd                | nd      | 10      | nd      | 4 [1]                | 9/48      | 9/48      |
|                           |                   |                   |         |         |         | Quantification       | Detection |           |
| Octabromodiphenyl ethers  | Monitored<br>year | Geometric<br>mean | Median  | Maximum | Minimum | [Detection]          | Sample    | Site      |
|                           | 2009              | 3.0               | 3.9     | 56      | nd      | 1.4 [0.6]            | 37/49     | 37/49     |
| Surface Water             | 2010              | tr(2)             | tr(2)   | 69      | nd      | 3 [1]                | 40/49     | 40/49     |
| (pg/L)                    | 2011              | 4                 | 3       | 98      | nd      | 2 [1]                | 44/49     | 44/49     |
| 46 /                      | 2012              | tr(2)             | nd      | 35      | nd      | 4 [2]                | 16/48     | 16/48     |
|                           |                   |                   |         |         |         | Quantification       | Detection |           |
| Nonabromodiphenyl ethers  | Monitored<br>year | Geometric<br>mean | Median  | Maximum | Minimum | [Detection]<br>limit | Sample    | Site      |
|                           | 2009              | tr(46)            | tr(38)  | 500     | nd      | 91 [30]              | 32/49     | 32/49     |
| Surface Water             | 2010              | tr(17)            | tr(13)  | 620     | nd      | 21 [7]               | 39/49     | 39/49     |
| (pg/L)                    | 2011              | 33                | 24      | 920     | nd      | 10 [4]               | 47/49     | 47/49     |
| (PS/2)                    | 2012              | tr(21)            | tr(19)  | 320     | nd      | 40 [13]              | 30/48     | 30/48     |
|                           |                   | ` '               | (*/)    |         | 114     | Quantification       | Detection |           |
| Decabromodiphenyl ether   | Monitored<br>year | Geometric<br>mean | Median  | Maximum | Minimum | [Detection]<br>limit | Sample    | Site      |
|                           | 2009              | tr(310)           | tr(220) | 3,400   | nd      | 600 [200]            | 26/49     | 26/49     |
| Surface Water             | 2010              | tr(250)           | tr(200) | 13,000  | nd      | 300 [100]            | 31/49     | 31/49     |
| (pg/L)                    | 2011              | 200               | 140     | 58,000  | nd      | 60 [20]              | 45/49     | 45/49     |
| (10-)                     | 2012              | tr(400)           | tr(320) | 12,000  | nd      | 660 [220]            | 31/48     | 31/48     |
|                           | 2012              | 4 (100)           | 11(320) | 12,000  | IIG     | 000 [220]            | J 1/ TU   | 21/70     |

# <Sediment>

Tetrabromodiphenyl ethers: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 60 of the 63 valid sites adopting the detection limit of 1pg/g-dry, and none of the detected concentrations exceeded 4,500 pg/g-dry.

Pentabromodiphenyl ethers: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 62 of the 63 valid sites adopting the detection limit of 0.9pg/g-dry, and none of the detected concentrations exceeded 2,900 pg/g-dry.

Hexabromodiphenyl ethers: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 48 of the 63 valid sites adopting the detection limit of 1pg/g-dry, and none of the detected concentrations

exceeded 1,700 pg/g-dry.

Heptabromodiphenyl ethers: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 48 of the 63 valid sites adopting the detection limit of 2pg/g-dry, and none of the detected concentrations exceeded 4,400 pg/g-dry.

Octabromodiphenyl ethers: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 47 of the 63 valid sites adopting the detection limit of 6pg/g-dry, and none of the detected concentrations exceeded 15,000 pg/g-dry.

Nonabromodiphenyl ethers: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 52 of the 63 valid sites adopting the detection limit of 11pg/g-dry, and none of the detected concentrations exceeded 84,000pg/g-dry.

Decabromodiphenyl ether: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 60 of the 63 valid sites adopting the detection limit of 89pg/g-dry, and none of the detected concentrations exceeded 760,000pg/g-dry.

Stocktaking of the detection of Polybromodiphenyl ethers (Br<sub>4</sub> ~ Br<sub>10</sub>) in sediment during FY2009~2012

| Tetrabromodiphenyl ethers: | Monitored<br>year | Geometric mean* | Median | Maximum | Minimum | Quantification<br>[Detection]<br>limit | Detection Sample | Frequency<br>Site |
|----------------------------|-------------------|-----------------|--------|---------|---------|----------------------------------------|------------------|-------------------|
|                            | 2009              | tr(60)          | tr(44) | 1,400   | nd      | 69 [23]                                | 131/192          | 51/64             |
| Sediment                   | 2010              | 35              | 38     | 910     | nd      | 6 [2]                                  | 57/64            | 57/64             |
| (pg/g-dry)                 | 2011              | 32              | 30     | 2,600   | nd      | 30 [10]                                | 47/64            | 47/64             |
|                            | 2012              | 27              | 37     | 4,500   | nd      | 2 [1]                                  | 60/63            | 60/63             |
| Pentabromodiphenyl         | Monitored         | Geometric       |        |         |         | Quantification                         | Detection        | Frequency         |
| ethers                     | year              | mean*           | Median | Maximum | Minimum | [Detection]<br>limit                   | Sample           | Site              |
|                            | 2009              | 36              | 24     | 1,700   | nd      | 24 [8]                                 | 146/192          | 57/64             |
| Sediment                   | 2010              | 26              | 23     | 740     | nd      | 5 [2]                                  | 58/64            | 58/64             |
| (pg/g-dry)                 | 2011              | 24              | 18     | 4,700   | nd      | 5 [2]                                  | 62/64            | 62/64             |
|                            | 2012              | 21              | 21     | 2,900   | nd      | 2.4 [0.9]                              | 62/63            | 62/63             |
| Hexabromodiphenyl          | Monitored         | Geometric       |        |         |         | Quantification                         | Detection        | Frequency         |
| ethers                     | year              | mean*           | Median | Maximum | Minimum | [Detection]<br>limit                   | Sample           | Site              |
|                            | 2009              | 21              | 21     | 2,600   | nd      | 5 [2]                                  | 139/192          | 53/64             |
| Sediment                   | 2010              | 23              | 23     | 770     | nd      | 4 [2]                                  | 57/64            | 57/64             |
| (pg/g-dry)                 | 2011              | 31              | 42     | 2,000   | nd      | 9 [3]                                  | 52/64            | 52/64             |
|                            | 2012              | 15              | 19     | 1,700   | nd      | 3 [1]                                  | 48/63            | 48/63             |
| Heptabromodiphenyl         | Monitored         | Geometric       |        |         |         | Quantification                         | Detection        | Frequency         |
| ethers                     | year              | mean*           | Median | Maximum | Minimum | [Detection]<br>limit                   | Sample           | Site              |
|                            | 2009              | 30              | 25     | 16,000  | nd      | 9 [4]                                  | 125/192          | 51/64             |
| Sediment                   | 2010              | 28              | 18     | 930     | nd      | 4 [2]                                  | 58/64            | 58/64             |
| (pg/g-dry)                 | 2011              | 29              | 32     | 2,400   | nd      | 7 [3]                                  | 55/64            | 55/64             |
|                            | 2012              | 34              | 32     | 4,400   | nd      | 4 [2]                                  | 48/63            | 48/63             |
| Octabromodiphenyl          | Monitored         | Geometric       |        |         |         | Quantification                         | Detection :      | Frequency         |
| ethers                     | year              | mean*           | Median | Maximum | Minimum | [Detection]<br>limit                   | Sample           | Site              |
|                            | 2009              | 210             | 96     | 110,000 | nd      | 1.2 [0.5]                              | 182/192          | 63/64             |
| Sediment                   | 2010              | 71              | 76     | 1,800   | nd      | 10 [4]                                 | 60/64            | 60/64             |
| (pg/g-dry)                 | 2011              | 57              | 64     | 36,000  | nd      | 10 [4]                                 | 55/64            | 55/64             |
| ~~~                        | 2012              | 78              | 74     | 15,000  | nd      | 19 [6]                                 | 47/63            | 47/63             |
| Nonabromodiphenyl          | Monitored         | Geometric       |        |         |         | Quantification                         | Detection        | Frequency         |
| ethers                     | year              | mean*           | Median | Maximum | Minimum | [Detection]<br>limit                   | Sample           | Site              |
|                            | 2009              | 1,100           | 710    | 230,000 | nd      | 9 [4]                                  | 181/192          | 64/64             |
| Sediment                   | 2010              | 360             | 430    | 26,000  | nd      | 24 [9]                                 | 60/64            | 60/64             |
| (pg/g-dry)                 | 2011              | 710             | 630    | 70,000  | nd      | 23 [9]                                 | 62/64            | 62/64             |
|                            |                   |                 |        | 84,000  |         |                                        |                  | 52/63             |

| Decabromodiphenyl | Monitored<br>year | Geometric mean* | Median | Maximum | Minimum | Quantification       | Detection Frequency |       |
|-------------------|-------------------|-----------------|--------|---------|---------|----------------------|---------------------|-------|
| ether             |                   |                 |        |         |         | [Detection]<br>limit | Sample              | Site  |
|                   | 2009              | 6,000           | 4,800  | 880,000 | tr(30)  | 60 [20]              | 192/192             | 64/64 |
| Sediment          | 2010              | 5,100           | 4,200  | 700,000 | nd      | 220 [80]             | 60/64               | 60/64 |
| (pg/g-dry)        | 2011              | 4,200           | 4,700  | 700,000 | nd      | 40 [20]              | 62/64               | 62/64 |
|                   | 2012              | 5,700           | 6,300  | 760,000 | nd      | 270 [89]             | 60/63               | 60/63 |

(Note) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

#### <Wildlife>

Tetrabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 7pg/g-wet, and the detection range was  $24 \sim 190 pg/g$ -wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 7pg/g-wet, and the detection range was  $tr(10) \sim 650 pg/g$ -wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 7pg/g-wet, and the detection range was  $49 \sim 110 pg/g$ -wet.

Pentabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 of the valid areas adopting the detection limit of 6pg/g-wet, and the detection range was  $tr(8) \sim 67$  pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 17 of the 19 valid areas adopting the detection limit of 6pg/g-wet, and none of the detected concentrations exceeded 180 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 6pg/g-wet, and the detection range was  $66 \sim 110$  pg/g-wet.

Hexabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 4pg/g-wet, and the detection range was  $tr(6) \sim 130$  pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18of the 19 valid areas adopting the detection limit of 4pg/g-wet, and none of the detected concentrations exceeded 320 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 4pg/g-wet, and the detection range was  $72 \sim 320$  pg/g-wet.

Heptabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at 3 of the 5 valid areas adopting the detection limit of 5pg/g-wet, and none of the detected concentrations exceeded 59 pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 11 of the 19 valid areas adopting the detection limit of 5pg/g-wet, and none of the detected concentrations exceeded 120 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 5pg/g-wet, and the detection range was  $14 \sim 280$  pg/g-wet.

Octabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at 4 of the 5 valid areas adopting the detection limit of 3pg/g-wet, and none of the detected concentrations exceeded 25 pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 12 of the 19 valid areas adopting the detection limit of 3pg/g-wet, and none of the detected concentrations exceeded 160 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 3pg/g-wet, and the detection range was  $40 \sim 420 pg/g$ -wet.

Nonabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at 3 of the 5 valid areas adopting the detection limit of 9pg/g-wet, and none of the detected concentrations exceeded 45 pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 9 of

the 19 valid areas adopting the detection limit of 9pg/g-wet, and none of the detected concentrations exceeded 54 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 2 valid areas adopting the detection limit of 9pg/g-wet, and the detection range was  $67 \sim 150 \text{ pg/g}$ -wet.

Decabromodiphenyl ether: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at 4 of the 5 valid areas adopting the detection limit of 50pg/g-wet, and none of the detected concentrations exceeded 480 pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 11 of the 19 valid areas adopting the detection limit of 50pg/g-wet, and none of the detected concentrations exceeded 380 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 2 valid areas adopting the detection limit of 50pg/g-wet and the detection range was 240 ~ 260 pg/g-wet.

Stocktaking of the detection of Polybromodiphenyl ethers (Br<sub>4</sub> ~ Br<sub>10)</sub> in wildlife during FY2009~2012

| Tetrabromodiphenyl        | Monitored         | Geometric          |        |         |         | Quantification       | Detection 1 | Frequency |
|---------------------------|-------------------|--------------------|--------|---------|---------|----------------------|-------------|-----------|
| ethers                    | year              | mean*              | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                           | 2008              | 73                 | 61     | 380     | 20      | 5.9 [2.2]            | 31/31       | 7/7       |
| Bivalves                  | 2010              | 59                 | 73     | 310     | nd      | 43 [16]              | 5/6         | 5/6       |
| (pg/g-wet)                | 2011              | 96                 | 120    | 490     | 26      | 16 [6]               | 4/4         | 4/4       |
|                           | 2012              | 59                 | 44     | 190     | 24      | 19 [7]               | 5/5         | 5/5       |
|                           | 2008              | 120                | 110    | 1,300   | 9.8     | 5.9 [2.2]            | 85/85       | 17/17     |
| Fish                      | 2010              | 160                | 170    | 740     | tr(16)  | 43 [16]              | 18/18       | 18/18     |
| (pg/g-wet)                | 2011              | 110                | 110    | 860     | tr(9)   | 16 [6]               | 18/18       | 18/18     |
|                           | 2012              | 120                | 140    | 650     | tr(10)  | 19 [7]               | 19/19       | 19/19     |
|                           | 2008              | 170                | 190    | 1,200   | 32      | 5.9 [2.2]            | 10/10       | 2/2       |
| Birds                     | 2010              | 140                |        | 270     | 72      | 43 [16]              | 2/2         | 2/2       |
| (pg/g-wet)                | 2011              |                    |        | 67      | 67      | 16 [6]               | 1/1         | 1/1       |
|                           | 2012              | 73                 |        | 110     | 49      | 19 [7]               | 2/2         | 2/2       |
| D                         | M:41              | C                  |        |         |         | Quantification       | Detection 1 | Frequency |
| Pentabromodiphenyl ethers | Monitored<br>year | Geometric<br>mean* | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                           | 2008              | 32                 | 27     | 94      | tr(11)  | 16 [5.9]             | 31/31       | 7/7       |
| Bivalves                  | 2010              | 32                 | 37     | 98      | tr(9)   | 14 [6]               | 6/6         | 6/6       |
| (pg/g-wet)                | 2011              | 51                 | 60     | 160     | tr(12)  | 15 [6]               | 4/4         | 4/4       |
|                           | 2012              | 28                 | 24     | 67      | tr(8)   | 18 [6]               | 5/5         | 5/5       |
|                           | 2008              | 30                 | 37     | 280     | nd      | 16 [5.9]             | 72/85       | 16/17     |
| Fish                      | 2010              | 51                 | 54     | 200     | nd      | 14 [6]               | 16/18       | 16/18     |
| (pg/g-wet)                | 2011              | 39                 | 39     | 300     | nd      | 15 [6]               | 17/18       | 17/18     |
|                           | 2012              | 37                 | 54     | 180     | nd      | 18 [6]               | 17/19       | 17/19     |
|                           | 2008              | 150                | 130    | 440     | 52      | 16 [5.9]             | 10/10       | 2/2       |
| Birds                     | 2010              | 150                |        | 200     | 120     | 14 [6]               | 2/2         | 2/2       |
| (pg/g-wet)                | 2011              |                    |        | 110     | 110     | 15 [6]               | 1/1         | 1/1       |
|                           | 2012              | 85                 |        | 110     | 66      | 18 [6]               | 2/2         | 2/2       |
| Hexabromodiphenyl         | Monitored         | Geometric          |        |         |         | Quantification       | Detection 1 | Frequency |
| ethers                    | year              | mean*              | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                           | 2008              | 19                 | 16     | 82      | tr(5.3) | 14 [5.0]             | 31/31       | 7/7       |
| Bivalves                  | 2010              | 8                  | 16     | 26      | nd      | 8 [3]                | 4/6         | 4/6       |
| (pg/g-wet)                | 2011              | 38                 | 41     | 81      | 20      | 10 [4]               | 4/4         | 4/4       |
|                           | 2012              | 21                 | 23     | 130     | tr(6)   | 10 [4]               | 5/5         | 5/5       |
|                           | 2008              | 46                 | 51     | 310     | nd      | 14 [5.0]             | 83/85       | 17/17     |
| Fish                      | 2010              | 39                 | 47     | 400     | nd      | 8 [3]                | 16/18       | 16/18     |
| (pg/g-wet)                | 2011              | 53                 | 50     | 430     | nd      | 10 [4]               | 17/18       | 17/18     |
|                           | 2012              | 55                 | 71     | 320     | nd      | 10 [4]               | 18/19       | 18/19     |
|                           | 2008              | 140                | 120    | 380     | 62      | 14 [5.0]             | 10/10       | 2/2       |
| Birds                     | 2010              | 110                |        | 140     | 86      | 8 [3]                | 2/2         | 2/2       |
| (pg/g-wet)                | 2011              |                    |        | 96      | 96      | 10 [4]               | 1/1         | 1/1       |
|                           | 2012              | 150                |        | 320     | 72      | 10 [4]               | 2/2         | 2/2       |

| TT4-11:-11                                                    | M:41                                                                      | C                                                 |                                      |                                                                                |                                        | Quantification                                                                                                     | Detection I                                                                                 | Frequency                                      |
|---------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|
| Heptabromodiphenyl ethers                                     | Monitored<br>year                                                         | Geometric<br>mean*                                | Median                               | Maximum                                                                        | Minimum                                | [Detection]<br>limit                                                                                               | Sample                                                                                      | Site                                           |
|                                                               | 2008                                                                      | tr(8.5)                                           | tr(7.6)                              | 35                                                                             | nd                                     | 18 [6.7]                                                                                                           | 20/31                                                                                       | 7/7                                            |
| Bivalves                                                      | 2010                                                                      | nd                                                | nd                                   | tr(10)                                                                         | nd                                     | 30 [10]                                                                                                            | 1/6                                                                                         | 1/6                                            |
| (pg/g-wet)                                                    | 2011                                                                      | 14                                                | 26                                   | 44                                                                             | nd                                     | 11 [4]                                                                                                             | 3/4                                                                                         | 3/4                                            |
|                                                               | 2012                                                                      | tr(8)                                             | tr(6)                                | 59                                                                             | nd                                     | 12 [5]                                                                                                             | 3/5                                                                                         | 3/5                                            |
|                                                               | 2008                                                                      | tr(11)                                            | tr(8.1)                              | 77                                                                             | nd                                     | 18 [6.7]                                                                                                           | 44/85                                                                                       | 10/17                                          |
| Fish                                                          | 2010                                                                      | nd                                                | nd                                   | 40                                                                             | nd                                     | 30 [10]                                                                                                            | 4/18                                                                                        | 4/18                                           |
| (pg/g-wet)                                                    | 2011                                                                      | 13                                                | 21                                   | 130                                                                            | nd                                     | 11 [4]                                                                                                             | 13/18                                                                                       | 13/18                                          |
|                                                               | 2012                                                                      | tr(11)                                            | 18                                   | 120                                                                            | nd                                     | 12 [5]                                                                                                             | 11/19                                                                                       | 11/19                                          |
|                                                               | 2008                                                                      | 35                                                | 35                                   | 53                                                                             | 19                                     | 18 [6.7]                                                                                                           | 10/10                                                                                       | 2/2                                            |
| Birds                                                         | 2010                                                                      | tr(19)                                            |                                      | 70                                                                             | nd                                     | 30 [10]                                                                                                            | 1/2                                                                                         | 1/2                                            |
| (pg/g-wet)                                                    | 2011                                                                      |                                                   |                                      | 44                                                                             | 44                                     | 11 [4]                                                                                                             | 1/1                                                                                         | 1/1                                            |
|                                                               | 2012                                                                      | 63                                                |                                      | 280                                                                            | 14                                     | 12 [5]                                                                                                             | 2/2                                                                                         | 2/2                                            |
| Oatahramadinhanul                                             | Monitored                                                                 | Coomotrio                                         |                                      |                                                                                |                                        | Quantification                                                                                                     | Detection I                                                                                 | requency                                       |
| Octabromodiphenyl ethers                                      | year                                                                      | Geometric<br>mean*                                | Median                               | Maximum                                                                        | Minimum                                | [Detection]<br>limit                                                                                               | Sample                                                                                      | Site                                           |
|                                                               | 2008                                                                      | nd                                                | nd                                   | 10                                                                             | nd                                     | 9.6 [3.6]                                                                                                          | 15/31                                                                                       | 6/7                                            |
| Bivalves                                                      | 2010                                                                      | nd                                                | nd                                   | tr(10)                                                                         | nd                                     | 11 [4]                                                                                                             | 2/6                                                                                         | 2/6                                            |
| (pg/g-wet)                                                    | 2011                                                                      | 7                                                 | 9                                    | 29                                                                             | nd                                     | 7 [3]                                                                                                              | 3/4                                                                                         | 3/4                                            |
|                                                               | 2012                                                                      | 8                                                 | tr(7)                                | 25                                                                             | nd                                     | 8 [3]                                                                                                              | 4/5                                                                                         | 4/5                                            |
|                                                               | 2008                                                                      | tr(5.7)                                           | nd                                   | 73                                                                             | nd                                     | 9.6 [3.6]                                                                                                          | 35/85                                                                                       | 7/17                                           |
| Fish                                                          | 2010                                                                      | tr(6)                                             | nd                                   | 100                                                                            | nd                                     | 11 [4]                                                                                                             | 8/18                                                                                        | 8/18                                           |
| (pg/g-wet)                                                    | 2011                                                                      | tr(6)                                             | tr(7)                                | 150                                                                            | nd                                     | 7 [3]                                                                                                              | 10/18                                                                                       | 10/18                                          |
| (188)                                                         | 2012                                                                      | tr(7)                                             | 8                                    | 160                                                                            | nd                                     | 8 [3]                                                                                                              | 12/19                                                                                       | 12/19                                          |
|                                                               | 2008                                                                      | 42                                                | 41                                   | 64                                                                             | 30                                     | 9.6 [3.6]                                                                                                          | 10/10                                                                                       | 2/2                                            |
| Birds                                                         | 2010                                                                      | 41                                                |                                      | 65                                                                             | 26                                     | 11 [4]                                                                                                             | 2/2                                                                                         | 2/2                                            |
| (pg/g-wet)                                                    | 2011                                                                      |                                                   |                                      | 66                                                                             | 66                                     | 7 [3]                                                                                                              | 1/1                                                                                         | 1/1                                            |
| (188)                                                         | 2012                                                                      | 130                                               |                                      | 420                                                                            | 40                                     | 8 [3]                                                                                                              | 2/2                                                                                         | 2/2                                            |
|                                                               |                                                                           |                                                   |                                      |                                                                                |                                        | Quantification                                                                                                     | Detection I                                                                                 |                                                |
| Nonabromodiphenyl                                             | Monitored                                                                 |                                                   | Median                               | Maximum                                                                        | Minimum                                | [Detection]                                                                                                        |                                                                                             | Site                                           |
| ethers                                                        | year                                                                      | mean*                                             |                                      |                                                                                |                                        | limit                                                                                                              | Sample                                                                                      | Site                                           |
|                                                               | 2008                                                                      | nd                                                | nd                                   | tr(23)                                                                         | nd                                     | 35 [13]                                                                                                            | 5/31                                                                                        | 1/7                                            |
| Bivalves                                                      | 2010                                                                      | tr(16)                                            | tr(15)                               | 60                                                                             | nd                                     | 30 [10]                                                                                                            | 5/6                                                                                         | 5/6                                            |
| (pg/g-wet)                                                    | 2011                                                                      | tr(12)                                            | tr(11)                               | 40                                                                             | nd                                     | 22 [9]                                                                                                             | 3/4                                                                                         | 3/4                                            |
| (188)                                                         | 2012                                                                      | tr(15)                                            | 25                                   | 45                                                                             | nd                                     | 24 [9]                                                                                                             | 3/5                                                                                         | 3/5                                            |
|                                                               | 2008                                                                      | nd                                                | nd                                   | tr(15)                                                                         | nd                                     | 35 [13]                                                                                                            | 2/85                                                                                        | 2/17                                           |
| Fish                                                          | 2010                                                                      | nd                                                | nd                                   | 40                                                                             | nd                                     | 30 [10]                                                                                                            | 3/18                                                                                        | 3/18                                           |
| (pg/g-wet)                                                    | 2011                                                                      | nd                                                | nd                                   | tr(15)                                                                         | nd                                     | 22 [9]                                                                                                             | 5/18                                                                                        | 5/18                                           |
| (P5/5 Wet)                                                    | 2012                                                                      | nd                                                | nd                                   | 54                                                                             | nd                                     | 24 [9]                                                                                                             | 9/19                                                                                        | 9/19                                           |
|                                                               | 2008                                                                      | tr(21)                                            | tr(20)                               | tr(33)                                                                         | nd                                     | 35 [13]                                                                                                            | 9/10                                                                                        | 2/2                                            |
| Birds                                                         | 2010                                                                      | 32                                                | u(20)                                | 50                                                                             | tr(20)                                 | 30 [10]                                                                                                            | 2/2                                                                                         | 2/2                                            |
| (pg/g-wet)                                                    | 2010                                                                      |                                                   |                                      | 62                                                                             | 62                                     | 22 [9]                                                                                                             | 1/1                                                                                         | 1/1                                            |
|                                                               |                                                                           |                                                   |                                      |                                                                                |                                        |                                                                                                                    | 2/2                                                                                         | 2/2                                            |
| (188)                                                         |                                                                           | 100                                               |                                      | 150                                                                            | 67                                     | 24 191                                                                                                             |                                                                                             |                                                |
| (18.8)                                                        | 2012                                                                      | 100                                               |                                      | 150                                                                            | 67                                     | 24 [9]                                                                                                             |                                                                                             | requency                                       |
| Decabromodiphenyl                                             |                                                                           | 100<br>Geometric                                  |                                      |                                                                                |                                        | Quantification                                                                                                     | Detection I                                                                                 |                                                |
|                                                               | 2012                                                                      |                                                   | Median                               | 150<br>Maximum                                                                 | 67<br>Minimum                          | Quantification<br>[Detection]                                                                                      |                                                                                             | Frequency<br>Site                              |
| Decabromodiphenyl                                             | 2012<br>Monitored                                                         | Geometric                                         |                                      |                                                                                |                                        | Quantification                                                                                                     | Detection I                                                                                 |                                                |
| Decabromodiphenyl                                             | 2012<br>Monitored<br>year                                                 | Geometric<br>mean*                                | Median                               | Maximum                                                                        | Minimum                                | Quantification<br>[Detection]<br>limit                                                                             | Detection I<br>Sample                                                                       | Site                                           |
| Decabromodiphenyl ether                                       | 2012<br>Monitored<br>year<br>2008                                         | Geometric<br>mean*                                | Median<br>nd                         | Maximum tr(170)                                                                | Minimum                                | Quantification [Detection] limit 220 [74]                                                                          | Sample 8/31                                                                                 | Site 3/7                                       |
| Decabromodiphenyl ether  Bivalves                             | 2012<br>Monitored<br>year<br>2008<br>2010                                 | Geometric<br>mean*<br>nd<br>nd                    | Median<br>nd<br>nd                   | Maximum<br>tr(170)<br>tr(190)                                                  | Minimum<br>nd<br>nd                    | Quantification<br>[Detection]<br>limit<br>220 [74]<br>270 [97]                                                     | Detection I<br>Sample<br>8/31<br>2/6                                                        | Site 3/7 2/6                                   |
| Decabromodiphenyl ether  Bivalves                             | 2012<br>Monitored<br>year<br>2008<br>2010<br>2011                         | Geometric<br>mean*<br>nd<br>nd<br>nd              | Median<br>nd<br>nd                   | Maximum<br>tr(170)<br>tr(190)<br>240                                           | Minimum<br>nd<br>nd<br>nd              | Quantification [Detection] limit 220 [74] 270 [97] 230 [80] 120 [50]                                               | Detection I<br>Sample<br>8/31<br>2/6<br>1/4                                                 | Site 3/7 2/6 1/4                               |
| Decabromodiphenyl ether  Bivalves (pg/g-wet)                  | 2012<br>Monitored<br>year<br>2008<br>2010<br>2011<br>2012<br>2008         | Geometric<br>mean*<br>nd<br>nd<br>nd<br>120<br>nd | Median  nd nd nd 170 nd              | Maximum<br>tr(170)<br>tr(190)<br>240<br>480<br>230                             | Minimum  nd nd nd nd nd nd             | Quantification [Detection] limit 220 [74] 270 [97] 230 [80] 120 [50] 220 [74]                                      | Detection I<br>Sample<br>8/31<br>2/6<br>1/4<br>4/5<br>5/76                                  | Site  3/7 2/6 1/4 4/5 4/16                     |
| Decabromodiphenyl ether  Bivalves (pg/g-wet)  Fish            | 2012<br>Monitored<br>year<br>2008<br>2010<br>2011<br>2012<br>2008<br>2010 | Geometric mean*  nd nd nd 120 nd nd               | Median  nd nd nd 170 nd nd           | Maximum  tr(170) tr(190) 240 480 230 tr(150)                                   | Minimum  nd nd nd nd nd nd             | Quantification [Detection] limit 220 [74] 270 [97] 230 [80] 120 [50] 220 [74] 270 [97]                             | Detection I<br>Sample<br>8/31<br>2/6<br>1/4<br>4/5<br>5/76<br>2/18                          | Site  3/7 2/6 1/4 4/5 4/16 2/18                |
| Decabromodiphenyl ether  Bivalves (pg/g-wet)                  | 2012  Monitored year  2008 2010 2011 2012 2008 2010 2011                  | Geometric mean*  nd nd nd 120 nd nd nd            | Median  nd nd 170 nd nd nd           | tr(170)<br>tr(190)<br>240<br>480<br>230<br>tr(150)<br>tr(90)                   | Minimum  nd nd nd nd nd nd             | Quantification [Detection] limit 220 [74] 270 [97] 230 [80] 120 [50] 220 [74] 270 [97] 230 [80]                    | Detection I<br>Sample<br>8/31<br>2/6<br>1/4<br>4/5<br>5/76<br>2/18<br>2/18                  | Site  3/7 2/6 1/4 4/5 4/16 2/18 2/18           |
| Decabromodiphenyl ether  Bivalves (pg/g-wet)  Fish            | 2012  Monitored year  2008 2010 2011 2012 2008 2010 2011 2012             | Geometric mean*  nd nd nd 120 nd nd nd tr(59)     | Median  nd nd 170 nd nd nd tr(60)    | tr(170)<br>tr(190)<br>240<br>480<br>230<br>tr(150)<br>tr(90)<br>380            | Minimum  nd nd nd nd nd nd nd          | Quantification [Detection] limit  220 [74] 270 [97] 230 [80] 120 [50] 220 [74] 270 [97] 230 [80] 120 [50]          | Detection I<br>Sample<br>8/31<br>2/6<br>1/4<br>4/5<br>5/76<br>2/18<br>2/18<br>11/19         | Site  3/7 2/6 1/4 4/5 4/16 2/18 2/18 11/19     |
| Decabromodiphenyl ether  Bivalves (pg/g-wet)  Fish (pg/g-wet) | 2012  Monitored year  2008 2010 2011 2012 2008 2010 2011 2012 2012        | Geometric mean*  nd nd nd 120 nd nd nd tr(59) nd  | Median  nd nd nd 170 nd nd tr(60) nd | tr(170)<br>tr(190)<br>240<br>480<br>230<br>tr(150)<br>tr(90)<br>380<br>tr(110) | Minimum  nd nd nd nd nd nd nd nd nd nd | Quantification [Detection] limit  220 [74] 270 [97] 230 [80] 120 [50] 220 [74] 270 [97] 230 [80] 120 [50] 220 [74] | Detection I<br>Sample<br>8/31<br>2/6<br>1/4<br>4/5<br>5/76<br>2/18<br>2/18<br>11/19<br>4/10 | Site  3/7 2/6 1/4 4/5 4/16 2/18 2/18 11/19 1/2 |
| Decabromodiphenyl ether  Bivalves (pg/g-wet)  Fish            | 2012  Monitored year  2008 2010 2011 2012 2008 2010 2011 2012             | Geometric mean*  nd nd nd 120 nd nd nd tr(59)     | Median  nd nd 170 nd nd nd tr(60)    | tr(170)<br>tr(190)<br>240<br>480<br>230<br>tr(150)<br>tr(90)<br>380            | Minimum  nd nd nd nd nd nd nd          | Quantification [Detection] limit  220 [74] 270 [97] 230 [80] 120 [50] 220 [74] 270 [97] 230 [80] 120 [50]          | Detection I<br>Sample<br>8/31<br>2/6<br>1/4<br>4/5<br>5/76<br>2/18<br>2/18<br>11/19         | Site  3/7 2/6 1/4 4/5 4/16 2/18 2/18 11/19     |

(Note) " \* " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

<Air>

Tetrabromodiphenyl ethers: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at 35 of the 36 valid sites adopting the detection limit of 0.1pg/m<sup>3</sup>, and none of the detected concentrations exceeded 5.7pg/m<sup>3</sup>. For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 25 of the 36 valid sites adopting the detection limit of 0.1pg/m<sup>3</sup>, and none of the detected concentrations exceeded 1.7 pg/m<sup>3</sup>.

Pentabromodiphenyl ethers: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at 30 of the 36 valid sites adopting the detection limit of 0.06pg/m³, and none of the detected concentrations exceeded 2.4 pg/m³. For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 26 of the 36 valid sites adopting the detection limit of 0.06pg/m³, and none of the detected concentrations exceeded 0.77 pg/m³.

Hexabromodiphenyl ethers: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at 9 of the 36 valid sites adopting the detection limit of  $0.1 \,\mathrm{pg/m^3}$ , and none of the detected concentrations exceeded 3.1  $\,\mathrm{pg/m^3}$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 22 of the 36 valid sites adopting the detection limit of  $0.1 \,\mathrm{pg/m^3}$ , and none of the detected concentrations exceeded  $0.5 \,\mathrm{pg/m^3}$ .

Heptabromodiphenyl ethers: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at 6 of the 36 valid sites adopting the detection limit of  $0.2 \text{pg/m}^3$ , and none of the detected concentrations exceeded 1.8 pg/m<sup>3</sup>. For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 8 of the 36 valid sites adopting the detection limit of  $0.2 \text{pg/m}^3$ , and none of the detected concentrations exceeded  $0.7 \text{ pg/m}^3$ .

Octabromodiphenyl ethers: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at 29 of the 36 valid sites adopting the detection limit of  $0.1 \,\mathrm{pg/m^3}$ , and none of the detected concentrations exceeded 1.2  $\,\mathrm{pg/m^3}$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 30 of the 36 valid sites adopting the detection limit of  $0.1 \,\mathrm{pg/m^3}$ , and none of the detected concentrations exceeded 1.2  $\,\mathrm{pg/m^3}$ .

Nonabromodiphenyl ethers: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at 24 of the 36 valid sites adopting the detection limit of 0.4pg/m³, and none of the detected concentrations exceeded 5.1 pg/m³. For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 30 of the 36 valid sites adopting the detection limit of 0.4pg/m³, and none of the detected concentrations exceeded 4.7 pg/m³.

Decabromodiphenyl ether: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at 17 of the 36 valid sites adopting the detection limit of 5pg/m³, and none of the detected concentrations exceeded 31 pg/m³. For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 28 of the 36 valid sites adopting the detection limit of 5pg/m³, and none of the detected concentrations exceeded 73 pg/m³.

Stocktaking of the detection of Polybromodiphenyl ethers (Br<sub>4</sub> ~ Br<sub>10</sub>) in air during FY2009~2012

| Tetrabromo                    |                  | Geometric         |          |         |           | Quantification                         | Detection 1           | Frequency         |
|-------------------------------|------------------|-------------------|----------|---------|-----------|----------------------------------------|-----------------------|-------------------|
| diphenyl ethers:              | Monitored year   | mean              | Median   | Maximum | Minimum   | [Detection]<br>limit                   | Sample                | Site              |
|                               | 2009 Warm season | 0.89              | 0.80     | 18      | 0.11      | 0.11 [0.04]                            | 37/37                 | 37/37             |
|                               | 2009 Cold season | 0.40              | 0.37     | 7.1     | tr(0.04)  |                                        | 37/37                 | 37/37             |
|                               | 2010 Warm season | 0.79              | 0.57     | 50      | 0.15      | 0.12 [0.05]                            | 37/37                 | 37/37             |
| Air                           | 2010 Cold season | 0.40              | 0.35     | 25      | tr(0.09)  |                                        | 37/37                 | 37/37             |
| $(pg/m^3)$                    | 2011 Warm season | 0.80              | 0.72     | 9.3     | tr(0.11)  | 0.18 [0.07]                            | 35/35                 | 35/35             |
|                               | 2011 Cold season | 0.36              | 0.34     | 7.0     | nd        |                                        | 35/37                 | 35/37             |
|                               | 2012 Warm season | 0.7               | 0.7      | 5.7     | nd        | 0.3 [0.1]                              | 35/36                 | 35/36             |
|                               | 2012 Cold season | tr(0.2)           | tr(0.2)  | 1.7     | nd        |                                        | 25/36                 | 25/36             |
| Pentabromo<br>diphenyl ethers | Monitored year   | Geometric<br>mean | Median   | Maximum | Minimum   | Quantification<br>[Detection]<br>limit | Detection I<br>Sample | Frequency<br>Site |
|                               | 2009 Warm season | 0.20              | 0.19     | 18      | nd        | _                                      | 33/37                 | 33/37             |
|                               | 2009 Cold season | 0.19              | 0.16     | 10      | nd        | 0.16 [0.06]                            | 29/37                 | 29/37             |
|                               | 2010 Warm season | 0.20              | 0.17     | 45      | nd        | 0.12.50.053                            | 35/37                 | 35/37             |
| Air                           | 2010 Cold season | 0.20              | 0.22     | 28      | nd        | 0.12 [0.05]                            | 34/37                 | 34/37             |
| $(pg/m^3)$                    | 2011 Warm season | 0.19              | 0.17     | 8.8     | nd        | 0.16.50.061                            | 31/35                 | 31/35             |
| 40                            | 2011 Cold season | 0.16              | tr(0.14) | 2.6     | nd        | 0.16 [0.06]                            | 31/37                 | 31/37             |
|                               | 2012 Warm season | tr(0.13)          | tr(0.12) | 2.4     | nd        | 0.1450.061                             | 30/36                 | 30/36             |
|                               | 2012 Cold season | tr(0.09)          | tr(0.09) | 0.77    | nd        | 0.14 [0.06]                            | 26/36                 | 26/36             |
| Hexabromo diphenyl ethers     | Monitored year   | Geometric<br>mean | Median   | Maximum | Minimum   | Quantification<br>[Detection]          | Detection I<br>Sample | Frequency<br>Site |
| diplicity i culcis            |                  |                   |          |         |           | limit                                  |                       |                   |
|                               | 2009 Warm season | tr(0.11)          | tr(0.11) | 2.0     | nd        | 0.22 [0.09]                            | 19/37                 | 19/37             |
|                               | 2009 Cold season | tr(0.20)          | 0.22     | 27      | nd        |                                        | 24/37                 | 24/37             |
|                               | 2010 Warm season | tr(0.14)          | tr(0.13) | 4.9     | nd        | 0.16 [0.06]                            | 29/37                 | 29/37             |
| Air                           | 2010 Cold season | 0.24              | 0.27     | 5.4     | nd        |                                        | 31/37                 | 31/37             |
| $(pg/m^3)$                    | 2011 Warm season | tr(0.11)          | tr(0.10) | 1.2     | nd        | 0.14 [0.05]                            | 28/35                 | 28/35             |
|                               | 2011 Cold season | 0.16              | 0.18     | 1.7     | nd        |                                        | 30/37                 | 30/37             |
|                               | 2012 Warm season | nd                | nd       | 3.1     | nd        | 0.3 [0.1]                              | 9/36                  | 9/36              |
|                               | 2012 Cold season | tr(0.1)           | tr(0.1)  | 0.5     | nd        |                                        | 22/36                 | 22/36             |
| Heptabromo diphenyl ethers    | Monitored year   | Geometric<br>mean | Median   | Maximum | Minimum   | Quantification<br>[Detection]<br>limit | Detection I Sample    | Site              |
|                               | 2009 Warm season | tr(0.1)           | nd       | 1.7     | nd        | 0.3 [0.1]                              | 17/37                 | 17/37             |
|                               | 2009 Cold season | tr(0.2)           | 0.3      | 20      | nd        |                                        | 25/37                 | 25/37             |
|                               | 2010 Warm season | tr(0.2)           | tr(0.1)  | 1.4     | nd        | 0.3 [0.1]                              | 24/37                 | 24/37             |
| Air                           | 2010 Cold season | 0.3               | 0.4      | 11      | <u>nd</u> |                                        | 28/37                 | 28/37             |
| $(pg/m^3)$                    | 2011 Warm season | tr(0.1)           | tr(0.1)  | 1.1     | nd        | 0.3 [0.1]                              | 20/35                 | 20/35             |
|                               | 2011 Cold season | tr(0.2)           | tr(0.2)  | 2.3     | nd        |                                        | 25/37                 | 25/37             |
|                               | 2012 Warm season | nd                | nd       | 1.8     | nd        | 0.5 [0.2]                              | 6/36                  | 6/36              |
|                               | 2012 Cold season | nd                | nd       | 0.7     | nd        |                                        | 8/36                  | 8/36              |
| Octabromo<br>diphenyl ethers  | Monitored year   | Geometric mean    | Median   | Maximum | Minimum   | Quantification<br>[Detection]<br>limit | Detection I<br>Sample | Frequency<br>Site |
|                               | 2009 Warm season | tr(0.2)           | 0.3      | 1.6     | nd        |                                        | 23/37                 | 23/37             |
|                               | 2009 Cold season | 0.3               | 0.4      | 7.1     | nd        | 0.3 [0.1]                              | 26/37                 | 26/37             |
|                               | 2010 Warm season | 0.25              | 0.30     | 2.3     | nd        |                                        | 30/37                 | 30/37             |
| Air                           | 2010 Cold season | 0.40              | 0.52     | 6.9     | nd        | 0.15 [0.06]                            | 32/37                 | 32/37             |
| $(pg/m^3)$                    | 2011 Warm season | 0.24              | 0.31     | 1.9     | nd        | 0.00.50.00                             | 27/35                 | 27/35             |
| (18)                          | 2011 Cold season | 0.35              | 0.44     | 7.0     | nd        | 0.20 [0.08]                            | 30/37                 | 30/37             |
|                               | 2012 Warm season | tr(0.2)           | tr(0.2)  | 1.2     | nd        | <u>a</u>                               | 29/36                 | 29/36             |
|                               | 2012 Cold season | 0.3               | 0.4      | 1.2     |           |                                        | 30/36                 | 30/36             |

| Nonabromo       |                  | Geometric |         |         |         | Quantification       | Detection | Frequency |
|-----------------|------------------|-----------|---------|---------|---------|----------------------|-----------|-----------|
| diphenyl ethers | Monitored year   | mean      | Median  | Maximum | Minimum | [Detection]<br>limit | Sample    | Site      |
|                 | 2009 Warm season | tr(0.7)   | tr(0.7) | 3.0     | nd      | 1 9 [0 6]            | 22/37     | 22/37     |
|                 | 2009 Cold season | tr(1.0)   | tr(0.8) | 3.9     | nd      | 1.8 [0.6]            | 27/37     | 27/37     |
|                 | 2010 Warm season | nd        | nd      | 24      | nd      | 2.7.51.23            | 12/37     | 12/37     |
| Air             | 2010 Cold season | tr(1.2)   | tr(1.3) | 7.1     | nd      | 3.7 [1.2]            | 22/37     | 22/37     |
| $(pg/m^3)$      | 2011 Warm season | tr(0.8)   | 0.9     | 3.9     | nd      | 0.0.50.41            | 29/35     | 29/35     |
|                 | 2011 Cold season | 1.1       | 1.1     | 14      | nd      | 0.9 [0.4]            | 30/37     | 30/37     |
|                 | 2012 Warm season | tr(0.5)   | tr(0.5) | 5.1     | nd      | 1 2 [0 4]            | 24/36     | 24/36     |
|                 | 2012 Cold season | tr(0.9)   | tr(1.1) | 4.7     | nd      | 1.2 [0.4]            | 30/36     | 30/36     |
| Decabromo       |                  | Geometric |         |         |         | Quantification       | Detection | Frequency |
| diphenyl ether  | Monitored year   | mean      | Median  | Maximum | Minimum | [Detection]<br>limit | Sample    | Site      |
|                 | 2009 Warm season | tr(7)     | tr(9)   | 31      | nd      | 16 [5]               | 28/37     | 28/37     |
|                 | 2009 Cold season | tr(10)    | tr(11)  | 45      | nd      | 16 [5]               | 29/37     | 29/37     |
|                 | 2010 Warm season | nd        | nd      | 290     | nd      | 27 [0 1]             | 10/37     | 10/37     |
| Air             | 2010 Cold season | tr(11)    | tr(12)  | 88      | nd      | 27 [9.1]             | 21/37     | 21/37     |
| $(pg/m^3)$      | 2011 Warm season | tr(8.2)   | tr(9.0) | 30      | nd      | 12 [4 0]             | 31/35     | 31/35     |
|                 | 2011 Cold season | tr(8.4)   | tr(9.0) | 44      | nd      | 12 [4.0]             | 29/37     | 29/37     |
| -<br>-          | 2012 Warm season | nd        | nd      | 31      | nd      | 1.6 [5]              | 17/36     | 17/36     |
|                 | 2012 Cold season | tr(10)    | tr(12)  | 73      | nd      | 16 [5]               | 28/36     | 28/36     |

## [15] Perfluorooctane sulfonic acid (PFOS)

## · History and state of monitoring

Perfluorooctane sulfonic acid (PFOS) has been used as water repellent agent, oil repellent agent and surface acting agent. Perfluorooctane sulfonic acid (PFOS) was adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY 2009, and air in FY 2010 ~ 2012.

The survey of the Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) only monitored linear octyl Perfluorooctane sulfonic acid (PFOS) and linear octyl Perfluorooctanoic acid (PFOA).

## · Monitoring results

#### <Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 12pg/L, and the detection range was  $39 \sim 14,000 pg/L$ .

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in surface water during FY2009~2012

| Perfluorooctane<br>sulfonic acid<br>(PFOS) | Monitored | Geometric |            |         |         | Quantification       | Detection 1 | Frequency |
|--------------------------------------------|-----------|-----------|------------|---------|---------|----------------------|-------------|-----------|
|                                            | year      | mean      | ean Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                                            | 2009      | 730       | 580        | 14,000  | tr(26)  | 37 [14]              | 49/49       | 49/49     |
| Surface Water                              | 2010      | 490       | 380        | 230,000 | tr(37)  | 50 [20]              | 49/49       | 49/49     |
| (pg/L)                                     | 2011      | 480       | 360        | 10,000  | tr(20)  | 50 [20]              | 49/49       | 49/49     |
|                                            | 2012      | 550       | 510        | 14,000  | 39      | 31 [12]              | 48/48       | 48/48     |

### <Sediment>

The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 4pg/g-dry, and none of the detected concentrations exceeded tr(7) ~ 1,200 pg/g-dry.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in sediment during FY2009~2012

| Perfluorooctane<br>sulfonic acid<br>(PFOS) | Monitored<br>year | Geometric<br>mean* | Median | Maximum | Minimum | Quantification<br>[Detection]<br>limit | Detection l<br>Sample | Frequency<br>Site |
|--------------------------------------------|-------------------|--------------------|--------|---------|---------|----------------------------------------|-----------------------|-------------------|
|                                            | 2009              | 78                 | 97     | 1,900   | nd      | 9.6 [3.7]                              | 180/190               | 64/64             |
| Sediment                                   | 2010              | 82                 | 100    | 1,700   | tr(3)   | 5 [2]                                  | 64/64                 | 64/64             |
| (pg/g-dry)                                 | 2011              | 92                 | 110    | 1,100   | nd      | 5 [2]                                  | 63/64                 | 63/64             |
| 488 37                                     | 2012              | 68                 | 84     | 1,200   | tr(7)   | 9 [4]                                  | 63/63                 | 63/63             |

(Note) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

# <Wildlife>

The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 3pg/g-wet, and the detection range was  $tr(4) \sim 160 pg/g$ -wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 3pg/g-wet, and the detection range was  $tr(5) \sim 7,300 pg/g$ -wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 3pg/g-wet, and the detection range was  $63 \sim 410pg/g$ -wet.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in wildlife during FY2009~2012

| Perfluorooctane      | Monitored | Geometric |        |         | Quantification | Detection 11         |        |       |
|----------------------|-----------|-----------|--------|---------|----------------|----------------------|--------|-------|
| sulfonic acid (PFOS) | year      | mean*     | Median | Maximum | Minimum        | [Detection]<br>limit | Sample | Site  |
|                      | 2009      | 24        | 28     | 640     | nd             | 19 [7.4]             | 17/31  | 5/7   |
| Bivalves             | 2010      | 72        | 85     | 680     | nd             | 25 [9.6]             | 5/6    | 5/6   |
| (pg/g-wet)           | 2011      | 38        | 44     | 100     | 16             | 10 [4]               | 4/4    | 4/4   |
|                      | 2012      | 27        | 21     | 160     | tr(4)          | 7 [3]                | 5/5    | 5/5   |
|                      | 2009      | 220       | 230    | 15,000  | nd             | 19 [7.4]             | 83/90  | 17/18 |
| Fish                 | 2010      | 390       | 480    | 15,000  | nd             | 25 [9.6]             | 17/18  | 17/18 |
| (pg/g-wet)           | 2011      | 82        | 95     | 3,200   | nd             | 10 [4]               | 16/18  | 16/18 |
|                      | 2012      | 110       | 130    | 7,300   | tr(5)          | 7 [3]                | 19/19  | 19/19 |
|                      | 2009      | 300       | 360    | 890     | 37             | 19 [7.4]             | 10/10  | 2/2   |
| Birds                | 2010      | 1,300     |        | 3,000   | 580            | 25 [9.6]             | 2/2    | 2/2   |
| (pg/g-wet)           | 2011      |           |        | 110     | 110            | 10 [4]               | 1/1    | 1/1   |
|                      | 2012      | 160       |        | 410     | 63             | 7 [3]                | 2/2    | 2/2   |

<sup>(</sup>Note) "\*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

## <Air>

The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.2 \text{pg/m}^3$ , and the detection range was  $1.3 \sim 8.9 \text{ pg/m}^3$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.2 \text{pg/m}^3$ , and the detection range was  $1.0 \sim 5.9 \text{ pg/m}^3$ .

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in wildlife in FY2010~2012

| Perfluorooct ane sulfonic |                                  | Geometric |        |         | ·       | Quantification<br>[Detection]<br>limit | Detection Frequency |       |
|---------------------------|----------------------------------|-----------|--------|---------|---------|----------------------------------------|---------------------|-------|
| acid (PFOS)               | Monitored year  2010 Warm season | mean M    | Median | Maximum | Minimum |                                        | Sample              | Site  |
|                           | 2010 Warm season                 | 5.2       | 5.9    | 14      | 1.6     | 0.4.0.11                               | 37/37               | 37/37 |
|                           | 2010 Cold season                 | 4.7       | 4.4    | 15      | 1.4     | 0.4 [0.1]                              | 37/37               | 37/37 |
| Air                       | 2011 Warm season                 | 4.4       | 4.2    | 10      | 0.9     | 0.5.50.23                              | 35/35               | 35/35 |
| $(pg/m^3)$                | 2011 Cold season                 | 3.7       | 3.8    | 9.5     | 1.3     | 0.5 [0.2]                              | 37/37               | 37/37 |
|                           | 2012 Warm season                 | 3.6       | 3.8    | 8.9     | 1.3     | 0.5 [0.2]                              | 36/36               | 36/36 |
|                           | 2012 Cold season                 | 2.7       | 3.0    | 5.9     | 1.0     |                                        | 36/36               | 36/36 |

## [16] Perfluorooctanoic acid (PFOA)

## · History and state of monitoring

Perfluorooctanoic acids (PFOA) have been used as water repellent agent, oil repellent agent and surface acting agent. Perfluorooctanoic acids (PFOA) were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009.

The substances were measured in surface water, sediment and wildlife in FY 2002, 2003, 2004, 2005 under the framework of "the Environmental Survey and Monitoring of Chemicals".

The survey of the Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) only monitored linear octyl Perfluorooctane sulfonic acid (PFOS) and linear octyl Perfluorooctanoic acid (PFOA). However, it remains possible that the survey in wildlife monitored branched-chain Perfluorooctanoic acid (PFOS) and branched-chain Perfluorooctanoic acid (PFOA).

## Monitoring results

#### <Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 55pg/L, and the detection range was  $240 \sim 26,000pg/L$ .

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in surface water during FY2009~2012

| Perfluorooctanoic | Monitored | Geometric |        |         |         | Quantification       | Detection Frequency |       |
|-------------------|-----------|-----------|--------|---------|---------|----------------------|---------------------|-------|
| acid(PFOA)        | year      | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample              | Site  |
|                   | 2009      | 1,600     | 1,300  | 31,000  | 250     | 59 [23]              | 49/49               | 49/49 |
| Surface Water     | 2010      | 2,700     | 2,400  | 23,000  | 190     | 60 [20]              | 49/49               | 49/49 |
| (pg/L)            | 2011      | 2,000     | 1,700  | 50,000  | 380     | 50 [20]              | 49/49               | 49/49 |
| 40 /              | 2012      | 1,400     | 1,100  | 26,000  | 240     | 170 [55]             | 48/48               | 48/48 |

#### <Sediment>

The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 2pg/g-dry, and the detection range was 12 ~ 280 pg/g-dry.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in sediment during FY2009~2012

| Perfluorooctanoic | Monitored | Geometric |        | •       |         | Quantification       | Detection l | Frequency |
|-------------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| acid(PFOA)        | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                   | 2009      | 27        | 24     | 500     | nd      | 8.3 [3.3]            | 182/190     | 64/64     |
| Sediment          | 2010      | 28        | 33     | 180     | nd      | 12 [5]               | 62/64       | 62/64     |
| (pg/g-dry)        | 2011      | 100       | 93     | 1,100   | 22      | 5 [2]                | 64/64       | 64/64     |
|                   | 2012      | 51        | 48     | 280     | 12      | 4 [2]                | 63/63       | 63/63     |

(Note) " \* ":Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

## <Wildlife>

The presence of the substance in bivalves was monitored in 5 areas, and it was detected at 4 of the 5 valid areas adopting the detection limit of 13pg/g-wet, and none of the detected concentrations exceeded 46 pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 13pg/g-wet, and none of the detected concentrations exceeded 86 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 13pg/g-wet, and the detection range was tr(26) ~ tr(28) pg/g- wet.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in wildlife (bivalves, fish and birds) during  $FY2009\sim2012$ 

| Perfluorooctanoic | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
|-------------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| acid(PFOA)        | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                   | 2009      | tr(20)    | tr(21) | 94      | nd      | 25 [9.9]             | 27/31       | 7/7       |
| Bivalves          | 2010      | 28        | 33     | 76      | nd      | 26 [9.9]             | 5/6         | 5/6       |
| (pg/g-wet)        | 2011      | tr(19)    | tr(22) | tr(40)  | nd      | 41 [14]              | 3/4         | 3/4       |
|                   | 2012      | tr(21)    | tr(23) | 46      | nd      | 38 [13]              | 4/5         | 4/5       |
|                   | 2009      | tr(23)    | tr(19) | 490     | nd      | 25 [9.9]             | 74/90       | 17/18     |
| Fish              | 2010      | tr(13)    | tr(11) | 95      | nd      | 26 [9.9]             | 13/18       | 13/18     |
| (pg/g-wet)        | 2011      | nd        | nd     | 51      | nd      | 41 [14]              | 7/18        | 7/18      |
|                   | 2012      | tr(35)    | tr(32) | 86      | nd      | 38 [13]              | 18/19       | 18/19     |
|                   | 2009      | 32        | 29     | 58      | tr(16)  | 25 [9.9]             | 10/10       | 2/2       |
| Birds             | 2010      | 38        |        | 48      | 30      | 26 [9.9]             | 2/2         | 2/2       |
| (pg/g-wet)        | 2011      |           |        | nd      | nd      | 41 [14]              | 0/1         | 0/1       |
|                   | 2012      | tr(27)    |        | tr(28)  | tr(26)  | 38 [13]              | 2/2         | 2/2       |

(Note) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

#### <Air>

The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.2pg/m^3$ , and the detection range was  $1.9 \sim 120 pg/m^3$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.2pg/m^3$ , and the detection range was  $1.6 \sim 48 pg/m^3$ .

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in air during FY2009~2012

| Perfluorooct         |                  | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
|----------------------|------------------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| anoic acid<br>(PFOA) | Monitored year   | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                      | 2010 Warm season | 25        | 26     | 210     | 4.0     | 0.5.[0.2]            | 37/37       | 37/37     |
|                      | 2010 Cold season | 14        | 14     | 130     | 2.4     | 0.5 [0.2]            | 37/37       | 37/37     |
| Air                  | 2011 Warm season | 20        | 18     | 240     | tr(3.5) | 5.4 [1.8]            | 35/35       | 35/35     |
| $(pg/m^3)$           | 2011 Cold season | 12        | 11     | 97      | nd      |                      | 36/37       | 36/37     |
|                      | 2012 Warm season | 11        | 12     | 120     | 1.9     | 0.7 [0.2]            | 36/36       | 36/36     |
|                      | 2012 Cold season | 6.9       | 6.0    | 48      | 1.6     |                      | 36/36       | 36/36     |

## [17] Pentachlorobenzene

## · History and state of monitoring

Pentachlorobenzene have been used as flame retardants and pesticide. It was historically never registered under the Agricultural Chemicals Regulation Law. The pentachlorobenzene is produced as a by-product when agricultural chemicals are produced. In addition, it is generated unintentionally at the time of combustion. Pentachlorobenzene was adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY 2007, FY 2010 ~ 2012, and air in FY 2009.

# · Monitoring results

#### <Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 1pg/L, and the detection range was  $3 \sim 170 pg/L$ .

Stocktaking of the detection of Pentachlorobenzene in surface water in FY2007, FY2010 and FY2011

| Penta chloro  | Monitored Geometric |      |        |         |         | Quantification       | Detection Frequency |       |
|---------------|---------------------|------|--------|---------|---------|----------------------|---------------------|-------|
| benzene       | year                | mean | Median | Maximum | Minimum | [Detection]<br>limit | Sample              | Site  |
|               | 2007                | nd   | nd     | nd      | nd      | 3,300 [1,300]        | 0/48                | 0/48  |
| Surface Water | 2010                | 8    | 5      | 100     | tr(1)   | 4 [1]                | 49/49               | 49/49 |
| (pg/L)        | 2011                | 11   | 11     | 170     | 2.6     | 2.4 [0.9]            | 49/49               | 49/49 |
|               | 2012                | 14   | 11     | 170     | 3       | 3 [1]                | 48/48               | 48/48 |

## <Sediment>

The presence of the substance in sediment was monitored at 63 sites, and it was detected at 62 of the 63 valid sites adopting the detection limit of 0.8pg/g-dry, none of the detected concentrations exceeded 1,100 pg/g-dry.

Stocktaking of the detection of Pentachlorobenzene in sediment in FY2007, FY2010 and FY2012

| Penta chloro | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
|--------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| benzene      | year      | mean*     | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|              | 2007      | tr(46)    | nd     | 2,400   | nd      | 86 [33]              | 79/19       | 35/64     |
| Sediment     | 2010      | 90        | 95     | 4,200   | 1.0     | 0.9 [0.3]            | 64/64       | 64/64     |
| (pg/g-dry)   | 2011      | 95        | 76     | 4,500   | 3       | 5 [2]                | 64/64       | 64/64     |
|              | 2012      | 33        | 33     | 1,100   | nd      | 2.5 [0.8]            | 62/63       | 62/63     |

(Note) " \* ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

## <Wildlife>

The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 2.7 pg/g-wet, and the detection range was  $\text{tr}(5.8) \sim 110 \text{ pg/g-wet}$ . For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 2.7 pg/g-wet, and the detection range was  $\text{tr}(5.0) \sim 190 \text{ pg/g-wet}$ . For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 2.7 pg/g-wet, and the detection range was  $46 \sim 130 \text{ pg/g-wet}$ .

Stocktaking of the detection of Pentachlorobenzene in in wildlife (bivalves, fish and birds) in FY2007, FY2010 and FY2012

| Penta chloro        | Monitored | Geometric |         |         |         | Quantification       | Detection I | requency |
|---------------------|-----------|-----------|---------|---------|---------|----------------------|-------------|----------|
| benzene             | year      | mean*     | Median  | Maximum | Minimum | [Detection]<br>limit | Sample      | Site     |
|                     | 2007      | nd        | nd      | tr(150) | nd      | 180 [61]             | 1/31        | 1/7      |
| Bivalves (pg/g-wet) | 2010      | 18        | 16      | 110     | 5.9     | 1.9 [0.7]            | 6/6         | 6/6      |
|                     | 2011      | 28        | 16      | 260     | 10      | 4 [1]                | 4/4         | 4/4      |
|                     | 2012      | 16        | 9.7     | 110     | tr(5.8) | 8.1 [2.7]            | 5/5         | 5/5      |
|                     | 2007      | nd        | nd      | 480     | nd      | 180 [61]             | 36/80       | 10/16    |
| Fish                | 2010      | 42        | 37      | 230     | 5.6     | 1.9 [0.7]            | 18/18       | 18/18    |
| (pg/g-wet)          | 2011      | 36        | 37      | 220     | 5       | 4[1]                 | 18/18       | 18/18    |
|                     | 2012      | 29        | 37      | 190     | tr(5.0) | 8.1 [2.7]            | 19/19       | 19/19    |
|                     | 2007      | tr(140)   | tr(140) | 210     | tr(89)  | 180 [61]             | 10/10       | 2/2      |
| Birds               | 2010      | 91        |         | 170     | 49      | 1.9 [0.7]            | 2/2         | 2/2      |
| (pg/g-wet)          | 2011      |           |         | 52      | 52      | 4[1]                 | 1/1         | 1/1      |
|                     | 2012      | 77        |         | 130     | 46      | 8.1 [2.7]            | 2/2         | 2/2      |

(Note) " \* ":Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

#### <Air>

The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.6pg/m^3$ , and the detection range was  $31 \sim 150 \text{ pg/m}^3$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.6pg/m^3$ , and the detection range was  $27 \sim 120 \text{ pg/m}^3$ .

Stocktaking of the detection of Pentachlorobenzene in air in FY2007, FY2009 ~ FY2011

| Penta             |                  | Geometric |        |         |         | Quantification       | Detection l | Frequency |
|-------------------|------------------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| chloro<br>benzene | Monitored year   | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                   | 2008 Warm season | 85        | 83     | 310     | 18      | 12 [4 0]             | 78/78       | 26/26     |
|                   | 2008 Cold season | 60        | 55     | 220     | 27      | 12 [4.8]             | 75/75       | 25/25     |
|                   | 2009 Warm season | 63        | 64     | 210     | 20      | 6.4.[2.5]            | 111/111     | 37/37     |
|                   | 2009 Cold season | 25        | 22     | 120     | tr(5.0) | <del></del>          | 111/111     | 37/37     |
| Air               | 2010 Warm season | 68        | 73     | 140     | 36      | 1.2 [0.5]            | 37/37       | 37/37     |
| $(pg/m^3)$        | 2010 Cold season | 70        | 69     | 180     | 37      |                      | 37/37       | 37/37     |
|                   | 2011 Warm season | 61        | 60     | 140     | 30      | 2 1 [0 70]           | 35/35       | 35/35     |
|                   | 2011 Cold season | 59        | 57     | 180     | 26      | 2.1 [0.70]           | 37/37       | 37/37     |
|                   | 2012 Warm season | 58        | 57     | 150     | 31      | 1 9 [0 6]            | 36/36       | 36/36     |
|                   | 2012 Cold season | 55        | 55     | 120     | 27      | 1 8 10 61            | 36/36       | 36/36     |

## [18] Endosulfans

· History and state of monitoring

Endosulfans have been used as an organochlorine insecticide chemical. Endosulfans were listed under the Convention at the COP5 of the Stockholm Convention on Persistent Organic Pollutants in April 2011.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2011 and FY 2012.

## · Monitoring results

 $\circ$   $\alpha$ -Endosulfan,  $\beta$ -Endosulfan

#### <Surface Water >

 $\alpha$ -Endosulfan: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 3 of the 48 valid sites adopting the detection limit of 10pg/L, and none of the detected concentrations exceeded 30 pg/L.

 $\beta$ -Endosulfan: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 1 of the 48 valid sites adopting the detection limit of 9pg/L, and none of the detected concentrations exceeded tr(12)pg/L.

Stocktaking of the detection of  $\alpha$ -Endosulfan and  $\beta$ -Endosulfan in surface water in FY2011 ~ FY2012.

|                     | Monitored | Geometric |        |         |         | Quantification       | Detection I | Frequency |
|---------------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| α-Endosulfan        | year      | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
| Surface Water       | 2011      | nd        | nd     | 180     | nd      | 120 [50]             | 2/49        | 2/49      |
| (pg/L)              | 2012      | nd        | nd     | 30      | nd      | 27 [10]              | 3/48        | 3/48      |
|                     | Monitored | Geometric |        |         |         | Quantification       | Detection I | requency  |
| $\beta$ -Endosulfan | year      | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
| Surface Water       | 2011      | nd        | nd     | 270     | nd      | 22 [9]               | 8/49        | 8/49      |
| (pg/L)              | 2012      | nd        | nd     | tr(12)  | nd      | 24 [9]               | 1/48        | 1/48      |

## < Sediment >

 $\alpha$ -Endosulfan: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 19 of the 63 valid sites adopting the detection limit of 5 pg/g-dry, and none of the detected concentrations exceeded 480 pg/g-dry.

 $\beta$ -Endosulfan: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 8 of the 63 valid sites adopting the detection limit of 5 pg/g-dry, and none of the detected concentrations exceeded 250 pg/g-dry.

Stocktaking of the detection of  $\alpha$ -Endosulfan and  $\beta$ -Endosulfan in sediment in FY2011 ~ FY2012

|                      | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
|----------------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| $\alpha$ -Endosulfan | year      | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                      |           |           |        |         |         |                      |             |           |
| Sediment             | 2011      | tr(13)    | tr(11) | 480     | nd      | 30 [10]              | 35/64       | 35/64     |
| (pg/g-dry)           | 2012      | nd        | nd     | 480     | nd      | 13 [5]               | 19/63       | 19/63     |
|                      | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
| $\beta$ -Endosulfan  |           |           | Median | Maximum | Minimum | [Detection]          | Sample      | Site      |
| ,                    | year      | mean      |        |         |         | limit                | Sumple      | Site      |
| Sediment             | 2011      | tr(5)     | tr(4)  | 240     | nd      | 9 [4]                | 38/64       | 38/64     |
| (pg/g-dry)           | 2012      | nd        | nd     | 250     | nd      | 13 [5]               | 8/63        | 8/63      |

## < Wildlife >

 $\alpha$ -Endosulfan: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at 4 of the 5 valid areas adopting the detection limit of 24pg/g-wet, and none of the detected concentrations exceeded 200pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 6 of the 19 valid areas adopting the detection limit of 24pg/g-wet, and none of the detected concentrations exceeded tr(54) pg/g-wet. For birds, the presence of the substance was monitored in 2 areas and it was not detected at all 2 valid areas adopting the detection limit of 24pg/g-wet.

 $\beta$ -Endosulfan: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at 4 of the 5 valid areas adopting the detection limit of 5 pg/g-wet, and none of the detected concentrations exceeded 43 pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 6 of the 19 valid areas adopting the detection limit of 5pg/g-wet, and none of the detected concentrations exceeded 15 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 5pg/g-wet, and none of the detected concentrations exceeded tr(7)pg/g-wet.

Stocktaking of the detection of  $\alpha$ -Endosulfan and  $\beta$ -Endosulfan in wildlife (bivalves, fish and birds) in FY2011 ~ FY2012

|                     | Monitored         | Geometric       |        |         |         | Quantification                         | Detection 1           | Frequency         |
|---------------------|-------------------|-----------------|--------|---------|---------|----------------------------------------|-----------------------|-------------------|
| α-Endosulfan        | year              | mean*           | Median | Maximum | Minimum | [Detection]<br>limit                   | Sample                | Site              |
| Bivalves            | 2011              | 62              | 120    | 330     | nd      | 50 [20]                                | 3/4                   | 3/4               |
| (pg/g-wet)          | 2012              | tr(54)          | tr(61) | 200     | nd      | 71 [24]                                | 4/5                   | 4/5               |
| Fish                | 2011              | tr(20)          | tr(20) | 140     | nd      | 50 [20]                                | 10/18                 | 10/18             |
| (pg/g-wet)          | 2012              | nd              | nd     | tr(54)  | nd      | 71 [24]                                | 6/19                  | 6/19              |
| Birds               | 2011              |                 |        | nd      | nd      | 50 [20]                                | 0/1                   | 0/1               |
| (pg/g-wet)          | 2012              | nd              |        | nd      | nd      | 71 [24]                                | 0/2                   | 0/2               |
| $\beta$ -Endosulfan | Monitored<br>year | Geometric mean* | Median | Maximum | Minimum | Quantification<br>[Detection]<br>limit | Detection l<br>Sample | Frequency<br>Site |
| Bivalves            | 2011              | 16              | 26     | 52      | 4       | 11 [4]                                 | 4/4                   | 4/4               |
| (pg/g-wet)          | 2012              | 15              | 16     | 43      | nd      | 14 [5]                                 | 4/5                   | 4/5               |
| Fish                | 2011              | nd              | nd     | 37      | nd      | 11 [4]                                 | 9/18                  | 9/18              |
| (pg/g-wet)          | 2012              | nd              | nd     | 15      | nd      | 14 [5]                                 | 6/19                  | 6/19              |
| Birds               | 2011              |                 |        | nd      | nd      | 11 [4]                                 | 0/1                   | 0/1               |
| (pg/g-wet)          | 2012              | nd              |        | tr(7)   | nd      | 14 [5]                                 | 1/2                   | 1/2               |

#### <Air>

 $\alpha$ -Endosulfan: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $5.3 \text{pg/m}^3$ , and the detection range was  $\text{tr}(6.0) \sim 98 \text{ pg/m}^3$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 15 of the 36 valid sites adopting the detection limit of  $5.3 \text{pg/m}^3$ , and none of the detected concentrations exceeded 19  $\text{pg/m}^3$ .

β-Endosulfan: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at 33 of the 36 valid sites adopting the detection limit of 0.4pg/m³, and none of the detected concentrations exceeded 18 pg/m³. For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 17 of the 36 valid sites adopting the detection limit of 0.4pg/m³, and none of the detected concentrations exceeded 1.7pg/m³.

Stocktaking of the detection of  $\alpha$ -Endosulfan and  $\beta$ -Endosulfan in air in FY2011 ~ 2012

|                     |                  | Geometric |          |         |         | Quantification       | Detection l | Frequency |
|---------------------|------------------|-----------|----------|---------|---------|----------------------|-------------|-----------|
| α-Endosulfan        | Monitored year   | mean      | Median   | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                     | 2011 Warm season | 26        | 24       | 190     | tr(7.8) | 12 [4 0]             | 35/35       | 35/35     |
| Air                 | 2011 Cold season | tr(9.6)   | tr(9.8)  | 45      | nd      | 12 [4.0]             | 35/37       | 35/37     |
| $(pg/m^3)$          | 2012 Warm season | 23        | 22       | 98      | tr(6.0) | 16 [5.3]             | 36/36       | 36/36     |
|                     | 2012 Cold season | nd        | nd       | 19      | nd      | 10 [3.3]             | 15/36       | 15/36     |
|                     |                  | Geometric |          |         |         | Quantification       | Detection l | Frequency |
| $\beta$ -Endosulfan | Monitored year   | mean      | Median   | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
|                     | 2011 Warm season | 2.1       | 1.8      | 11      | nd      | 1 2 [0 20]           | 34/35       | 34/35     |
|                     | 2011 Cold season | tr(0.80)  | tr(0.90) | 8.3     | nd      | 1.2 [0.39]           | 31/37       | 31/37     |
|                     | 2012 Warm season | 1.3       | 1.3      | 18      | nd      | 1 2 [0 4]            | 33/36       | 33/36     |
|                     | 2012 Cold season | nd        | nd       | 1.7     | nd      | 1.2 [0.4]            | 17/36       | 17/36     |

# [19] 1,2,5,6,9,10-Hexabromocyclododecanes

· History and state of monitoring

1,2,5,6,9,10-Hexabromocyclododecanes have been used as flame retardants for plastics products and fiber products. 1,2,5,6,9,10-Hexabromocyclododecanes was adopted as target chemicals at the COP6 of the Stockholm convention on Persistent Organic Pollutants in April ~ May 2013.

FY2011 was the first year for this Envronmental Monitoring series, and the substances were measured in the surface water and sediment in FY 2003 and wildlife (fish) in FY2004 under the framework of "The Initial Environmental Survey". The substances were measured in the surface water, sediment and wildlife (bivalves, fish and birds) in FY 2011, and sediment, wildlife (bivalves, fish and birds) and air in FY2012 uder the framework of the Environmental Monitoring.

## · Monitoring results

 $\alpha$ -1,2,5,6,9,10-Hexabromocyclododecane,  $\beta$ -1,2,5,6,9,10-Hexabromocyclododecane,  $\gamma$ -1,2,5,6,9,10-Hexabromocyclododecane cyclododecane,  $\delta$ -1,2,5,6,9,10-Hexabromocyclododecane

<Surface Water >

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in surface water in FY2011

| α-1,2,5,6,9,10-Hexabro mocyclododecane         | Monitored<br>year | Geometric<br>mean | Median | Maximum | Minimum | Quantification<br>[Detection]<br>limit | Detection I<br>Sample | Frequency<br>Site |
|------------------------------------------------|-------------------|-------------------|--------|---------|---------|----------------------------------------|-----------------------|-------------------|
| Surface Water (pg/L)                           | 2011              | nd                | nd     | 6,300   | nd      | 1,500 [600]                            | 4/47                  | 4/47              |
| $\beta$ -1,2,5,6,9,10-Hexabro mocyclododecane  | Monitored<br>year | Geometric<br>mean | Median | Maximum | Minimum | Quantification<br>[Detection]<br>limit | Detection I<br>Sample | Frequency<br>Site |
| Surface Water (pg/L)                           | 2011              | nd                | nd     | 1,300   | nd      | 1,300 [500]                            | 4/47                  | 4/47              |
| γ-1,2,5,6,9,10-Hexabrom ocyclododecane         | Monitored<br>year | Geometric<br>mean | Median | Maximum | Minimum | Quantification<br>[Detection]<br>limit | Detection I<br>Sample | Frequency<br>Site |
| Surface Water (pg/L)                           | 2011              | nd                | nd     | 65,000  | nd      | 1,200 [500]                            | 5/47                  | 5/47              |
| $\delta$ -1,2,5,6,9,10-Hexabro mocyclododecane | Monitored<br>year | Geometric<br>mean | Median | Maximum | Minimum | Quantification<br>[Detection]<br>limit | Detection I<br>Sample | Frequency<br>Site |
| Surface Water (pg/L)                           | 2011              | nd                | nd     | nd      | nd      | 790 [300]                              | 0/47                  | 0/47              |
| ε-1,2,5,6,9,10-Hexabrom ocyclododecane         | Monitored<br>year | Geometric<br>mean | Median | Maximum | Minimum | Quantification<br>[Detection]<br>limit | Detection I<br>Sample | Frequency<br>Site |
| Surface Water (pg/L)                           | 2011              | nd                | nd     | nd      | nd      | 740 [300]                              | 0/47                  | 0/47              |

<sup>(</sup>Note) No monitoring was conducted in FY2012.

## < Sediment >

 $\alpha$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 47 of the 63 valid sites adopting the detection limit of 70 pg/g-dry, and none of the detected concentrations exceeded 22,000 pg/g-dry.

 $\beta$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in sediment was monitored at 63 sites,

and it was detected at 29 of the 63 valid sites adopting the detection limit of 60 pg/g-dry, and none of the detected concentrations exceeded 8,900 pg/g-dry.

 $\gamma$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 52 of the 63 valid sites adopting the detection limit of 60 pg/g-dry, and none of the detected concentrations exceeded 55,000 pg/g-dry.

 $\delta$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 5 of the 63 valid sites adopting the detection limit of 100 pg/g-dry, and none of the detected concentrations exceeded 680 pg/g-dry.

 $\varepsilon$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 7 of the 63 valid site adopting the detection limit of 60 pg/g-dry, and none of the detected concentrations exceeded 310 pg/g-dry.

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in sediment in FY2011~2012.

| or 1 2 5 6 0 10 Harrahma               | Monitored | Geometric |        |         |         | Quantification       | Detection   | Frequency |
|----------------------------------------|-----------|-----------|--------|---------|---------|----------------------|-------------|-----------|
| α-1,2,5,6,9,10-Hexabro mocyclododecane | year      | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
| Sediment                               | 2011      | 430       | nd     | 24,000  | nd      | 420 [280]            | 78/186      | 35/62     |
| (pg/g-dry)                             | 2012      | 310       | 280    | 22,000  | nd      | 180 [70]             | 47/63       | 47/63     |
| β-1,2,5,6,9,10-Hexabro                 | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
| mocyclododecane                        | year      | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
| Sediment                               | 2011      | nd        | nd     | 14,000  | nd      | 250 [170]            | 48/186      | 21/62     |
| (pg/g-dry)                             | 2012      | tr(93)    | nd     | 8,900   | nd      | 150 [60]             | 29/63       | 29/63     |
| γ-1,2,5,6,9,10-Hexabrom                | Manitarad | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
| ocyclododecane                         | year      | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
| Sediment                               | 2011      | 670       | nd     | 570,000 | nd      | 400 [260]            | 89/186      | 36/62     |
| (pg/g-dry)                             | 2012      | 420       | 330    | 55,000  | nd      | 160 [60]             | 52/63       | 52/63     |
| $\delta$ -1,2,5,6,9,10-Hexabro         | Monitored | Geometric |        |         |         | Quantification       | Detection 1 | Frequency |
| mocyclododecane                        | year      | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
| Sediment                               | 2011      | nd        | nd     | 800     | nd      | 350 [250]            | 11/186      | 6/62      |
| (pg/g-dry)                             | 2012      | nd        | nd     | 680     | nd      | 300 [100]            | 5/63        | 5/63      |
| $\varepsilon$ -1,2,5,6,9,10-Hexabrom   | Manitarad | Geometric |        |         |         | Quantification       | Detection   | Frequency |
| ocyclododecane                         | year      | mean      | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
| Sediment                               | 2011      | nd        | nd     | tr(260) | nd      | 280 [210]            | 2/186       | 1/62      |
| (pg/g-dry)                             | 2012      | nd        | nd     | 310     | nd      | 150 [60]             | 7/63        | 7/63      |

# < Wildlife >

 $\alpha$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 20pg/g-wet, and the detection range was 190 ~ 2,500pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 20pg/g-wet, and none of the detected concentrations exceeded 8,700 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 20pg/g-wet, and none of the detected concentrations exceeded 1,400 pg/g-wet.

 $\beta$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at 4 of the 5 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 90pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 8 of the 19 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 40pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all

2 valid areas adopting the detection limit of 10pg/g-wet.

 $\gamma$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 10pg/g-wet, and the detection range was  $30 \sim 910pg/g$ -wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 16 of the 19 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 1,600 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 190 pg/g-wet.

 $\delta$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 5 areas, and it was not detected at all 5 valid areas adopting the detection limit of 20pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was not detected at all 19 valid areas adopting the detection limit of 20pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 2 valid areas adopting the detection limit of 20pg/g-wet.

 $\varepsilon$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 5 areas, and it wast detected at 1 of the 5 valid areas adopting the detection limit of 20pg/g-wet, and none of the detected concentrations exceeded tr(30) pg/g-wet. For fish, the presence of the substance was monitored in at 19 areas, and it was detected at 3 of the 19 valid areas adopting the detection limit of 20pg/g-wet. For birds, the presence of the substance was monitored in at 2 areas, and it was not detected at all 2 valid areas adopting the detection limit of 20pg/g-wet.

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in wildlife (bivalves, fish and birds) in FY2011~2012

| 125 (0.10 Hh                           | M:41              | C                 |        |         |         | Quantification       | Detection 1 | Frequency |
|----------------------------------------|-------------------|-------------------|--------|---------|---------|----------------------|-------------|-----------|
| α-1,2,5,6,9,10-Hexabro mocyclododecane | Monitored<br>year | Geometric<br>mean | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
| Bivalves                               | 2011              | 1,100             | 1,200  | 13,000  | tr(86)  | 170 [70]             | 10/10       | 4/4       |
| (pg/g-wet)                             | 2012              | 530               | 480    | 2,500   | 190     | 50 [20]              | 5/5         | 5/5       |
| Fish                                   | 2011              | 770               | 850    | 69,000  | nd      | 170 [70]             | 41/51       | 16/17     |
| (pg/g-wet)                             | 2012              | 510               | 560    | 8,700   | nd      | 50 [20]              | 18/19       | 18/19     |
| Birds                                  | 2011              | 200               | nd     | 530     | nd      | 170 [70]             | 1/3         | 1/1       |
| (pg/g-wet)                             | 2012              | 120               |        | 1,400   | nd      | 50 [20]              | 1/2         | 1/2       |
| β-1,2,5,6,9,10-Hexabro                 | Monitored         | Geometric         |        |         |         | Quantification       | Detection l | Frequency |
| mocyclododecane                        | year              | mean              | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
| Bivalves                               | 2011              | tr(70)            | tr(85) | 240     | nd      | 98 [40]              | 7/10        | 3/4       |
| (pg/g-wet)                             | 2012              | tr(25)            | 40     | 90      | nd      | 40 [10]              | 4/5         | 4/5       |
| Fish                                   | 2011              | nd                | nd     | 760     | nd      | 98 [40]              | 11/51       | 5/17      |
| (pg/g-wet)                             | 2012              | nd                | nd     | 40      | nd      | 40 [10]              | 8/19        | 8/19      |
| Birds                                  | 2011              | nd                | nd     | nd      | nd      | 98 [40]              | 0/3         | 0/1       |
| (pg/g-wet)                             | 2012              | nd                |        | nd      | nd      | 40 [10]              | 0/2         | 0/2       |
| γ-1,2,5,6,9,10-Hexabrom                | Manitarad         | Geometric         |        |         |         | Quantification       | Detection l | Frequency |
| ocyclododecane                         | year              | mean              | Median | Maximum | Minimum | [Detection]<br>limit | Sample      | Site      |
| Bivalves                               | 2011              | 440               | 470    | 3,300   | nd      | 210 [80]             | 8/10        | 4/4       |
| (pg/g-wet)                             | 2012              | 170               | 180    | 910     | 30      | 30 [10]              | 5/5         | 5/5       |
| Fish                                   | 2011              | 210               | tr(90) | 50,000  | nd      | 210 [80]             | 26/51       | 10/17     |
| (pg/g-wet)                             | 2012              | 75                | 80     | 1,600   | nd      | 30 [10]              | 16/19       | 16/19     |
| Birds                                  | 2011              | tr(180)           | nd     | 460     | nd      | 210 [80]             | 1/3         | 1/1       |
| (pg/g-wet)                             | 2012              | 31                |        | 190     | nd      | 30 [10]              | 1/2         | 1/2       |

| $\delta$ -1,2,5,6,9,10-Hexabro                      | Monitored         | Geometric         |        |         |         | Quantification                         | Detection I           | requency          |
|-----------------------------------------------------|-------------------|-------------------|--------|---------|---------|----------------------------------------|-----------------------|-------------------|
| mocyclododecane                                     | year              | mean              | Median | Maximum | Minimum | [Detection]<br>limit                   | Sample                | Site              |
| Bivalves                                            | 2011              | nd                | nd     | nd      | nd      | 140 [60]                               | 0/10                  | 0/4               |
| (pg/g-wet)                                          | 2012              | nd                | nd     | nd      | nd      | 50 [20]                                | 0/5                   | 0/5               |
| Fish                                                | 2011              | nd                | nd     | nd      | nd      | 140 [60]                               | 0/51                  | 0/17              |
| (pg/g-wet)                                          | 2012              | nd                | nd     | nd      | nd      | 50 [20]                                | 0/19                  | 0/19              |
| Birds                                               | 2011              | nd                | nd     | nd      | nd      | 140 [60]                               | 0/3                   | 0/1               |
| (pg/g-wet)                                          | 2012              | nd                |        | nd      | nd      | 50 [20]                                | 0/2                   | 0/2               |
| $\varepsilon$ -1,2,5,6,9,10-Hexabrom ocyclododecane | Monitored<br>year | Geometric<br>mean | Median | Maximum | Minimum | Quantification<br>[Detection]<br>limit | Detection I<br>Sample | Frequency<br>Site |
| Bivalves                                            | 2011              | nd                | nd     | nd      | nd      | 140 [60]                               | 0/10                  | 0/4               |
| (pg/g-wet)                                          | 2012              | nd                | nd     | tr(30)  | nd      | 40 [20]                                | 1/5                   | 1/5               |
| Fish                                                | 2011              | nd                | nd     | nd      | nd      | 140 [60]                               | 0/51                  | 0/17              |
| (pg/g-wet)                                          | 2012              | nd                | nd     | tr(30)  | nd      | 40 [20]                                | 3/19                  | 3/19              |
| Birds                                               | 2011              | nd                | nd     | nd      | nd      | 140 [60]                               | 0/3                   | 0/1               |
| (pg/g-wet)                                          | 2012              | nd                |        | nd      | nd      | 40 [20]                                | 0/2                   | 0/2               |

#### <Air>

 $\alpha$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of  $0.2 \text{pg/m}^3$ , and none of the detected concentrations exceeded 130 pg/m<sup>3</sup>. For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 35 of the 36 valid sites adopting the detection limit of  $0.2 \text{pg/m}^3$ , and none of the detected concentrations exceeded 63 pg/m<sup>3</sup>.

 $\beta$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at 30 of the 36 valid sites adopting the detection limit of  $0.1 \text{pg/m}^3$ , and none of the detected concentrations exceeded 29 pg/m<sup>3</sup>. For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 35 of the 36 valid sites adopting the detection limit of  $0.1 \text{pg/m}^3$ , and none of the detected concentrations exceeded  $18 \text{pg/m}^3$ .

 $\gamma$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at 31 of the 36 valid sites adopting the detection limit of  $0.1 \text{pg/m}^3$ , and none of the detected concentrations exceeded 280 pg/m<sup>3</sup>. For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 35 of the 36 valid sites adopting the detection limit of  $0.1 \text{pg/m}^3$ , and none of the detected concentrations exceeded 84 pg/m<sup>3</sup>.

 $\delta$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at 1 of the 36 valid sites adopting the detection limit of  $0.2 \text{pg/m}^3$ , and the detection value was  $0.8 \text{ pg/m}^3$ . For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 1 of the 36 valid sites adopting the detection limit of  $0.2 \text{pg/m}^3$ , and the detection value was  $1.1 \text{pg/m}^3$ .

 $\varepsilon$ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air in the warm season was monitored at 36 sites, and it was not detected at all 36 valid sites adopting the detection limit of 0.2pg/m³. For air in the cold season, the presence of the substance was monitored at 36 sites, and it was detected at 1 of the 36 valid sites adopting the detection limit of 0.2pg/m³, and the detection value was tr(0.5)pg/m³.

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in air in FY2012

| α-1,2,5,6,9,10           | 1                | C                 |        |         |         | Quantification       | Detection | Frequency |
|--------------------------|------------------|-------------------|--------|---------|---------|----------------------|-----------|-----------|
| -Hexabromocy             | Monitored year   | Geometric<br>mean | Median | Maximum | Minimum | [Detection]          | Sample    | Site      |
| clododecane              |                  | incan             |        |         |         | limit                |           |           |
| Air                      | 2012 Warm season | 1.7               | 2.2    | 130     | nd      | 0.6 [0.2]            | 31/36     | 31/36     |
| $(pg/m^3)$               | 2012 Cold season | 2.9               | 3.0    | 63      | nd      | 0.0 [0.2]            | 35/36     | 35/36     |
| $\beta$ -1,2,5,6,9,10    |                  | Geometric         |        |         |         | Quantification       | Detection | Frequency |
| -Hexabromocy clododecane | Monitored year   | mean              | Median | Maximum | Minimum | [Detection]<br>limit | Sample    | Site      |
| Air                      | 2012 Warm season | 0.5               | 0.5    | 29      | nd      | 0.2.50.13            | 30/36     | 30/36     |
| $(pg/m^3)$               | 2012 Cold season | 0.8               | 0.8    | 18      | nd      | 0.3 [0.1]            | 35/36     | 35/36     |
| γ-1,2,5,6,9,10           |                  | G                 |        |         |         | Quantification       | Detection | Frequency |
| -Hexabromocy             |                  | Geometric<br>mean | Median | Maximum | Minimum | [Detection]          | Sample    | Site      |
| clododecane              |                  |                   |        |         |         | limit                |           |           |
| Air                      | 2012 Warm season | 1.6               | 1.7    | 280     | nd      | 0.3 [0.1]            | 31/36     | 31/36     |
| $(pg/m^3)$               | 2012 Cold season | 2.1               | 1.8    | 84      | nd      | 0.5 [0.1]            | 35/36     | 35/36     |
| δ-1,2,5,6,9,10           |                  | Geometric         |        |         |         | Quantification       | Detection | Frequency |
| -Hexabromocy             | Monitored year   | mean              | Median | Maximum | Minimum | [Detection]          | Sample    | Site      |
| clododecane              |                  | ilicali           |        |         |         | limit                |           |           |
| Air                      | 2012 Warm season | nd                | nd     | 0.8     | nd      | 0.4 [0.2]            | 1/36      | 1/36      |
| $(pg/m^3)$               | 2012 Cold season | nd                | nd     | 1.1     | nd      | 0.4 [0.2]            | 1/36      | 1/36      |
| ε-1,2,5,6,9,10           |                  | G .:              |        |         |         | Quantification       | Detection | Frequency |
| -Hexabromocy             | Monitored year   | Geometric         | Median | Maximum | Minimum | [Detection]          | Sample    | Site      |
| clododecane              | •                | mean              |        |         |         | limit                | Sumple    | Site      |
| Air                      | 2012 Warm season | nd                | nd     | nd      | nd      | 0.6.[0.2]            | 0/36      | 0/36      |
| $(pg/m^3)$               | 2012 Cold season | nd                | nd     | tr(0.5) | nd      | 0.6 [0.2]            | 1/36      | 1/36      |

# [20] 2-(2H-1,2,3-Benzotriazol-2-yl)-4,6-di-tert-butylphenol

## · History and state of monitoring

2-(2*H*-1,2,3-Benzotriazol-2-yl)-4,6-di-*tert*-butylphenol had been used as a ultraviolet absorbent for plastics products The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2007.

FY2012 was the first year for this Envronmental Monitoring series, and the substance was measured in surface water in FY2005 under the framework of "the Initial Environmental Survey" and "the Environmental Survey for Exposure Study", and in surface water, sediment and wildlife in FY 2006 under the framework of "The Detailed Environmental Survey".

## · Monitoring results

#### <Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at 1 of the 48 valid sites adopting the detection limit of 39pg/L, and the detection value was tr(49) pg/L.

Stocktaking of the detection of 2-(2*H*-1,2,3-Benzotriazol-2-yl)-4,6-di-*tert*-butylphenol in surface water in FY2012

| 2-(2 <i>H</i> -1,2,3-Ben                                 |                   |                   | Median | Maximum | Minimum | Quantification<br>[Detection]<br>limit | Detection Frequency |      |
|----------------------------------------------------------|-------------------|-------------------|--------|---------|---------|----------------------------------------|---------------------|------|
| zotriazol-2-yl)-4<br>,6-di- <i>tert</i> -butylp<br>henol | Monitored<br>year | Geometric<br>mean |        |         |         |                                        | Sample              | Site |
| Surface Water (pg/L)                                     | 2012              | nd                | nd     | tr(49)  | nd      | 100 [39]                               | 1/48                | 1/48 |

## <Sediment>

The presence of the substance in sediment was monitored at 63 sites, and it was detected at 52 of the 63 valid sites adopting the detection limit of 8pg/g-dry, and none of the detected concentrations exceeded 4,500pg/g-dry.

Stocktaking of the detection of 2-(2H-1,2,3-Benzotriazol-2-yl)-4,6-di-tert-butylphenol in sediment in FY2012

| 2-(2 <i>H</i> -1,2,3-Ben                                 |                   | l Geometric mean | Median | Maximum | Minimum | Quantification<br>[Detection]<br>limit | Detection Frequency |       |
|----------------------------------------------------------|-------------------|------------------|--------|---------|---------|----------------------------------------|---------------------|-------|
| zotriazol-2-yl)-4<br>,6-di- <i>tert</i> -butylp<br>henol | Monitored<br>year |                  |        |         |         |                                        | Sample              | Site  |
| Sediment (pg/g-dry)                                      | 2012              | 59               | 65     | 4,500   | nd      | 20 [8]                                 | 141/187             | 52/63 |

## <Wildlife>

The presence of the substance in bivalves was monitored in 5 areas, and it was detected at all 5 valid areas adopting the detection limit of 1.8pg/g-wet, and the detection range was 5.5 ~ 26 pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 17 of the 19 valid sites valid areas adopting the detection limit of 1.8pg/g-wet, and none of the detected concentrations exceeded 1,700 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid area adopting the detection limit of 1.8pg/g-wet, and none of the detected concentrations exceeded 12 pg/g-wet.

Stocktaking of the detection of 2-(2*H*-1,2,3-Benzotriazol-2-yl)-4,6-di-*tert*-butylphenol in wildlife (bivalves, fish and birds) in FY2012

| 2-(2 <i>H</i> -1,2,3-Benzotria zol-2-yl)-4,6-di- <i>tert</i> -b utylphenol | Monitored<br>year | Geometric<br>mean | Median  | Maximum | Minimum | Quantification [Detection] limit | Detection l<br>Sample | Frequency<br>Site |
|----------------------------------------------------------------------------|-------------------|-------------------|---------|---------|---------|----------------------------------|-----------------------|-------------------|
| Bivalves                                                                   | 2012              | 12                | 11      | 26      | 5.5     | 4.6 [1.8]                        | 11/11                 | 5/5               |
| (pg/g-wet)<br>Fish                                                         |                   |                   |         |         |         |                                  |                       |                   |
| (pg/g-wet)                                                                 | 2012              | 26                | 34      | 1,700   | nd<br>  | 4.6 [1.8]                        | 49/57                 | 17/19             |
| Birds<br>(pg/g-wet)                                                        | 2012              | tr(2.9)           | tr(2.7) | 12      | nd      | 4.6 [1.8]                        | 3/6                   | 1/2               |