Endocrine disrupting chemicals: a costly public health threat with opportunities for policy prevention

Leonardo Trasande, MD, MPP
Associate Professor of Pediatrics, Environmental Medicine, and Population Health

Japanese Society of Public Health
COI Declaration

Department of Pediatrics, Environmental Medicine, Population Health, New York University

Leonardo Trasande

The presenter has no conflict of interest with any corporate organizations relating to this presentation
The Diethylstilbestrol Story

First observation by Herbst et al of eight cases of clear cell adenocarcinoma of the vagina
Herbst et al NEJM 1971

• Had been exposed in utero one to two decades earlier to diethylstilbestrol (DES), a synthetic estrogen prescribed to pregnant women in the 1950s and 1960s to prevent miscarriage

Chemical environmental agents and the endocrine system

Endocrine disruptors (EDs) are chemicals that have the capacity to interfere with hormonal signaling systems

• May mimic, block, or modulate the synthesis, release, transport, metabolism, binding, or elimination of natural hormones

• May temporarily or permanently alter feedback loops in the brain, pituitary, gonads, thyroid, and other components of the endocrine system
Endocrine disrupting chemicals (EDC)

Highly heterogeneous group of molecules

• industrial solvents/lubricants and their byproducts [polychlorinated biphenyls (PCBs), polybrominated biphenyls (PBBs), dioxins], plastics [bisphenol A (BPA)]

• plasticizers (phthalates)

• pesticides [methoxychlor, chlorpyrifos, dichlorodiphenyltrichloroethane (DDT)]

• fungicides (vinclozolin)

• pharmaceutical agents [diethylstilbestrol (DES)]

Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement

There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology, results from animal models, human clinical observations, and epidemiological studies converge to replicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor γ, retinoid, and actions through other nuclear receptors: steroidogenic enzymes, neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness. (Endocrine Reviews 30: 293–342, 2009)
Response to WHO/UNEP Report

- Footnote identifies only chemical and pesticide industries as having concerns about state of science
- Concerns voiced in response by Lamb et al rebutted by WHO/UNEP report authors in Reg Tox Pharm Bergman et al 2015
Endocrine disruption and the developing brain

Thyroid hormone has long been known to be critical to early brain development

- Predictable outcomes of its disruption include global IQ deficits, as well as neurodevelopmental disabilities such as autism spectrum disorder (ASD), and attention-deficit hyperactivity disorder (ADHD).

Interference with sex steroid and other hormonal modes of action may also adversely impair early brain development.

Organophosphate pesticides

Principal mode of action of chlorpyrifos is through acetyl cholinesterase (AChE) inhibition, though many reports indicate neurotoxicological effects independent of AChE inhibition

- Developmental exposure of mice to levels of chlorpyrifos that had no effect on AChE activity adversely affected thyroid hormone levels

- Thyroid signalling also impaired

De Angelis et al Toxicological sciences 2009;
Jeong et al Toxicology 2006;
Levin et al Neurotoxicology and teratology 2002
Organophosphate pesticides

Consistent dose/response relationships of organophosphate pesticide exposures in pregnancy with intellectual quotient across three carefully conducted longitudinal birth cohorts

Bouchard et al EHP 2011; Engel et al EHP 2011; Chen et al 2015

Prenatal OP exposure has been associated with magnetic resonance imaging findings in children including frontal and parietal cortical thinning

Rauh et al PNAS 2012

Brominated flame retardants

Large literature identifies PBDE to interfere with thyroid hormone action

Bellanger et al JCEM 2015 (Appendix)

PBDEs may also affect the metabolism of thyroid hormone

PBDE-209 (deca)

Thyroxine (T4, thyroid hormone)
Brominated flame retardants

Four well-designed longitudinal birth cohorts have examined PBDE effects on child neurodevelopment

- Three (all US) identified consistent, exposure-response relationships with IQ, with carefully collected data on many potential confounders.

 Chen et al EHP 2014; Eskenazi et al EHP 2013; Herbstman et al EHP 2010

- Fourth (from Spain), suffered from modest sample size, with few detectable PBDE levels, though this study showed substantial directionality towards cognitive and motor dysfunction at age 4.
 - IQ was not measured
 - Exposure levels in the US are much higher than in the EU.

 Gascon et al Environment International 2011

Bisphenol A (BPA)

Used to manufacture polycarbonate resin

Recently banned from baby bottles and sippy cups by US Food and Drug Administration

Breakdown product of coatings intended to prevent metal corrosion in food and beverage containers

In children, dietary sources constitute 99% of BPA exposure

BPA and obesity

Laboratory studies suggest that BPA

- Increases fat cell size
- Disrupt adiponectin function
- Low-grade synthetic estrogen

- Estrogen-testosterone balance may have sex-specific differences in influence on body mass

Association of urinary BPA with childhood obesity

Nationally representative sample of 2838 US children

- Urinary BPA measured by the Centers for Disease Control and Prevention
- Divided population into four groups, lowest to highest
- Children with lowest levels of BPA: 10.3% obese
- Children with higher levels of BPA: 20.1-22.1% obese
- Linear association of BPA with standardized measure of Body Mass Index accounting for age and gender
- Levels of other phenols found in sunscreens and soaps not associated

Trasande et al JAMA 2012; 308(11):1113-21
Longitudinal studies

Three studies to date with positive, although not consistent results, but all had limited frequency of measurements of BPA in pregnancy

Dutch birth cohort: higher uBPA associated with lower growth rates for fetal weight and birth weight

Snijder et al EHP 2013

- Follow-up study examining BPA at three time points in pregnancy funded by NIEHS (R01ES022972) to see if higher BPA associated with obesity, insulin resistance and blood pressure in children

Other chemicals with data suggesting role in obesity, diabetes and cardiovascular disease

Phthalates
- Found in shampoos, soaps, lotions, flooring, food wraps
 Janesick et al 2011, Trasande et al 2013

Perfluoroalkyl chemicals
- Used in nonstick cooking, carpets and upholstery, microwave popcorn bags
 Halldorsson et al 2012

Polycyclic aromatic hydrocarbons
- Breakdown product of fuel burning, also food contaminant
 Rundle et al Am J Epidem 2012

Polybrominated diphenyl ethers
- Flame retardants found in furniture, electronics
 Lim et al Diabetes Care 2008
Endocrine disruption and fertility

Fertility is a condition of a couple, where reproductive health of both sexes plays a role

Fetal exposure to phthalates with reduced infant anogenital distance (AGD)

Swan et al EHP 2005, Bornehag et al EHP 2014

Shortened adult AGD is associated with reduced semen quality and testosterone level

Multiple studies have identified reduced male fertility and poor semen quality with multiple EDCs, including phthalates, bisphenol A, and polyfluorinated chemicals

What can we do limit EDC exposures?

Fortunately, there are safe and simple steps families can take at home to limit these exposures.

We can also advocate for proactive policies that limit exposures to common dietary contaminants.
Pesticide exposures are preventable

Eating organic
 • Reduces urinary levels of pesticides

![Figure 1](image1.png) ![Figure 2](image2.png)

Lu et al. EHP 2006

Bisphenol and phthalate exposures are preventable

Limiting canned food consumption and avoiding processed foods
 • Intervention reduced mean concentrations of BPA by 66% and DEHP metabolites by 53–56%.

![Figure A](image3.png) ![Figure B](image4.png) ![Figure C](image5.png) ![Figure D](image6.png)

Rudel et al. EHP 2011
Safe and simple steps to limit bisphenols and phthalates

Avoid canned foods. Bisphenol A (BPA) doesn't discriminate by the type of can—soda, vegetables, tuna. Acidity is probably the biggest driver of absorption into food, but all types of canned food have detectable levels of BPA.

Don’t microwave plastic containers or put them in the dishwasher. Heat and harsh cleaning agents are effective at getting the chemicals out of plastic.

Avoid plastic bottles with the numbers 3, 6 or 7.

If plastic bottles were meant for single use, keep them that way. Besides, reusing them raises the chance of bacterial contamination.

If plastic food containers are etched, it’s time to throw them away. Etching increases the odds of leaching.

Flame retardant exposures are preventable

Replace old furniture that has exposed foam or cover it with a slipcover. Outdoor air has lower concentrations of chemicals that accumulate from electronics, carpeting and the like, and recirculating the air a few minutes every day gets rid of other chemical residues too.

Buy products made from natural fibers (like cotton and wool), which are naturally less flammable.

Vacuum regularly with a HEPA filter and mop with a wet mop to prevent dust from accumulating.

Stop children from touching or mouthing on fire-retardant items.

Be careful when removing old carpet, which may contain PBDEs.

Make sure you get a healthy diet with enough iodine.
Policy action on BPA

BPA banned in baby bottles and sippy cups

- But not in other food uses

Costs of BPA exposure

12,404 cases of childhood obesity

33,863 cases of newly incident coronary heart disease

Estimated social costs of $2.98 billion in 2008

Trasande Health Affairs 2014
Benefits and costs of replacing BPA

- Potential cost of one BPA alternative, oleoresin = $0.022 per can
 - 100 billion aluminum cans are produced annually
 - 100 billion x $0.022 = $2.2 billion

- Potential benefit of replacing BPA with lining free of health effects = $1.74 billion
 - Does not include other effects (cognitive, asthma, breast cancer)

- Sensitivity analyses suggest as high as $13.8 billion

BPS replacing BPA?

Emerging evidence suggests replacement of BPA and BPS

Similar, weak estrogen like BPA

Disrupts signaling of estrogen in animal studies

Does not degrade as easily in seawater

Vinas and Watson EHP doi:10.1289/ehp.1205826
Quantifying other EDC disease burden and costs

Development of EDC criteria in EU crucial in setting scientific and policy precedents for other national policies and for the global approach to regulation of these chemicals under agreements such as SAICM (the Strategic Approach to International Chemicals Management).

Absent estimates of the burden of disease and disability potentially produced by EDC exposures, high costs of alternatives are likely to outweigh concerns about the health consequences of using EDCs.

Causality criteria

Temporal relationship required
Others favor causality (major in bold)
- Consistency
- Effect size
- Dose-response relationship
- Biological plausibility
- Specificity
- Coherence (Coherent with existing theory/knowledge)
- Experiment (Can be prevented or ameliorated)
- Consideration of alternate explanations

Evidence

Hill AB Proc Royal Soc Med 1965
Embracing uncertainty

“What I do not believe – and this has been suggested – is that we can usefully lay down some hard-and-fast rules of evidence that must be obeyed before we accept cause and effect.”

“On fair evidence we might take action on what appears to be an occupational hazard, e.g. we might change from a probably carcinogenic oil.”

Uncertainty “does not confer upon us a freedom to ignore the knowledge we already have, or to postpone the action that it appears to demand at a given time.”

Hill AB Proc Royal Soc Med 1965

Estimating EDC disease burden and costs in EU

Expert panels identified conditions where the evidence is strongest for causation
- Developed ranges for fractions of disease burden that can be attributed for EDCs
- Adapted GRADE Working Group and WHO criteria for evaluating epidemiologic evidence
- Adapted Danish EPA criteria for evaluating toxicology evidence
- Adapted IPCC approach to integrate epidemiology and toxicology evidence and estimate probability of causation

Monte Carlo models (1000 simulations) used to estimate realistic ranges of EDC costs across all exposure-response relationships

Trasande et al J Clin Endo Metab epub Mar 5 2015
Estimating EDC disease burden and costs in US

Leveraged NHANES 2007-8 and 2009-10

Identified cost-of-illness data from US

Generally identical approach to exposure-response relationships, reference levels

Identical probabilities of causation, Monte Carlo simulations

Overall Evaluations

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>Strength of Human Evidence</th>
<th>Strength of Toxicologic Evidence</th>
<th>Probability of Causation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polybrominated dibenyl ethers (PBDE)</td>
<td>IQ Loss and Intellectual Disability</td>
<td>Moderate-to-high</td>
<td>Strong</td>
<td>70-100%</td>
</tr>
<tr>
<td>Organophosphate pesticides (OP)</td>
<td>IQ Loss and Intellectual Disability</td>
<td>Moderate-to-high</td>
<td>Strong</td>
<td>70-100%</td>
</tr>
<tr>
<td>Dichlorodiphenyldichloroethylene (DDE)</td>
<td>Childhood obesity</td>
<td>Moderate</td>
<td>Moderate</td>
<td>40-69%</td>
</tr>
<tr>
<td>Dichlorodiphenyltrichloroethylene (DDE)</td>
<td>Adult diabetes</td>
<td>Low</td>
<td>Moderate</td>
<td>20-39%</td>
</tr>
<tr>
<td>Di-2-ethylhexylphthalate (DEHP)</td>
<td>Adult obesity</td>
<td>Low</td>
<td>Strong</td>
<td>40-69%</td>
</tr>
<tr>
<td>Bisphenol A (BPA)</td>
<td>Childhood obesity</td>
<td>Very low-to-low</td>
<td>Strong</td>
<td>20-69%</td>
</tr>
<tr>
<td>Polybrominated dibenyl ethers (PBDE)</td>
<td>Testicular cancer</td>
<td>Very low-to-low</td>
<td>Weak</td>
<td>0-19%</td>
</tr>
<tr>
<td>Polybrominated dibenyl ethers (PBDE)</td>
<td>Cryptorchidism</td>
<td>Low</td>
<td>Strong</td>
<td>40-69%</td>
</tr>
<tr>
<td>Benzyl and butylphthalates (Monobenzyl phthalate, MBzP; Monobutyl phthalate, MBP)</td>
<td>Male Infertility, Resulting in Increased Assisted Reproductive Technology</td>
<td>Low</td>
<td>Strong</td>
<td>40-69%</td>
</tr>
<tr>
<td>Monobutyl phthalate (MBP) and Di-2-ethylhexylphthalate (DEHP)</td>
<td>Low testosterone, Resulting in Increased Early Mortality</td>
<td>Low</td>
<td>Strong</td>
<td>40-69%</td>
</tr>
<tr>
<td>Multiple exposures (PBDE and OPs)</td>
<td>ADHD</td>
<td>Low-to-moderate</td>
<td>Strong</td>
<td>20-69%</td>
</tr>
<tr>
<td>Multiple exposures (phthalates)</td>
<td>Autism</td>
<td>Low</td>
<td>Moderate</td>
<td>20-39%</td>
</tr>
<tr>
<td>Dichlorodiphenyldichloroethylene (DDE)</td>
<td>Fibroids</td>
<td>Low</td>
<td>Moderate</td>
<td>20-39%</td>
</tr>
<tr>
<td>Di-2-ethylhexylphthalate (DEHP)</td>
<td>Endometriosis</td>
<td>Low</td>
<td>Moderate</td>
<td>20-39%</td>
</tr>
</tbody>
</table>
Table 3: Comparison of attributable disease burden and costs in the USA and European Union

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PBDE and 10 points loss</td>
<td>11 million</td>
<td>873,000</td>
<td>26.6 billion</td>
<td>12.6 billion</td>
</tr>
<tr>
<td>and intellectual</td>
<td>10 cases</td>
<td>10,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disability</td>
<td>395,000</td>
<td>3,950 cases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organophosphate pesticides and 10 points loss and intellectual disability</td>
<td>1,1 million</td>
<td>10,000</td>
<td>46.7 billion</td>
<td>23.4 billion</td>
</tr>
<tr>
<td>Dichlorodiphenyltrichloroethane and childhood obesity</td>
<td>912 cases</td>
<td>912 cases</td>
<td>29.6 million</td>
<td>12.7 million</td>
</tr>
<tr>
<td>Dichlorodiphenyltrichloroethane and adult diabetes</td>
<td>24,900 cases</td>
<td>28,000 cases</td>
<td>1.8 billion</td>
<td>1.1 billion</td>
</tr>
<tr>
<td>Bisphenol-A and phthalates and adult obesity</td>
<td>5,500 cases</td>
<td>5,500 cases</td>
<td>1.7 billion</td>
<td>1.7 billion</td>
</tr>
<tr>
<td>Bisphenol-A and phthalates and adult diabetes</td>
<td>1,100 cases</td>
<td>1,100 cases</td>
<td>56.4 million</td>
<td>80.2 million</td>
</tr>
<tr>
<td>BPA and childhood obesity</td>
<td>33,000 cases</td>
<td>42,000 cases</td>
<td>2.4 billion</td>
<td>2.0 billion</td>
</tr>
<tr>
<td>PBDE and breast cancer</td>
<td>3,500 cases</td>
<td>4,000 cases</td>
<td>8.5 million</td>
<td>11.1 million</td>
</tr>
<tr>
<td>PBDE and anophthalmia and infertility resulting in increased assisted reproduction technology</td>
<td>4,500 cases</td>
<td>5,000 cases</td>
<td>31.7 million</td>
<td>32.7 million</td>
</tr>
<tr>
<td>Multiple exposures and ADHD</td>
<td>4,000 cases</td>
<td>19,000 cases</td>
<td>6.0 million</td>
<td>2.3 billion</td>
</tr>
<tr>
<td>Multiple exposures and autism</td>
<td>4,000 cases</td>
<td>19,000 cases</td>
<td>1.0 billion</td>
<td>2.3 billion</td>
</tr>
<tr>
<td>Dichlorodiphenyltrichloroethane and neurodevelopmental disorders</td>
<td>57,000 cases</td>
<td>57,000 cases</td>
<td>25.9 million</td>
<td>25.5 million</td>
</tr>
<tr>
<td>Bisphenol-A and phthalates and endocrinology</td>
<td>86,000 cases</td>
<td>145,000 cases</td>
<td>47.0 million</td>
<td>1.7 billion</td>
</tr>
</tbody>
</table>

The comparison uses base case estimates. Estimates are conditional on scenarios of contamination. EU = European Union. PBDEs = polychlorinated dibenzop-dioxins. PBDEs = polychlorinated dibenzofurans. OC = organochlorine. AC = organochlorine. DCE =organochlorine. DDD = organochlorine. DDE = organochlorine.

| Health Effects from Endocrine Disrupting Chemicals (EDCs) Cost the EU 157 Billion Euros Each Year. This is the Tip of the Iceberg. Costs may be as high as €270B. |

Endocrine Disrupting Chemicals (EDCs)

Interfere with hormone action to cause adverse health effects in people.

"The Tip of the Iceberg"

The data shown to the left are based on fewer than 5% of likely EDCs. Many EDC health conditions were not included in this study because key data are lacking. Other health outcomes will be the focus of future research.
Based on current knowledge, probable costs are €163 billion in EU and $340 billion in US

- <5% of EDCs considered
- Breast cancer and many other conditions not included yet, but will be focus of future work
- Economic numbers do not consider all costs associated with these chronic conditions

Limiting our exposure to the most widely used and potentially hazardous EDCs is likely to produce substantial economic benefit.
Summary

Endocrine-related conditions are increasing

The developing endocrine system is uniquely vulnerable to disruption

Endocrine disrupting chemicals (EDC) are increasingly linked to endocrine-related conditions

EDC exposures are preventable

Preventing EDC exposures has substantial health and economic benefits

Thanks!

- Funding: John Merck Fund (EU), Broad Reach (EU + US), Oak Foundation (EU)
- Steering committee: R. Thomas Zoeller, Andreas Kortenkamp, Philippe Grandjean, John Peterson Myers, Joe DiGangi, Martine Bellanger, Jerry Heindel
- Expert panel leads: Russ Hauser, Ana Soto, Paul A. Fowler, Patricia Hunt, Juliette Legler, Ruthann Rudel, Niels Skakkebaek
- Other participants: Barbara Cohn, Frederic Bois, Sheela Sathyanarayana, Jorma Toppari, Anders Juul, Ulla Hass, Bruce Blumberg, Miquel Porta, Eva Govarts, Barbara Demeneix
- Technical and logistical support: Endocrine Society, Charles Persoz, Robert Barouki, and Marion Le Gal of the French National Alliance for Life Sciences and Health and Lindsey Marshall, Bilal Mughal, and Bolaji Seffou of UMR7221 Paris
Thanks!

Funding (Other Work)

- NIH: R01ES022972, R01DK100307, UG3OD023305 (Past: R21ES018723; R24TW0009562)

- CDC: U01OH01394, U01OH01714