化審法における優先評価化学物質に関するリスク評価の技術ガイダンス

II. 人健康影響に関する有害性評価

Ver. 1.0

平成26年6月

厚生労働省・経済産業省・環境省
改訂履歴

<table>
<thead>
<tr>
<th>Version</th>
<th>日付</th>
<th>改訂内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ver.1.0</td>
<td>平成26年6月</td>
<td>初版</td>
</tr>
</tbody>
</table>
目次

II. 人健康影響に関する有害性評価 ... 1

II.1 はじめに .. 1
 II.1.1 本書の位置づけ .. 1
 II.1.2 有害性評価の基本的な流れ ... 2

II.2 前提と基本的考え方 .. 3
 II.2.1 用いる有害性情報 .. 3
 II.2.2 評価の対象とする有害性項目 ... 4
 II.2.3 優先評価化学物質と評価対象物質等との関係 5
 II.2.4 経口経路と吸入経路の扱い .. 5
 II.2.5 信頼性評価とキースタディの選定 .. 5
 II.2.6 評価の進展に応じた有害性情報の置き換え ... 7
 II.2.7 有害性評価と審議会の意見聴取との関係 .. 7

II.3 有害性評価Ⅰ .. 8
 II.3.1 有害性評価Ⅰの目的・前提等 ... 8
 II.3.2 一般毒性・生殖発生毒性 ... 10
 II.3.3 変異原性・発がん性 ... 14
 II.3.4 有害性等の調査の求めの項目の特定 .. 14

II.4 有害性評価Ⅱ .. 15
 II.4.1 有害性評価Ⅱの目的・前提等 ... 15
 II.4.2 既知見の更新状況の確認・収集及び精査の観点 18
 II.4.3 一般毒性 ... 19
 II.4.4 生殖発生毒性 ... 21
 II.4.5 変異原性 ... 21
 II.4.6 発がん性 ... 22
 II.4.7 有害性調査指示の項目の特定 ... 23

II.5 有害性評価Ⅲ .. 24

II.6 リスク評価（二次）における有害性評価 .. 24

II.7 付属資料 ... 25
 II.7.1 経路間外挿の妥当性 ... 25
 II.7.2 化管法指定化学物質の選定根拠からの有害性評価値の導出 26
 II.7.3 各種の制度等における不確実係数 ... 28
 II.7.4 各種の制度等における実質安全量の許容リスクレベル 31
II. 人健康影響に関する有害性評価

II.1 はじめに

II.1.1 本書の位置づけ

本書では、優先評価化学物質のリスク評価における人健康影響に関する有害性評価について記載する。リスク評価スキーム全体における本章で扱う部分を図表 II-1 に示す。有害性評価は、評価段階に応じて 4 つの段階（有害性評価 I ～ II 及び有害性評価（二次））に分かれている。
II.人健康影響に関する有害性評価

Ver.1.0 平成26年6月

1 値と、暴露評価Ⅰで推計された人の摂取量を比較することにより、リスク推計Iが行われる。
同様に、評価段階に応じた有害性評価で導出した有害性評価値によって、各段階のリスク推計が行われ、評価結果のとりまとめが行われる。

II.1.2 有害性評価の基本的流れ

有害性評価の基本的な流れと、スクリーニング評価・リスク評価の各段階における扱いの概要を図表 II-2 に示す。

図表 II-2 有害性評価の基本的な流れと評価段階ごとの扱い【本書における記載箇所】

<table>
<thead>
<tr>
<th>有害性評価の基本的な流れ</th>
<th>スクリーニング評価</th>
<th>リスク評価 (一次)</th>
<th>リスク評価 (二次)</th>
<th>における有害性評価値</th>
</tr>
</thead>
<tbody>
<tr>
<td>既知見の収集</td>
<td>あり</td>
<td>なし</td>
<td>あり</td>
<td>同左</td>
</tr>
<tr>
<td>信頼性評価・キースタディ選定</td>
<td>あり なし</td>
<td>あり</td>
<td>同左</td>
<td></td>
</tr>
<tr>
<td>毒性試験の実施等</td>
<td>あり</td>
<td>なし</td>
<td>同左</td>
<td></td>
</tr>
<tr>
<td>有害性評価値の導出等</td>
<td>あり</td>
<td>なし</td>
<td>同左</td>
<td></td>
</tr>
</tbody>
</table>

※1: II.2.1 参照
※2: 図表 II-3 参照

10 有害性評価の一般的な進め方は、はじめに既知見を収集し、信頼性のある情報が得られればそ

有害性評価値: 反復投与毒性試験等による無毒性量等 (NOAEL 等) を不確実係数積で除した数値を指し、TDI (Tolerable Daily Intake) や ADI (Acceptable Daily Intake)、あるいは REACH における DNEL (Derived No Effect Level) に相当する。不確実係数積とは、有害性のデータに含まれる不確実性の中身に応じて設定した不確実係数 (Uncertainty Factor: UF ともいう。) を乗じた数値のことである。不確実性は、知識の欠如により発生し、より多くの良質のデータを収集することにより減少する。一般的には、動物試験データから人へ外挿する場合の不確実性 (種間差) や人の母集団の構成員間でみられる感受性の差 (個体差)、一生涯より短い暴露期間で行った試験から得られたデータを一生涯にわたって暴露されたとして外挿する場合の不確実性 (試験期間) などを言う。
II. 人健康影響に関する有害性評価

Ver.1.0 平成26年6月

II.2 前提と基本的考え方

ここでは、人健康影響に関する有害性評価について、基本的な事項を記載する。

II.2.1 用いる有害性情報

優先評価化学物質の有害性評価に用いる情報は、以下のいずれかである。

(ア) スクリーニング評価に用いた情報
(イ) 優先評価化学物質の指定後に事業者より報告等された情報
(ウ) 優先評価化学物質の指定後に国が収集した情報

化審法においてスクリーニング評価とリスク評価を行うために、国が有害性に係る既知見を収集する範囲は「化審法における人健康影響に関する有害性データの信頼性評価等について」に記載されており、上記(ア)～(ウ)はその範囲で得られる情報である。既知見を収集する範囲は、「優先順位1」と「優先順位2」の情報源に分けられ、これらは「政府向け GHS 分類ガイダンス」において、健康有害性に対する有害性の分類判定に利用可能な情報源としてリストアップされている情報源のList1とList2に概ね対応している。

1 化審法では、以下の①②をあわせて「スクリーニング毒性に関する試験」と呼んでいる。
 ①哺乳類を用いる 28 日間の反復投与毒性試験、哺乳類を用いる 90 日間の反復投与毒性試験
又は哺乳類を用いる反復投与毒性・生殖発生毒性併合試験
 ②細菌を用いる復帰突然変異試験及び哺乳類培養細胞を用いる染色体異常試験又はマウスリンフォーマ TK 試験

2 化審法のスクリーニング評価及びリスク評価（一次）評価Iに用いる性状データの信頼性評価等の公表について

3 GHS 関係省庁連絡会議編、平成21年3月、政府向けGHS分類ガイダンス

4 情報源は、健康有害性に関してはList1～3までであり、それぞれ以下のとおりである。
II. 人健康影響に関する有害性評価

Ver.1.0 平成26年6月

II.2.2 評価の対象とする有害性項目

評価の対象とする人健康影響に関する有害性項目は、図表II-3の左の列に示す「一般毒性」、「生殖発生毒性」、「変異原性」及び「発がん性」の4項目とする。この4項目は、長期毒性に係る有害性調査指示（法第10条第2項）の試験項目（同表の左から2列目）に準拠している。

図表II-3 人健康影響に関する有害性項目と各段階の試験項目等との対応

<table>
<thead>
<tr>
<th>有害性項目</th>
<th>化審法上の試験項目</th>
<th>スクリーニング毒性に関する試験の項目</th>
<th>GHS分類の対応する有害性項目（スクリーニングで考慮）</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般毒性</td>
<td>慢性毒性試験</td>
<td>定標的臓器毒性（反復暴露）</td>
<td>長期毒性に係る有害性調査指示の試験項目（※）</td>
</tr>
<tr>
<td>生殖発生毒性</td>
<td>生殖能及び後世代に及ぼす影響に関する試験</td>
<td>生殖毒性</td>
<td>催奇形性試験</td>
</tr>
<tr>
<td>変異原性</td>
<td>細菌を用いる復帰突然変異試験</td>
<td>生殖細胞変異原性</td>
<td>細菌を用いる復帰突然変異試験</td>
</tr>
<tr>
<td></td>
<td>(上記いずれかで陽性の場合) げっ歯類を用いる小核試験</td>
<td></td>
<td>ほ乳類培養細胞を用いる染色体異常試験又はマウスリンフォーマ TK試験</td>
</tr>
<tr>
<td>発がん性</td>
<td>がん原性試験</td>
<td>発がん性</td>
<td>細菌を用いる復帰突然変異試験</td>
</tr>
</tbody>
</table>

※：有害性調査指示の項目には、このほかに「生体内運命に関する試験」と「薬理学的試験」がある。前者は、生体内における被験物質の動態の把握をするために、動物に化学物質を投与し吸収、分布、蓄積、代謝、排泄等を調べるもので、後者は、化学物質の薬理学的特性を明らかにするために行われるものである。これらは特定のエンドポイントに関する試験というより、慢性毒性試験や生殖発生毒性試験で障害が認められた場合に、その説明・解釈のために併用して行われる性質の試験である。

なお、人健康影響の評価を行う優先評価化学物質に関して、上記4つの項目のすべてを対象に評価を行うわけではない。対象とする項目は、有害性評価IについてはII.3.1.1、有害性評価II以降についてはII.4.1.1で後述する。

List 1：GHS分類調査に際して、まずこの情報源から調査する。国際機関、主要各国等で作成され、信頼性が認知されている情報源であり、原則として、一次資料に遡ることができ、必要な場合に情報の確からしさを確認できる評価文書や成書。

List 2：List1で必要な情報が確保できない場合に調査するためで、List1に記載された評価書以外の有用な情報源。

List 3：原典を探したり、毒性の見当をつけるための統合データベース等で必要に応じ利用する。

1 スクリーニング評価における人健康影響の有害性項目と同じである。
II.2.3 優先評価化学物質と評価対象物質等との関係

優先評価化学物質と評価対象物質等の関係については「Ⅰ章 評価の準備」に記載があるため、それを参照のこと。

II.2.4 経口経路と吸入経路の扱い

有害性情報は、原則として経口経路のものと吸入経路のものを想定する。化審法は、環境経由の暴露による人健康への影響を評価対象にしているため、主要な暴露経路として経皮経路は想定されないためである。

有害性評価値を導出する際、経路別の外挿については以下のとおりとする。

評価Ⅰでは、経口経路と吸入経路は区別せず、NOAEL 等の有害性データは 1 日当たり単位体重当りの摂取量換算を行う。吸入経路の毒性試験データを利用する場合は、試験動物種の呼吸速度・体重等により摂取量換算を行う。換算方法は「化審法における人健康影響に関する有害性データの信頼性評価等について」との別紙にしたがう。

評価Ⅱ以降は、影響の内容に応じて経路別に有害性評価値の設定やリスク推計を行う場合がある（II.4.2.2 参照）。

経路間外挿の妥当性の検討結果を II.7.1 に示している。

II.2.5 信頼性評価とキースタディの選定

スクリーニング評価及びリスク評価に用いる人健康影響に関する有害性データの信頼性評価等の考え方と方法については、「化審法における人健康影響に関する有害性データの信頼性評価等について」との別紙 2 されている。優先評価化学物質の人健康影響に係る有害性評価に用いるデータについては、基本的に同資料に基づいて信頼性評価、キースタディの選定等を行う。ただし、同資料では、スクリーニング評価及びリスク評価（一次）の評価Ⅰまでの方法として記載されており、評価Ⅱ以降については、必要に応じて専門家による精査とキースタディの見直しが行われる （II.4.2.2 参照）。

スクリーニング評価及びリスク評価を通じた信頼性評価等に係る基本的な流れを図表 II-6 に示す。

1 評価Ⅰでは、このように摂取量換算をした有害性データから求めた有害性評価値を、暴露評価で求めた吸入経路と経口経路の両経路を合計した推計摂取量と比較することにより、リスク推計を行う。

2 化審法のスクリーニング評価及びリスク評価（一次）評価Ⅰに用いる性状データの信頼性評価等の公表について
図表 II-4 有害性データの信頼性評価等に係る考え方

「化審法のスクリーニング評価及びリスク評価（一次）評価Ⅰに用いる性状データの信頼性評価等の基本的考え方」より

1 http://www.meti.go.jp/policy/chemical_management/kasinhou/information/shinraisei_kijun.html
Ⅱ. 人健康影響に関する有害性評価

Ver.1.0 平成26年6月

1

II.2.6 評価の進展に応じた有害性情報の置き換え

事業者からの有害性情報の報告等により、当初用いていた有害性情報よりも適切なデータ（試験期間が長期である等）が得られることがありうる。このような場合、それ以降の有害性評価では、適切なデータに置き換えて評価を行う。これは、優先評価化学物質の取消しにより一般化学物質となり、スクリーニング評価を行う場合も同様である。

II.2.7 有害性評価と審議会の意見聴取との関係

本ガイダンスの有害性評価の考え方・手法では、優先評価化学物質のリスク評価に用いる有害性評価値導出等の基本的なルールを示している。ただし、本ルールに基づくことはリスク評価に用いる有害性データの決定を意味するのではなく、専門家による個別判断の余地を残すものである。それは、化審法の以下のような仕組みによる。

化審法では、「化学物質の有害性やリスクの評価が必要となる措置に関しては、専門家による科学的知見を踏まえた上で判断を行うことが適当である」との考え方のもと、いくつかの措置について審議会等の意見を聴くものとされている（法第56条）。それらの措置のうち、優先評価化学物質のリスク評価に関連するのは以下の事項である。

(ア) 第二種特定化学物質の政令指定（法第2条第3項）
(イ) 優先評価化学物質の法第10条第2項に基づく有害性調査の指示
(ウ) 優先評価化学物質の法第10条第2項に基づく有害性調査の報告より第二種特定化学物質該当の判定（法第10条第3項）

これらについて、所管する各省の審議会の意見を聴くことになっている。

本ガイダンスの手法は、上記の審議会に付議されるリスク評価書の案を作成するためのものである。リスク評価の中でも、特に有害性評価の部分については、データの解釈等において高度な専門的知見を要し、定型化には限界がある。このため、審議会に付議するリスク評価書では、リスク評価に用いる有害性データの選定の理由と選択肢も明らかにし、有害性データの選択の適切性等について専門家による個別判断の余地を残すものとなる。

1 厚生労働省については薬事・食品衛生審議会、経済産業省については化学物質審議会、環境省については中央環境審議会。
II.3 有害性評価Ⅰ

II.3.1 有害性評価Ⅰの目的・前提等

II.3.1.1 有害性評価Ⅰの対象とする有害性項目

有害性評価Ⅰでは、原則として以下の項目を対象とする。ただし、優先評価化学物質に指定された後に得られた有害性情報によって対象項目は変わりうる。

(ア) スクリーニング評価において優先度が「高」に該当した項目
(イ) 情報が得られず有害性クラスが付与されなかった生殖発生毒性又は発がん性について、優先評価化学物質の指定後に優先度「高」相当の情報が得られた項目

II.3.1.2 有害性評価Ⅰにおける評価対象物質の扱い

優先評価化学物質のリスク評価においては、有害性評価やリスク評価の実質的な対象物質である「評価対象物質」は、複数の物質である場合がある（Ⅰ章参照）。そのような場合、評価Ⅰでは、原則として優先評価化学物質ごとに評価対象物質を1つに決めて評価を行うこととする。

評価対象物質が複数になりうる場合として、Ⅰ章の「優先評価化学物質と評価対象物質等との関係」より、以下のよう例が挙げられる。それぞれについて、有害性評価Ⅰにおける評価対象物質の設定の考え方を以下に示す。

(ア) 構造の一部又は構成部分に優先評価化学物質を含む化学物質が、製造数量等の届出の対象となる場合
必要に応じて評価対象物質を複数設定する例である。有害性評価Ⅰでは、優先評価化学物質の指定名称の化学物質を評価対象物質とする。

(イ) 分解度試験より変化物が生じることが判明している優先評価化学物質の場合
有害性評価Ⅰでは、原則、親化合物を評価対象物質とする。ただし、親化合物の有害性データが得られず、変化物の有害性データが得られる場合は、変化物を評価対象物質とする。

(ウ) 優先評価化学物質に高分子化合物ではない場合と高分子化合物である場合が混在する場合
有害性評価Ⅰでは、原則、高分子化合物ではない化学物質を評価対象物質とする。

1 その場合、有害性評価と暴露評価では、評価対象物質が異なる場合がありうる。
2 この簡略化は、以下の理由による。
・評価Ⅰの目的の優先順位付けであり、絶対値としての正確さを求められないこと。
・評価Ⅰの結果のみから最終判断（有害性調査指示、二特指定等）が行われることではなく、最終判断の前に評価対象物質の設定も含めた精査を行うことになること。
II.3.1.3 有害性評価Ⅰの目的とフロー

有害性評価Ⅰの目的は、前述（II.3.1.1）の有害性評価Ⅰで対象とする項目に関して以下のとおりである。

目的(ア) 一般毒性と生殖発生毒性についてはリスク推計Ⅰに用いる有害性評価値の導出

目的(イ) 変異原性・発がん性を有する物質の抽出

目的(ウ) 有害性調査の求めを行う場合にその調査項目を特定

目的(ア)に対応する一般毒性と生殖発生毒性については、有害性評価値の導出を行い、リスク推計Ⅰに用いる。

目的(イ)に対応する変異原性と発がん性については、評価Ⅰの段階では定量的には扱わず、分類結果等の定性的な情報を整理して変異原性又は発がん性を有する物質を抽出し、評価Ⅱを行うための優先順位付けの対象とする。

目的(ウ)に対応して、リスク評価（一次）を進める上で有害性情報が不足する優先評価化学物質をリストアップして項目を特定し、有害性情報の提出を求める優先順位付けの対象とする。

(ア)についてはII.3.2、(イ)についてはII.3.3、(ウ)についてはII.3.4に記載する。

人健康影響に関する有害性評価Ⅰのフローを図表II-5に示す。

フロー中に示しているように、有害性評価Ⅰでは、基本的にはスクリーニング評価の有害性クラス付けに用いた有害性情報を用いるが、新たに有害性情報が得られれば、信頼性評価を行った上で使用可能な情報であれば使用する。
図表 II-5 人健康影響に関する有害性評価Ⅰのフロー
※ 発がん性については IARC 等の特定の機関の分類情報を収集するため、信頼性評価は行わない。

Ⅱ.3.2 一般毒性・生殖発生毒性
一般毒性と生殖発生毒性のそれぞれについて、図表 II-5 に示す手順で有害性評価値を設定する。
追加で得られた情報があれば信頼性評価を行い、使用可能なデータを選別してキースタディを選定し、有害性評価値を導出する。

Ⅱ.3.2.1 キースタディの選定
追加情報が得られるなどして、項目（一般毒性、生殖発生毒性）ごとに使用可能なデータが複数得られた場合、「化審法における人健康影響に関する有害性データの信頼性評価等について」に
記載されているルールにしたがってキースタディを選定する。同資料にしたがったキースタディを選定ルールは以下のとおりである。信頼性ランク1又は2のデータの中から、TDI等が得られれば最優先し、次に調査対象情報源において有害性項目ごとのキースタディに合致するデータが優先される。また、NOAEL相当はLOAEL相当よりも優先される。同レベルのNOAEL等が複数得られた場合は、最小の有害性評価値を与えるNOAEL等を選ぶ。これらのルールは、スクリーニング評価における扱いと同様である。

有害性評価Iの一般毒性、生殖発生毒性のキースタディ選定の流れを図表II-6に示す。

図表II-6 有害性評価Iにおける一般毒性、生殖発生毒性のキースタディ選定の流れ

II.3.2.2 動物試験結果からの有害性評価値の導出

有害性評価値とは、その値以下では人への有害影響が懸念されないと考えられる量であり、暴露評価による人の推定摂取量と比較するリスク推計で用いる。一般毒性と生殖発生毒性の有害性評価値の導出には、動物試験結果等から得られるNOAEL等を用い、NOAEL等を不確実係数積

1 同資料には、有害性データの仮選定における「有害性データが複数得られる場合の順位」として記載されている。
2 「化審法における人健康影響に関する有害性データの信頼性評価等について」では「NOAEL相当」の例としてNOEL、NOEC、NOAEC、BMDL10、最大投与量が挙げられている。
3 「化審法における人健康影響に関する有害性データの信頼性評価等について」では「LOAEL相当」の例としてLOEL、LOEC、LOAEC、TDL0、TCL0、最小投与量が挙げられている。
4 NOEL評価されている場合にも有害性評価IではNOAELと特に区別せず取り扱う。
除去して有害性評価値を導出する。

スクリーニング評価で用いた情報に追加して有害性情報が得られた場合、一般毒性、生殖発生毒性の別に、以下のように不確実係数積を設定し、有害性評価値を求める。

一般毒性に関する有害性評価値を導出する際の不確実係数は、原則として以下のとおりとする。

<table>
<thead>
<tr>
<th>種間差</th>
<th>個体差</th>
<th>試験期間</th>
<th>LO(A)EL 採用</th>
<th>影響の重大性</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>1 〜 10</td>
</tr>
</tbody>
</table>

四分の三以内不確実係数を適用する重大な影響については、その影響と試験期間の長さを勘案して追加するとするが、試験期間の短いスクリーニング毒性試験である28日間反復投与毒性試験に関しては、以下の義当する影響の長さに追加するものとする。

- NOAEL等の推定根拠またはその他発現した毒素において、神経行動毒性や重篤な病理組織学的変化等、毒性学的に重要な変化が発現したもの。
- 回復期の影響については、神経行動毒性や重篤な病理組織学的変化等、毒性学的に重要変化であって、以下のいずれかの場合
 - ア. 回復試験期間内に回復しない病理組織学的変化を生じさせるもの
 - イ. 遅発毒性を生じさせるもの
 - ウ. 回復試験期間内に回復しない生化学的な変化を生じさせるもの

なお、回復期の影響については、可逆性の程度、回復期における毒性の残存状況、遅発毒性の有無、組織学的変化に起因する生化学的な変化かどうか等を考慮する。

生殖発生毒性に関する有害性評価値を導出する際の不確実係数は、原則として以下のとおりとする。

<table>
<thead>
<tr>
<th>種間差</th>
<th>個体差</th>
<th>LO(A)EL 採用</th>
<th>試験の質/影響の重大性</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

「試験の質/影響の重大性」では、哺乳類を用いる反復投与毒性・生殖発生毒性併合試験を含む簡易生殖毒性試験・一世代生殖試験等の場合に「試験の質」として10を、エンドポイントが母体毒性よりも低用量で発現する催奇形/児死亡である場合には「影響の重大性」として10を追加する。ただし、「試

1 評価Ⅰでは、発がん性に関しては有害性評価値の導出を想定していない。発がん性の情報を有する場合、評価Ⅱ以降は、閾値の有無の判断の上、閾値のある発がん性である場合に、影響の重大性の不確実係数を追加する（II.4.6.1参照）。
人健康影響に関する有害性評価
Ver.1.0 平成26年6月

１ Ⅱ.人健康影響に関する有害性評価

２ 以上の不確実係数は、スクリーニング評価の有害性評価値導出に用いるものと同じである。これら不確実係数の設定にあたっては、国内外の各種制度等における設定状況を整理した（付属資料II.7.3参照）。

３ Ⅱ.3.2.3 基準値等からの有害性評価値の導出

４ 国が既知見として収集する有害性情報のなかには、他法令による基準値等（農薬のADI、水道水質基準等）も含まれる。基準値等から有害性評価値を導出する場合には、有害性評価Ⅰの段階では原則として図表II.7に示す方法にしたがう。これが、スクリーニング評価における扱いと同様である。

５ 図表II.7 基準値等からの有害性評価値の導出方法

<table>
<thead>
<tr>
<th>情報源</th>
<th>有害性評価値の導出方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本産業衛生学会：許容濃度提案理由書および許容濃度等の勧告</td>
<td>作業環境許容濃度 TWA（時間加重平均値）は健康な成人に対する断続的な暴露での許容濃度であることから、一般環境での一般人への外挿のため、暴露時間の補正、断続的な暴露から継続的な暴露への補正、敏感な人も考慮した個体差を考慮し、これらを併せた不確実係数積を100とする。そのため、有害性評価値（摂取量換算）に相当するNOAEL等/UFsは、TWAを100で除した濃度に、体重を50kg、1日呼吸量20m³/dayとして算出。</td>
</tr>
<tr>
<td>米国産業衛生専門家会議（ACGIH）：ACGIH化学物質許容濃度文書</td>
<td>ADI（mg/kg/day）は有害性評価値（NOAEL等/UFs）に相当するとしてそのまま使用。</td>
</tr>
<tr>
<td>FAO/WHO合同食品添加物専門家会議（JECFA）：FAO/WHO Joint Expert Committee on Food Additives – Monographs</td>
<td></td>
</tr>
<tr>
<td>FAO/WHO合同残留農薬専門家会議（JMPR）：FAO/WHO Joint Meeting on Pesticide Residues – Monographs of Toxicological evaluations</td>
<td></td>
</tr>
<tr>
<td>非食用農薬暫定ADI</td>
<td></td>
</tr>
<tr>
<td>内閣府食品安全委員会：食品健康影響評価</td>
<td></td>
</tr>
<tr>
<td>厚生労働省：既存添加物の安全性の見直しに関する調査研究</td>
<td></td>
</tr>
<tr>
<td>WHO飲料水質ガイドライン</td>
<td>水質基準値＝（NOAEL等/UFs）×体重×飲料水の寄与率/1日飲料水量 の式より、有害性評価値に相当する（NOAEL等/UFs）の数値を、引用されている水質基準（日本、WHO等）から体重を50kg、飲料水の寄与率10%、1日飲料水量2L/dayとして算出。</td>
</tr>
<tr>
<td>日本の水道水質基準</td>
<td></td>
</tr>
<tr>
<td>WHO欧州地域事務局大気質ガイドライン</td>
<td>大気基準値＝（NOAEL等/UFs）×体重×経口吸収率×大気の寄与率/（吸入吸入率×1日呼吸量）</td>
</tr>
</tbody>
</table>

1 「化審法における人健康影響に関する有害性データの信頼性評価等について」に「収集対象情報源」としてリストアップされている。
III.3.3 変異原性・発がん性

有害性評価Ⅰでは、変異原性と発がん性については定性的な分類情報の整理を行う。分類情報とは、変異原性については試験種類別の陽性・陰性の結果ならびに総合的な陽性・陰性の判定結果、発がん性についてはIARC等による発がん性の分類結果である。これらは、スクリーニング評価の有害性クラス付けて用いた情報であり、さらに追加情報があれば、信頼性評価を行い使用可能な情報であれば、分類情報に追加する。

変異原性と発がん性に関する変異原性・発がん性の有害性クラスとスクリーニング評価における有害性クラスとの対応を図表II-8に示す。

<table>
<thead>
<tr>
<th>有害性項目</th>
<th>有害性クラス</th>
<th>クラス外</th>
</tr>
</thead>
<tbody>
<tr>
<td>変異原性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHS区分1A</td>
<td>以下のいずれか</td>
<td>以下のいずれか</td>
</tr>
<tr>
<td>試験方法判定における強い陽性</td>
<td>GHS区分1B,2</td>
<td>GHS区分外</td>
</tr>
<tr>
<td>変異原性試験のいずれかで陽性</td>
<td>化審法の変異原性試験のいずれかで陽性</td>
<td></td>
</tr>
<tr>
<td>強弱不明の陽性結果</td>
<td>化審法の変異原性試験のいずれかで陽性</td>
<td></td>
</tr>
<tr>
<td>発がん性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IARC1</td>
<td>産業衛生学会1,2</td>
<td>IARC4</td>
</tr>
<tr>
<td>ACGIH1等</td>
<td>ACGIH A4, A5等</td>
<td></td>
</tr>
</tbody>
</table>

※1 軽微な陽性、強い陽性は除く
※2 in vitro変異原性試験で陽性の結果がある場合、「クラス外」とするかは個別に専門家判断

II.3.4 有害性等の調査の求めの項目の特定

国は、優先評価化学物質のリスク評価を進める上で必要であれば、法第10条第1項に基づき、

1 「化審法における人健康影響に関する有害性データの信頼性評価等について」参照。なお、発がん性については、この段階で収集するのは、毒性試験情報ではなくIARC等の分類情報であるため、信頼性評価は行わない。
2 変異原性に関する情報がなく、デフォルトの有害性クラスが付与されている優先評価化学物質は除く。
製造・輸入事業者に対して有害性等に係る試験成績を記載した資料の提出を求めることができ
(以下、「有害性等の調査の求め」という。)。調査を求めることができる試験項目は省令に定め
られており、人健康影響に係る有害性に関しては以下の(ア)と(イ)である。これらは新規化学物質の審査において、人健康影響に係る判定を行うために必要な試験項目と同じである。括弧内は、これと同等以上のものとして別に定める試験である。

(ア) ほ乳類を用いる28日間の反復投与毒性試験
(ほ乳類を用いる90日間の反復投与毒性試験又はほ乳類を用いる反復投与毒性・生殖発生毒性併合試験）
(イ) 細菌を用いる復帰突然変異試験及びほ乳類培養細胞を用いる染色体異常試験による変異原性試験
(細菌を用いる復帰突然変異試験及びマウスリンフォーマ TK試験による変異原性試験)

(ア)は一般毒性に係る試験であり、(イ)は変異原性に係る試験である。したがって、一般毒性と変異原性について有害性情報を有しない優先評価化学物質については、必要に応じて(ア)や(イ)の試験成績の提出を求めることになる。

有害性等の調査の求めを行うため、有害性評価Iを行うなかで、一般毒性又は変異原性につい
て有害性情報を有しない優先評価化学物質をリストアップする。また、その際には、複数の評価対象物質が設定される優先評価化学物質（II.2.3参照）については、評価対象物質ごとに有害性情報を利用しているかについても考慮する。なお、有害性情報提出の求めを行う前には、国は既知見の有無の確認を行う。

II.4 有害性評価Ⅱ

II.4.1 有害性評価Ⅱの目的・前提等

有害性評価Ⅱでは原則として、一般毒性と変異原性については、新規化学物質の審査において
人健康影響の判定をするために省令に定められている毒性試験（前節II.3.4に挙げた(ア)と(イ))

1 新規化学物質に係る試験並びに優先評価化学物質及び監視化学物質に係る有害性の調査の項目等を定める省令
2 【告示】新規化学物質に係る試験並びに優先評価化学物質及び監視化学物質に係る有害性の調査の項目等を定める省令第二条及び第四条第四号の規定により厚生労働大臣、経済産業大臣及び環境大臣が別に定める試験
3 生殖発生毒性と発がん性については、リスク評価（一次）の段階では、既知見で得られた場合
4 新規化学物質に係る試験並びに優先評価化学物質及び監視化学物質に係る有害性の調査の項目等を定める省令

15
II.4.1.1 有害性評価Ⅱの対象とする有害性項目

有害性評価Ⅱの対象とする有害性項目は、原則として以下のとおりとする。ただし、既知見の収集等により新たな有害性情報が得られれば、個別に判断して対象項目として考慮する。

(ア) 前段階の評価において、リスクが懸念された項目
(イ) 前段階の評価において対象項目であったがリスク推計を行わなかった、もしくは行えなかった項目

II.4.1.2 有害性評価Ⅱにおける評価対象物質の扱い

優先評価化学物質のリスク評価においては、有害性評価やリスク評価の実質的な対象物質である「評価対象物質」は、複数の物質である場合がある（II.2.3参照）。そのような場合、評価Ⅰでは、原則として優先評価化学物質ごとに評価対象物質を1つに決めて評価を行うこととした（II.3.1.2参照）。評価Ⅱにおいては、当該優先評価化学物質のリスク評価に必要な評価対象物質を設定する。その結果として、II.3.1.2に示した例（ア）～（ウ）については、1つの優先評価学物質につき、複数の評価対象物質が設定されうる。

II.4.1.3 有害性評価Ⅱの目的

有害性評価Ⅱの目的は、前述（II.4.1.1）の有害性評価Ⅱで対象とする項目に関して以下のとおりである。

(ア) 一般毒性、生殖発生毒性については、精査に基づきキースタディと不確実係数の見直しを行い、リスク推計Ⅱに用いる有害性評価値を導出
(イ) 発がん性については、定量的情報を収集してリスク推計Ⅱに用いる有害性評価値を導出
(ウ) 変異原性については、発がん性が既知である場合には発がん性の閾値有無の扱いの判断に用い、発がん性が不明である場合には次の（エ）を行う。
(エ) 評価Ⅱにおいて有害性調査指示を行う根拠が得られた場合に、その調査項目を特定

(ア)～(エ)を行うために、既知見の更新状況の確認を行って項目ごとに総合的な観点から精査を行い、精査に基づきキースタディを見直す（図表II-4参照）。

1 このことは、評価Ⅰの後に、法第10条第1項に基づく有害性等の調査の求め（II.3.4参照）を行うことと同義である。
II.4.1.4 有害性評価Ⅰとの違い

有害性評価ⅠとⅡ（Ⅲ）の違いを図表 II-9 に示す。

有害性評価Ⅰは、原則として精査を行わない段階であり、追加情報がなければスクリーニング評価の有害性クラス付けに用いられた有害性情報をそのまま用いる。有害性評価Ⅱは、既知見を含めて総合的な観点から精査を行う段階である。ただし、スクリーニング評価や評価Ⅰの段階で既知見を含めた精査が済み、追加の有害性情報がなければ、評価Ⅱにおいて精査を行う必要がない場合もありうる。なお、評価Ⅲは、Ⅱと同様であり、既知見更新の確認を行い、追加情報があれば対応する。

図表 II-9 有害性評価ⅠとⅡ（Ⅲ）の違い

<table>
<thead>
<tr>
<th>評価段階</th>
<th>評価Ⅰ</th>
<th>評価Ⅱ（Ⅲ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>評価対象とする項目</td>
<td>・スクリーニング評価において優先度が「高」に該当した項目
・情報が得られない有害性クラスが付与されなかった生殖発生毒性又は発がん性について、優先評価化学物質の指定後に優先度「高」相当の情報が得られた項目</td>
<td>・前段階の評価においてリスク推計を行い、リスクが懸念された項目
・前段階の評価において対象項目であつたがリスク推計を行わなかった、もしくは行えなかった項目
・追加情報が得られれば、個別に判断して対象項目に考慮</td>
</tr>
<tr>
<td>評価対象物質の扱い</td>
<td>・複数の物質が評価対象物質となる場合、評価対象物質を1つに設定</td>
<td>・複数の物質が評価対象物質となる場合には、複数の評価対象物質を設定。</td>
</tr>
<tr>
<td>一般毒性</td>
<td>・スクリーニング評価に用いた情報を使用（追加の有害性情報があれば信頼性評価を行い、使用可能であれば有害性評価値を導出しキースタディ選定ルール※に基づき選定）
・原則的な不確実係数を用いる有害性評価値を導出（スクリーニング評価（有害性評価値はそのまま使用）
・経口・吸入の区別をしない</td>
<td>・既知見の更新状況を確認し個別に精査してキースタディを選定
・個別に精査し有害性評価値を導出（不確実係数の再設定やベンチマークドーす法の適用等、個別判断）
・影響の内容に応じて経口・吸入を別扱いにする</td>
</tr>
<tr>
<td>变異原性</td>
<td>分類結果等の定性的な情報を整理して、変異原性又は発がん性を有する物質を抽出（追加の有害性情報があれば信頼性評価を行い、使用可能※であれば分類情報に追加）</td>
<td>変異原性：発がん性が既にであればその閾値有無の扱いの判断のため既知見の更新状況を確認し個別に精査し判断に利用。発がん性が不明であれば必要に応じ有害性調査提示の必要と調査項目の判断
発がん性：定量的な情報（発がん性試験データ）を収集し、算出されたスロープファクターより有害性評価値を導出。発がん性は、経口・吸入を別扱いにする。</td>
</tr>
<tr>
<td>発がん性</td>
<td>法第10条の有害性等の調査の求め・有害性等調査の関係</td>
<td>必要に応じ、法第10条第2項に基づく長期毒性に係る有害性調査指示のため試験項目を特定</td>
</tr>
</tbody>
</table>

※「化審法における人健康影響に関する有害性データの信頼性評価等について」に基づく。
II.4.2 既知見の更新状況の確認・収集及び精査の観点

II.4.2.1 既知見の更新状況の確認・収集

評価II対象物質の人健康影響に関する有害性情報について、既知見の収集状況と、収集時点以降の各情報源の更新状況を確認し、未収集分があれば情報収集を行う。国が人健康影響の有害性に係る既知見を収集する範囲は「化審法における人健康影響に関する有害性データの信頼性評価等について」を元に、必要に応じて収集範囲を広げる。

既知見の中には、各種の基準値等（水道水の水質基準や大気環境基準等）が含まれている。有害性評価IIの段階では、基準値等の元となっている有害性情報や基準値等の導出方法についても調査する。さらに必要に応じ、生体内運命等についても情報収集を行う。これらについては、次節に記載する精査に用いる。

II.4.2.2 精査の観点

有害性等の性状データの質の評価（evaluation）には、以下の3つの観点がある。既存データの質の評価を効率的に行うために、①の観点から初期フィルターとして格付けした後、②と③の観点からの検討を専門家が行うという手順が推奨されている。①の格付けにKlimischコードが使用され、「信頼性あり」とされる1又は2に格付けされたデータが②と③の精査の対象となる。

1. reliability: 標準化された試験方法への準拠を評価する観点。
2. relevance: データがカバーする範囲等がハザードの特定やリスクキャラクタリゼーションのために適切かという観点。
3. adequacy: 有害性評価・リスク評価の目的に、データが有用かという観点。

化審法において、スクリーニング評価とリスク評価（一次）の評価Iの段階までは、主に①の観点からの信頼性評価を行うことになっている（II.2.5参照）。評価I終了以降は、性状データに

1 化審法のスクリーニング評価及びリスク評価（一次）評価Iに用いる性状データの信頼性評価等の公表について
Klimiaschコードには以下の4つのランクがあり、原則として1と2のデータが評価に利用される。
1: 信頼性あり（制限なし）、2: 信頼性あり（制限付き）、3: 信頼性なし、4: 評価不能
4 例えば、主要な暴露経路で毒性試験の投与経路が設定されているか、対象媒体での物質の安定性等から勘案して試験設定等が適切かなどといった観点が考えられる。
5 例えば、被験物質の純度等が異なる複数のデータがある場合、有害性評価・リスク評価の目的が物質の有り姿での評価か、純品での評価かによって、評価に適切なデータは異なるといったことが考えられる。
人健康影響に関する有害性評価

二、一般毒性

有害性評価Ⅱにおいて、一般毒性の評価は、原則としてリスク推計Ⅰを行ってリスクが懸念された場合に行う。ただし、II.4.2.1に述べた情報収集と精査によって、一般毒性の追加の既知見が得られた場合のほか、生殖発生毒性やがん原性等、他の有害性項目の試験による所見から一般毒性として評価を行う必要性が認められる場合もありうる。

一般毒性について、収集されたデータの精査を前節（II.4.2.2）に記載した観点から行い、必要に応じてキースタディを見直す。精査の主な内容は、以下のような事項が考えられる。

（ア）経口経路と吸入経路の両方の毒性試験データが得られる場合、エンドポイントとする標的臓器と暴露評価による人の主要暴露経路からみて、経路別に有害性評価値を設定するかどうか。

（イ）生殖発生毒性試験又はがん原性試験の結果も得られる場合、それらの所見から一般毒性としての有害性評価を行うかどうか。必要がある場合は一般毒性のNOAEL等を設定し、有害性評価値の導出を行う。

（ウ）NOELから有害性評価値が導出されている場合も、NOAELが設定されて有害性評価値が算出されている場合も、長期的な影響への関与、ヒトへの外挿性、懸念すべき毒性の種類

1 化審法のスクリーニング評価及びリスク評価（一次）評価Ⅰに用いる性状データの信頼性評価等の基本的考え方

2 化審法の新規化学物質の審査においては、反復投与毒性の審議においてNOELで評価を行ってきたが、平成21年の化審法改正によりハザードベースの制度からリスクベースの制度へと移行したこと、リスク評価の段階ではNOAELから有害性評価値の導出を行うことを基本としてい
等を精査して、有害性評価値算定の出発点として適切な NOAEL（又はベンチマークドー
ス）を設定できるかどうかについて検証する。

(エ) 基準値等について、その元となっている情報を精査し、そのエンドポイントや基準値等の
導出方法を確認し、必要に応じて一般毒性としての有害性評価の見直しを行う。

(オ) 暴露評価による人の主要暴露経路からみて、得られている毒性試験の投与経路は妥当かど
うか。

(カ) 経口経路の試験データだけがあり、主要暴露経路が吸入経路の場合、その物理化学的性状
等からみて、経路間外挿が適切かどうか。

(キ) 不確実係数に関しては、以下に示すように、種差、個体差、試験期間、重大性に係る係数
等について、詳細な毒性情報に基づき妥当性を検討する。

有害性評価値を導出する際の不確実係数は、以下の項目について、専門家判断により改めて設
定される。

1. 種差
2. 個体差
3. 適切な NOAEL が求められない場合
4. 試験期間の不足
5. データベース不足（適切な投与期間やエンドポイントの測定が設定されていない等）
6. 影響の重大性

各々の項目に対しては、最大 10 の値（一般毒性の試験期間不足については以下を参照）を用い
る。

「1. 種差」と「2. 個体差」に関しては、その違いに関わって体内動態（トキシコカイネティクス）
や組織感受性（トキシコダイナミクス）に対応する科学的知見がある場合はそれらの定量的なデ
ータで補正する。補正の方法は、IPCS において作成されたガイダンスに従って適切な係数を設
定する。

「3. 適切な NOAEL が求められない場合」は、用量依存性を考慮して、LOAEL に対して適当
な不確実係数を設定するが、計算が可能な場合には（NOAEL が設定されている場合でも）ベン
チマークドースを算出し、NOAEL の代替として使用する（この場合は、この項目に対する不確
実係数は用いない）。ベンチマークドースの算出方法は、ベンチマークドース法の適用に関するガ
イダンスに示された方法に従って計算する。
「4. 試験期間の不足」において、有害性評価Ⅰで使用したデフォルトの係数に対して、化学物質の蓄積性や、投与期間と有害反応の発現時期や強さとの関連性等を考慮して見直しを行う。また、「5. データベース不足」に関連し、有害性の懸念があるものの適切な試験が行われていない場合には、追加の係数を加えることがある。

「6. 影響の重大性」については、評価値の算出の基となる影響が、閾値のある発がん性、母毒性の無い発生毒性、神経毒性である場合には、影響の用量相関性、重篤度の大きさを考慮して、最大で10の係数を加える。

上記のような精査によって、NOAEL 設定の確認、経路別の有害性評価値の導出、すべての不確実係数の見直し、修正又は追加等を行うとともに、有害性調査指示を行う場合（II.4.7 参照）の調査項目や試験方法に関するリコメンデーション等につなげる。

II.4.4生殖発生毒性

有害性評価Ⅱにおいて、生殖発生毒性の評価は、原則としてリスク推計Ⅰを行ってリスクが懸念された場合に行う。ただし、II.4.2.1 に述べた情報収集と精査によって、生殖発生毒性の追加の既知見が得られた場合のほか、一般毒性やがん原性等、他の有害性項目の試験による所見から、生殖発生毒性として評価を行う必要性が認められる場合もありうる。

生殖発生毒性について、収集されたデータの精査を前節（II.4.2.2）に記載した観点から行い、必要に応じてキースタディを見直す。精査の主な内容は、前項II.4.3 の一般毒性で示した事項と概ね共通する。

有害性評価値を導出する際の不確実係数は、原則は一般毒性の項で示したとおりとする。

II.4.5変異原性

有害性評価Ⅱにおいて、変異原性の評価は、原則としてin vitro ないしin vivo 試験によって陽性の結果が得られている場合に行う。ただし、II.4.2.1 に述べた情報収集と精査によって、変わら場合がありうる。

化審法における変異原性試験の目的と試験結果に応じた試験の順序より2、in vitro 試験で陽性

1 たとえば、他の情報から生殖発生毒性が懸念されるにかかわらず、必要な生殖発生毒性に関する試験結果が得られないとき。
2 化審法において変異原性試験は、「比較的簡便な短期間の試験により被験物質の遺伝毒性を検出し、それに基づくがん原性及び次世代への遺伝的影響について予測することを目的」として行われる（「局長通知・新規化学物質等に係る試験の方法について」より）。遺伝子突然変異誘発性を指標とする試験として「① 細菌を用いる復帰突然変異試験」、及び染色体異常誘発性を指標とする試験として「② 哺乳類培養細胞を用いる染色体異常試験又はマウスリンフォマ TK 試験」を行い、両者いずれかで陽性の結果が得られた場合には「③ げっ歯類を用いる小核試験」を行うこととされている。①と②はin vitro 試験、③はin vivo 試験である。また、①と②は法第 10 条第 1 項に基づく有害性等の調査の求めを行うことができる試験項目であり、③は
II.4.6 発がん性

有害性評価IIにおいて、発がん性の評価は原則として以下の場合に行う。ただし、II.4.2.1に述べた情報収集と精査によって、変わる場合がある。

(ア) スクリーニング評価において、発がん性の有害性クラスが1又は2であった場合

(イ) スクリーニング評価では情報がなく有害性クラスが付与されなかったが、優先評価化学物質指定後に発がん性に係る情報が得られた場合

発がん性は、原則として経口と吸入の経路別に評価を行う。いずれの経路で評価を行うかは、得られる有害性情報と暴露経路等を勘案して、個別に設定する。

発がん性については、閾値ありとする場合となしとする場合で、有害性評価値の導出方法が分かれる。閾値の有無の扱いは、変異原性試験の結果と既往評価を参考にしつつ専門家判断により行う。

なお、II.4.2に述べた既知見の収集によって、各種の基準値等が発がん性に基づいて設定されていることが判明することがある。この場合、閾値有無の扱いも含め基準値等の導出法等も確認し、必要に応じて有害性評価値の見直しを行う。

II.4.6.1 「閾値あり」と扱う場合の有害性評価値の導出

発がん性について、「閾値あり」として有害性評価値を導出する場合は、一般毒性、生殖発生毒性と同様に発がん性のNOAEL等を特定して不確実係数を設定し、NOAEL等を不確実係数で除して算出する。発がん性の場合、不確実係数は上記一般毒性の項目で示したとおり、種差、個体差、試験期間の他に、必要な場合は影響の重大性として10を追加して、それぞれの係数を乗じて設定する。ただし、専門家判断により、得られる情報に応じて扱いを変えることはありうる。

II.4.6.2 「閾値なし」と扱う場合の有害性評価値の導出

発がん性について、「閾値なし」として有害性評価値を導出する場合は、原則として、既存のスロープファクター等の情報を用いて実質安全量（VSD: virtually safe dose）を有害性評価値として導出する。

法第10条第2項に基づく長期毒性に係る有害性調査指示の試験項目である。1例えば、NOAEL等の替わりにベンチマークドース法を適用すること等が考えられる。
実質安全量は、閾値がないと考えられる毒性に関し、生涯の発症リスクが 10^{-5}（10万人に1人）といった十分に小さなリスクの増分に対応する用量と定義され、実質的には無視できるという考え方から基準値等を設定する際に用いられている。十分に小さなリスクの増分は許容リスクレベルとも呼ばれ、本スキームでは 10^{-5}（10万人に1人）とする。

許容リスクレベルの設定にあたっては、国内外の各種制度等における設定状況を整理した（付属資料 II.7.4 参照）。

実質安全量は、以下の式によって求める。実質安全量 = 10^{-3} / スロープファクター又はユニットリスク Ⅱ-1

スロープファクター（単位は（mg/kg/day）^{-1}）・ユニットリスク（単位は（μg/m³）^{-1} 又は（μg/L）^{-1}）は、「単位量（又は濃度）を一生涯摂取（又は吸入）した場合で増加する発がん確率（リスク）」と定義される。これは、ある化学物質への暴露ののみが原因で発がんする確率（リスク）である。

本スキームにおけるユーティリスク等の算定方法は原則として、ベンチマークドース法の適用に関するガイダンスに従って BMDL_{10}を計算し、原点へ直線外挿したときの傾きに基づき算出する。ただし、専門家判断により、得られる情報に応じて扱いを変えることはあらう。

II.4.7 有害性調査指示の項目の特定

優先評価化学物質のリスクが相当広範な地域で懸念され、長期毒性の該当性について判定が必要があると認めるに至ったときは、国は法第10条第2項に基づき、製造・輸入事業者に対して長期毒性に係る有害性の調査指示を行うことができる。有害性調査指示の試験項目は省令で定められており、人健康影響に係る有害性に関しては以下の（ア）～（キ）である。

（ア）慢性毒性試験
（イ）生殖能及び後世代に及ぼす影響に関する試験
（ウ）催奇形性試験
（エ）変異原性試験
（細菌を用いる復帰突然変異試験、ほ乳類培養細胞を用いる染色体異常試験、げっ歯類を用いる小核試験）

2. ベンチマーク用量の 95%信頼下限値（化学物質の評価で使用する BMD アプローチにおいて、動物実験投与量域内の用量・反応相関曲線に最も適合する数理モデルを選定し、反応指標が有意に検出できる一定の毒性誘発率（ベンチマーク用量：通常 10%）を示す投与量の信頼限界（通常 95%）下限値をいう）。
3. 既存のスロープファクター等が本スキームで原則としている算出法と異なる方法で導出されている場合等は、算出し直すことも考えられる。
4. Time-to-tumor モデルや、PBPK モデルによるヒト曝露用量の補正、メカニズムが明らかの場合の生理学的モデルの利用などがある。
5. 新規化学物質に係る試験並びに優先評価化学物質及び監視化学物質に係る有害性の調査の項目等を定める省令
（オ） がん原性試験
（カ） 生体内運命に関する試験
（キ） 薬理学的試験

（ア）～（キ）いずれの項目の有害性調査指示を行うかは、有害性評価Ⅱにおける精査と、評価Ⅱ（暴露評価、リスク推計の結果）の結果も踏まえて検討を行う。基本的には、相当広範な地域でリスクが懸念される有害性項目と、その判断に必要な範囲が対象となる。また、有害性調査の試験対象物質については、評価対象物質（II.2.3参照）を踏まえて指示内容に含める。
なお、評価Ⅱの時点で有害性調査指示を行うかは、暴露評価についても十分な情報に基づく結果が得られていることが前提となる。

II.5 有害性評価Ⅲ

有害性評価Ⅲは、基本的には有害性評価Ⅱと同様である。
暴露情報の精査等が必要であるとして評価Ⅲを行うこととなった場合、暴露情報の収集等のために相応の時間を費やすことがありうる。評価Ⅲを行う際に、過去の既知見収集時点以降の各情報源の更新状況を調査し、未収集分の情報収集を行う。追加収集分を加味して、必要に応じて精査やキースタディの見直しを行う。

II.6 リスク評価（二次）における有害性評価

リスク評価（二次）は、法第10条第2項による有害性調査指示により新たに得られた長期毒性に係る有害性情報を用いてリスク評価を行う段階である。
新たに得られた有害性情報についてリスク評価（一次）の段階で収集された既知見を踏まえて精査し、不確実係数の設定、ベンチマークドース法の適用等、専門家による個別判断に基づき有害性評価値の導出等を行う。

1 既知見により長期有害性情報が得られ、長期毒性に係る判定が行える場合には、リスク評価（二次）は行わず、リスク評価（一次）において第二種特定化学物質の指定や優先評価化学物質の取消し等の判断がなされる。
II.7 付属資料

II.7.1 経路間外挿の妥当性

経路間外挿が必要な背景
優先評価化学物質のリスク評価では、人が環境経由で化学物質に暴露される経路を経口経路と吸入経路と想定している（II.2.4参照）。

化学物質の環境への排出を概観すると、化学物質管理促進法（以下、化管法）により把握されている情報によれば、PRTR対象物質の届出による総排出量の約9割は大気への排出である。そのため、環境経由の暴露では、化学物質の性状によっては吸入経路が主となるものも少なくないと考えられる。

一方、有害性評価に用いる有害性情報は、化審法で得られる反復投与毒性試験が基本的に経口経路であるため、優先評価化学物質のリスク評価においては経口経路で行われた試験データの割合が多い。

一般的に、吸入経路の暴露が主となるような物質のリスク推計において、経口による反復投与毒性試験の結果を用いる場合には、毒性影響のエンドポイントや体内動態など様々な問題を考慮する必要がある。吸入経路で吸収された化学物質は、動脈血の流れとともに全身の各組織に輸送されるが、経口経路で吸収された化学物質は、いったん肝臓に送られて代謝を受けるため、各組織における化学物質量は、吸入経路の場合に比べ、経口経路の方が一般的に少なくなると考えられる。

しかし、実際に、経口と吸入による体内吸収率の違いが判明している物質は少なく、両経路における毒性影響として、全身影響が見られる場合には、単位換算を行って相互に（経口経路のデータを吸入経路の評価に、あるいは吸入経路のデータを経口経路の評価に用いるなど）利用せざるを得ないのが現状となっている。シックハウス（室内空気汚染）問題に関する検討会においても、策定した13物質に対する指針値は、経口暴露における動物実験データから、ヒトのシナリオ（日本人の平均体重50[kg]、呼吸量15[m³/day]）により吸入濃度への換算を行っている。

以上のような背景から、優先評価化学物質のリスク評価においても、吸入経路の暴露が主である物質について、経口経路による反復毒性試験データを用いることがある。そこでは、「経路間外挿は可能である」という前提を置いていることになる。その前提の妥当性確認のため、以下のような解析を行った。

1「経済産業省製造産業局化学物質管理課、環境省環境保健部環境安全課（2011）平成21年度PRTRデータの概要—化学物質の排出量・移動量の集計結果—」によると、全国の事業者から届出のあった総排出量は176千トン、その内訳は、大気への排出が156千トン（総排出量比率89%）、公共用水域への排出が8.6千トン（同4.9%）、事業所内の土壌への排出が0.46千トン（同0.26%）、事業所内埋立処分が11千トン（同6.3%）である。
2http://www.nihs.go.jp/mhlw/chemical/situnai/kentoukai.html
3本スキームでは、ヒトの呼吸量のデフォルト値として20[m³/day]を設定しているが、シックハウス問題に関する検討会では15[m³/day]としている。
有害性データの経路間外挿の妥当性検証

■方法

NITE 化学物質管理センターで公開している『化学物質管理のためのリスク評価書活用の手引き』の添付資料 2-11から、NEDO 事業による初期リスク評価において、経口経路と吸入経路の両方で有害性データが得られた物質のうち、以下のいずれかに該当する物質を除いた 34 物質を対象にした。すなわち、34 物質のデータセットは、経口経路と吸入経路の両方で反復投与の動物試験データがあり、かつ両経路とも一般毒性の全身影響がエンドポイントとなっているものである。

- 経口経路データ、吸入経路データのいずれか、もしくは両方に局所影響がみられる場合
- 経口経路データ、吸入経路データのいずれかが一般毒性で片方が生殖発生毒性である場合
- 経口経路データ、吸入経路データの片方が動物試験データで、片方が人のデータである場合（UFs が著しく違うため）
- 経口経路データ、吸入経路データのいずれかで影響がみられず、最大用量を採用している場合（影響の内容が不明であるため）

経口経路と吸入経路それぞれの有害性評価値 (N(L)OAEL/UFs²) を抽出し、その比「経口の有害性評価値／吸入の有害性評価値」（以下、「経口／吸入比」と略。）を算出した。その際、不確実係数積の設置と、吸入経路データの摂取量換算については、「化学物質の初期リスク評価指針」に記載の方法により行った。

■結果

対象とした 34 物質の経口／吸入比は、約 85% (29 物質) が±10 倍の範囲であった。これら初期リスク評価は文献等から有害性情報を収集しており、異なる機関が行った試験の結果を用いているが、この範囲に収まることが示された。

経口／吸入比が±10 倍に収まらなかった 5 物質の内訳は、10 倍を越える物質が 2 物質、0.1 倍未満の物質が 3 物質であった。

II.7.2 化管法指定化学物質の選定根拠からの有害性評価値の導出

化管法指定化学物質の選定根拠の有害性項目のうち、一般毒性と生殖発生毒性に係る項目は、経口慢性毒性、吸入慢性毒性、作業環境許容濃度及び生殖発生毒性の 4 つである (前 3 項目が一般毒性に対応)。これらの項目に対応する毒性試験結果や各種の基準値等に基づき、化管法における有害性のクラスが付与されている。

2. UFs: 不確実係数 (Uncertainty Factor) 積のこと。
3. 独立行政法人 製品評価技術基盤機構、財団法人 化学物質評価研究機構、委託元 独立行政法人 新エネルギー・産業技術総合開発機構 (20007) 化学物質の初期リスク評価指針 Ver.2.0.
このような化管法指定化学物質の指定根拠は、旧第二種監視化学物質の指定根拠ともなってい
ることから、これらの情報を用いたスクリーニング評価における有害性評価値の導出方法が設定
されており、図表 II-10 に引用する。リスク評価（一次）の評価Ⅰにおいても基本的にこれを踏
襲する。

図表 II-10 化管法の選定根拠からの有害性評価値の導出方法

<table>
<thead>
<tr>
<th>項目</th>
<th>情報源</th>
<th>有害性評価値導出のルール</th>
</tr>
</thead>
</table>
| 経口慢性毒性 | 水質基準 | 水質基準値 = (NOAEL等/UFs) × 体重 × 飲料水の寄与率 / 1日飲料水量
の式より、有害性評価値に相当する（NOAEL等/UFs）の数値を、引用されている
水質基準（日本、WHO等）から体重を50kg、飲料水の寄与率10%、1日飲料水量
2L/dayとして算出。 |
| 経口反復投与毒性（投与期間1年以上） | PRTR・MSDS 対象物質ハザードデータに記載されている情報から NOAEL であ
れば UFs=100、LOAEL であれば UFs=1000 として NOAEL等/UFsで算出。 |
| 経口反復投与毒性（投与期間1年未満又は不明のもの） | 上欄の UFsに試験期間のUF(3ヶ月未満6、3ヶ月以上1年未満2)を追加し、
NOAEL等/UFsで算出。試験期間が不明の場合は3ヶ月未満のUF(6)を適用。 |
| 農薬経口毒性 | ADI (mg/kg/day) は有害性評価値（NOAEL等/UFs）に相当するとしてそのまま
使用。 |
| 吸入慢性毒性 | 大気環境基準 | 大気基準値 = (NOAEL等/UFs) × 体重 × 吸入吸収率 × 大気の寄与率 /
吸入吸収率 × 1日呼吸量
の式より、有害性評価値に相当する（NOAEL等/UFs）の数値を、引用されている
大気基準（日本、WHO等）から体重を50kg、吸入吸収率 = 吸入吸収率（分母分子
で相殺）、大気の寄与率100%、1日呼吸量20m3/dayとして算出。 |
| 吸入反復投与毒性（投与期間1年以上） | PRTR・MSDS 対象物質ハザードデータに記載されている情報から NOAEL 等の
数値を摂取量換算した値を用い、NOAELであれば UFs=100、LOAELであれば
UFs=1000として NOAEL等/UFsで算出。 |
| 吸入反復投与毒性（投与期間1年未満又は不明のもの） | 上欄の UFsに試験期間のUF(3ヶ月未満6、3ヶ月以上1年未満2)を追加し、不
確実係数積を替えNOAEL等/UFsで算出。試験期間が不明の場合は3ヶ月未満の
UF(6)を適用。 |
| 作業環境許容濃度 | ACGIH 許容濃度 | 作業環境許容濃度 TWA（時間加重平均値）は健康な成人に対する断続的な暴露で
の許容濃度であることから、一般環境での一般人への外挿のため、暴露期間の補正、
断続的な暴露から継続的な暴露への補正、敏感な人を考慮した個体差を考慮し、これ
らを併せた不確実係数数値を100とする。そのため、有害性評価値（摂取量換算）に
相当する NOAEL等/UFsは、TWAを100で除した濃度に、体重を50kg、1日
呼吸量20m3/dayとして算出。 |
| 日本産業衛生学会許容濃度 | 同上 |
| 生殖発生毒性 | PRTR・MSDS 対象物質ハザードデータに記載されている情報から、経世代試験の
NOAELであればUFs=100、LOAELであればUFs=1000として NOAEL等/UFs
で算出。経世代ではない簡易の試験あるいは試験が不明の場合は UF(6)を追加し、
NOAEL等/UFsで算出。 |

注）UFsは不確実係数積の意味。UFの設定に関しては「有害性クラス分類の指標としての有
害性評価値」(6,8ページ)を参照。

1 審議会付属資料、スクリーニング評価手法の詳細（案）
II.7.3 各種の制度等における不確実係数

動物試験結果から人健康影響に関する有害性評価値を導出する際に国内外で用いられている不確実係数の設定状況について調査を行った。これらを参考に、本スキームで用いる不確実係数を設定した。国内で用いられている不確実係数等を図表 II-11 に、国外の不確実係数等を図表 II-12 に示した。本スキームで採用した不確実係数は図表 II-11 に示した。

種差については、国外において、トキシコキネティクスやトキシコダイナミクスを考慮した数値が提案されているが、これらは個々の物質・影響の内容に応じて設定されるものであり、データが得られている物質は限られる。優先評価化学物質のリスク評価（一次）の評価 I では、多数の物質について一斉に評価することを想定しており、個別の設定が必要なトキシコキネティクス、トキシコダイナミクスに基づいた数値が得られないため、通常用いられている 10 を採用することとした。これは、実験動物の成獣における NOAEL とヒトの平均的成人での NOAEL の違いを意味する。

個体差については、性別、年齢（小児から老人まで）を考慮しているとされる 10 を採用した。これは、ヒトの平均的成人での NOAEL と高感受性集団（乳幼児等）の NOAEL の違いを意味する。

試験期間に関しては、EU の REACH（ECHA）を参考に、試験期間別に慢性毒性値への外挿を想定した値を採用することとした。すなわち、90 日未満の試験については 6 を（使用するのは 28 日以上の試験）、90 日以上 1 年未満については 2 を、1 年以上の試験は 1 とした。

影響の重大性については、回復が見込めないような重篤な毒性エンドポイントである場合に十分な安全性を見込むために追加で設定されるもので、国内外の事例では、非遺伝毒性発がん性、神経毒性、母毒性の現れない用量での催奇形性について、この不確実係数が用いられている。

生殖発生毒性に関しては、二世代以上の経世代試験以外の簡易な生殖試験等、あるいは発生毒性データの不確実性とヒトへの外挿法に関する研究（平成 19 年度食品影響評価技術研究報告書）の「解説－6 ヒトのばらつき」では、ヒト及び動物の複数のデータ解析の結果、以下のよう結論している。「平均的ヒト集団と高感受性集団との違いは、ヒトのデータでは毒性関連での十分な情報なく、また、げっ歯類のデータも殆どが LD50 の比較解析であった。唯一、新生児ラットと若齢ラットの反復投与の NOAEL を比較した報告があり、5.0 倍以内に 94%が含まれていた。従って、不確実係数 10 でヒトでのばらつきは十分にカバーできるものと考えられる。」
http://www.fsc.go.jp/fscis/attachedFile/download?retrievalId=cho99920090704&fileId=001

前ページの脚注に記載した資料の「[解説－8] 追加の不確実係数(UF)の使用例～毒性の重篤性等に対する追加 UF 及び発がんポテンシャルに対する UF～」より。

生産発生毒性試験において「一世代」とは親（F0）世代のことをいい、一世代生産毒性試験では、F0 への直接投与による影響と次（F1）世代への母体を介した間接影響を観察する。試験は通常 F1 世代の離乳時に終了する。「二世代」とは、F0 及び F1 世代のことをいい、二世代生産毒性試験では、F0 世代への直接投与による影響、F1 世代への間接影響および直接投与による影響、F2 世代への間接影響を観察する。試験は通常 F2 世代の離乳時に終了する。
性試験（催奇形性試験）等に対し、「試験の質及び影響の重大性」として不確実係数10をおいた。
これは、生殖毒性に対しては、特に、経世代における生殖毒性がみられるかどうかが重要と考えてのことであり、発生毒性に関しては、発がん性と同様、次世代への「影響の重大性」ということに対する不確実性となっている。

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 項目 | 実施機関 | 出典 | 内閣府 | 厚生労働省 | 環境省 | (独)製品評価技術基盤機構
(財)化学物質評価研究機構
(NEDO化学物質総合評価管理プログラム第1プロジェクト)
| | | | 食品安全委員会 | 厚生科学審議会生活環境水道部会 | 連絡会議 | 連絡会議
(財)化学物質評価研究機構
(NEDO化学物質総合評価管理プログラム第1プロジェクト) |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| 種差 | 10 | 10 | 10 | 10 | 10 | 10 |
| 個体差 | 10 | 10 | 10 | 10 | 10 | 10 |
| 試験開始 | 28日以上90日未満; 6
90日以上1年未満; 2
1年以上: | 最大10 | 原則10 | 1〜10
1か月: 10
3か月: 5
6か月: 2
12か月: 1 | |
| LOAEL採用 | 10 | 最大10 | 1〜10 | 10 |
| 毒性の性質 (閾値あり発がん性等) | 影響の重大性: 最大10 | 生殖発生毒性*: 10 | ①最大10 | ①最大10 | ①最大10 | ②原則10
(1〜10) | ②原則10
(1〜10) |
| 教育施設 (不完全性) | 生殖発生毒性*: 10 | 試験の質: 最大10 | | | | |

備考
1. 生殖発生毒性では、影響の重大性(母体毒性あるいは用量で発現する胎児影響がある場合)と試験の質(経世代試験ではない場合を考慮するが、両者に合致する場合は併せて10とする。
2. ①は毒性の性質が重篤な場合、②は非遺伝子障害性の発がん性ありの場合。
3. ADIの設定には通常、種差と個体差を掛け合わせた100を用い、データの質によってより大きい係数(例えば250、1000、1500など)を用いる。
4. MOEを求めるための係数として設定
①はNOAEL等を非発がん影響から設定し、人に発がん作用があると考えられる場合、②はNOAEL等を発がん影響から設定した場合。
5. *: 試験の種類、質等により評価者判断で追加する場合あり。

出典
1) http://www.fsc.go.jp/yougoshu_fsc.pdf
2) http://www.mhlw.go.jp/shingi/2003/04/s0428-4b.html
表 II-12 国外で用いられている不確実係数等

<table>
<thead>
<tr>
<th>国家/機関</th>
<th>データベース</th>
<th>注目項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>米国EPA</td>
<td>WHO/IPCS</td>
<td>毒性の性質 (閾値あり発がん性等)</td>
</tr>
<tr>
<td></td>
<td>ECHA</td>
<td>LOAEL採用 10 3 または 10 ~ 10^3 (最小/大多数の場合) 又は 10 (最大/例外的な場合)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TKまたはTDに関するデータがない場合、デフォルト係数として3(ヒト等価濃度導出と併せた場合)または10。</td>
</tr>
</tbody>
</table>
| ICH Harmonised Tripartite | | 東京/TOYO |}

注:

- 10: 直接的な膜損傷由来の場合1、局所代謝経由及び呼吸器への影響の場合2.5
- 10: 呼吸器への影響/通常、ラットで亜急性は28日間、亜慢性は90日間、慢性は1.5~2年
- 10: 用量-反応関係の信頼性や影響の重大性によりNOAEL採用でも追加されることがある。
- 10: 手入可能なデータの完全性や一貫性、代替手法(in vitroデータ、(Q)SAR等)によるデータの信頼性による。
- 10: 試験期間に関する具体的な記述はないが、追加的に考慮する項目としてあげている。
- 10: 生殖試験では器官形成がカバーされる期間を含むこと。
- 10: げっ歯類で6ヶ月、非げっ歯類で3.5年。
- 10: げっ歯類で3ヶ月、非げっ歯類で2年。
- 10: 単純な膜損傷由来の場合1、局所代謝経由及び呼吸器への影響の場合2.5
- 10: 呼吸器への影響/通常、ラットで亜急性は28日間、亜慢性は90日間、慢性は1.5~2年*3; 用量-反応関係の信頼性や影響の重大性によりNOAEL採用でも追加されることがある。*4; 手入可能なデータの完全性や一貫性、代替手法(in vitroデータ、(Q)SAR等)によるデータの信頼性による。
- 10: 試験期間に関する具体的な記述はないが、追加的に考慮する項目としてあげている。
- 10: 生殖試験では器官形成がカバーされる期間を含むこと。
- 10: げっ歯類で6ヶ月、非げっ歯類で3.5年。
- 10: げっ歯類で3ヶ月、非げっ歯類で2年。
- 10: 単純な膜損傷由来の場合1、局所代謝経由及び呼吸器への影響の場合2.5
- 10: 呼吸器への影響/通常、ラットで亜急性は28日間、亜慢性は90日間、慢性は1.5~2年*3; 用量-反応関係の信頼性や影響の重大性によりNOAEL採用でも追加されることがある。*4; 手入可能なデータの完全性や一貫性、代替手法(in vitroデータ、(Q)SAR等)によるデータの信頼性による。
- 10: 試験期間に関する具体的な記述はないが、追加的に考慮する項目としてあげている。
- 10: 生殖試験では器官形成がカバーされる期間を含むこと。
- 10: げっ歯類で6ヶ月、非げっ歯類で3.5年。
- 10: げっ歯類で3ヶ月、非げっ歯類で2年。
- 10: 単純な膜損傷由来の場合1、局所代謝経由及び呼吸器への影響の場合2.5
- 10: 呼吸器への影響/通常、ラットで亜急性は28日間、亜慢性は90日間、慢性は1.5~2年*3; 用量-反応関係の信頼性や影響の重大性によりNOAEL採用でも追加されることがある。*4; 手入可能なデータの完全性や一貫性、代替手法(in vitroデータ、(Q)SAR等)によるデータの信頼性による。
- 10: 試験期間に関する具体的な記述はないが、追加的に考慮する項目としてあげている。
- 10: 生殖試験では器官形成がカバーされる期間を含むこと。
- 10: げっ歯類で6ヶ月、非げっ歯類で3.5年。
- 10: げっ歯類で3ヶ月、非げっ歯類で2年。
- 10: 単純な膜損傷由来の場合1、局所代謝経由及び呼吸器への影響の場合2.5
- 10: 呼吸器への影響/通常、ラットで亜急性は28日間、亜慢性は90日間、慢性は1.5~2年*3; 用量-反応関係の信頼性や影響の重大性によりNOAEL採用でも追加されることがある。*4; 手入可能なデータの完全性や一貫性、代替手法(in vitroデータ、(Q)SAR等)によるデータの信頼性による。
- 10: 試験期間に関する具体的な記述はないが、追加的に考慮する項目としてあげている。
- 10: 生殖試験では器官形成がカバーされる期間を含むこと。
- 10: げっ歯類で6ヶ月、非げっ歯類で3.5年。
- 10: げっ歯類で3ヶ月、非げっ歯類で2年。
II.7.4 各種の制度等における実質安全量の許容リスクレベル

関値がないと考えられる発がん性物質のリスク評価を行うには、社会的に受容可能なリスクレベルを設定する必要がある。

我が国において初めてリスク評価を行って設定された水道水質基準（平成4年）は、世界保健機関（WHO）の飲料水ガイドラインの改定に沿い、生涯過剰発がんリスクを 10^{-5} （10万人に1人がその物質が原因で発がんすると考えられる確率）として求められた。

その後、「今後の有害大気汚染物質対策のあり方について（中間答申）」が専門家を含む関係者から意見を聴取し、目標とするリスクレベルとして、10^{-4} から 10^{-6} まで幅広い意見が提示された。

化学物質リスク総合管理技術研究イニシアティブ（2006）の報告書には、「これら関係者の意見や大気環境分野で用いられているリスクレベルの国際的動向、水質保全の分野で既に採用されているリスクレベル、自然災害等のリスク等も勘案し、総合的に検討した結果、生涯リスクレベル 10^{-5} を当面の目標に有害大気汚染物質対策に着手していくことが適当とされ、平成8年10月、第二次答申としてとりまとめられた。」と記載されている。そして、ベンゼンの環境基準値（平成9年）は、目標とするリスクレベルを 10^{-5} として決められた。その後、有害大気汚染物質の優先取組物質のうち、塩ビモノマー、ニッケル、1,3-ブタジエン、1,2-ジクロロエタンが、関値のない発がん性物質として、リスクレベルを 10^{-5} として指針値が設定されている。

以上のことから、本スキームとして、許容できるリスクレベルは 10^{-5} が適切と考え、これに基づき求めた実質安全量 VSD を有害性評価値とすることとした。

1 http://www8.cao.go.jp/cstp/project/envpt/pub/H17chem_report/h17chem-index.html