Building a **search engine** to find **environmental factors** associated with **disease and health**

Chirag J Patel
IEA-WCE 2017 Symposium
Saitama, Japan
8/20/17


```
Phenotype  Genome  Environment  
Type 2 Diabetes  Variants  Infectious agents  
Cancer  Gene expression  Diet + Nutrients  
Alzheimer’s  Gene expression  Pollutants  
Gene expression  
```
We are great at G investigation!

2,940 (as of 6/1/17)
36,066 G-P associations
Genome-wide Association Studies (GWAS)
https://www.ebi.ac.uk/gwas/

E: ???

Nothing comparable to elucidate E influence!

We lack high-throughput methods and data to discover new E in P...
A similar paradigm for discovery should exist for E!

Why?

$$\sigma^2_P = \sigma^2_G + \sigma^2_E$$
Heritability (H^2) is the range of phenotypic variability attributed to genetic variability in a population.

$$H^2 = \frac{\sigma^2_G}{\sigma^2_P}$$

Indicator of the proportion of phenotypic differences attributed to G.

G estimates for burdensome diseases are low and variable: massive opportunity for high-throughput E discovery.
G estimates for complex traits are **low and variable**: massive opportunity for **high-throughput E discovery**

![Diagram showing various diseases and their heritability](image)

Source: SNPedia.com

It took a new paradigm of **GWAS for discovery:**

Human Genome Project to **GWAS**

Sequencing of the genome

Characterize common variation

Measurement tools

Sequencing of the genome

Characterize common variation

High-throughput variant assay

< $99 for ~1M variants

~2003 (ongoing)

2001

2001-current day

GWAS

Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls

The Wellcome Trust Case Control Consortium

σ²_E : **Exposome!**
What is a Genome-Wide Association Study (GWAS)?

Data-driven search for G factors in P

<table>
<thead>
<tr>
<th></th>
<th>AA</th>
<th>Aa</th>
<th>aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Robust, transparent, and comprehensive search for G in P

Why carry out a Genome-Wide Association Study:
Analytically robust, transparent, and comprehensive search for G in P

JAMA 2014
JECH 2014
Promises and Challenges in creating a search engine for identifying E in P

Studying the Elusive Environment in Large Scale

JAMA 2014

Informatics and Data Analytics to Support Exposome-Based Discovery for Public Health

ARPH 2016

Placing epidemiological results in the context of multiplicity and typical correlations of exposures

JECH 2014

Promises and Challenges in creating a search engine for E in P

High-throughput $E = \text{discovery!}$

systematic; reproducible
multiple hypothesis control prioritization

Arjun Manrai
(Yuxia Cui, David Balshaw)

ARPH 2016
JAMA 2014
JECH 2014
Examples of *exposome-driven* discovery machinery, or *EWASs*

Gold standard for *breadth* of human exposure information: National Health and Nutrition Examination Survey¹

since the 1960s
now biannual: 1999 onwards
10,000 participants per survey

>250 exposures (serum + urine)
GWAS chip

>85 quantitative clinical traits
(e.g., serum glucose, lipids, body mass index)

Death index linkage (cause of death)

¹ http://www.cdc.gov/nchs/nhanes.htm
Gold standard for **breadth** of exposure & behavior data: National Health and Nutrition Examination Survey

- **Nutrients and Vitamins**
 - *vitamin D, carotenes*

- **Drugs**
 - *statins; aspirin*

- **Infectious Agents**
 - *hepatitis, HIV, Staph. aureus*

- **Plastics and consumables**
 - *phthalates, bisphenol A*

- **Pesticides and pollutants**
 - *atrazine; cadmium; hydrocarbons*

- **Physical Activity**
 - *e.g., steps*

What are associated with **aging**: all-cause mortality and telomere length?

Int J Epidem 2013

Int J Epidem 2016
How does it work?: Searching for exposures and behaviors associated with all-cause mortality.

NHANES: 1999-2004
National Death Index linked mortality
246 behaviors and exposures (serum/urine/self-report)

NHANES: 1999-2001
N=330 to 6008 (26 to 655 deaths)
~5.5 years of followup

NHANES: 2003-2004
N=177 to 3258 (20-202 deaths)
~2.8 years of followup

Cox proportional hazards
baseline exposure and time to death

False discovery rate < 5%

Variance explained (R^2):
Proportion of variance in death correlated with E

How does it work?:
Discriminating signal from noise using family-wise error rate with the **False Discovery Rate**

Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing

By YOAV BENJAMINI† and YOSEF HOCHBERG
Tul Aniv University, Israel

[Received January 1993. Revised March 1994]

SUMMARY
The common approach to the multiplicity problem calls for controlling the familywise error rate (FWER). This approach, though, has faults, and we point out a few. A different approach to problems of multiple significance testing is presented. It calls for controlling the expected proportion of falsely rejected hypotheses—the false discovery rate. This error rate is equivalent to the FWER when all hypotheses are true but is smaller otherwise. Therefore, in problems where the control of the false discovery rate rather than that of the FWER is desired, there is potential for a gain in power. A simple sequential Bonferroni-type procedure is proved to control the false discovery rate for independent test statistics, and a simulation study shows that the gain in power is substantial. The use of the new procedure and the appropriateness of the criterion are illustrated with examples.

Benjamini and Hochberg, J R Stat Soc B 1993
How does multiple testing correction work?

William S Noble

When prioritizing hits from a high-throughput experiment, it is important to correct for random events that falsely appear significant. How is this done and what methods should be used?

Noble, Nature Biotech 2009

EWAS in all-cause mortality:
253 exposure/behavior associations in survival
EWAS identifies factors associated with *all-cause mortality*: Volcano plot of 200 associations

Multivariate cox (age, sex, income, education, race/ethnicity, occupation [in red])
*derived from METs per activity and categorized by Health.gov guidelines

452 associations in **Telomere Length**: Polychlorinated biphenyls associated with longer telomeres?!

adjusted by age, age², race, poverty, education, occupation
median N=3000; N range: 300-7000

Int J Epidem 2016
It is possible to capture E in high-throughput to create biomedical hypotheses using tools such as **EWAS**

<table>
<thead>
<tr>
<th></th>
<th>E+</th>
<th>E-</th>
</tr>
</thead>
<tbody>
<tr>
<td>diseased</td>
<td>♂ ♂ ♂</td>
<td>♂</td>
</tr>
<tr>
<td>non-diseased</td>
<td>♂ ♂ ♂ ♂ ♂ ♂</td>
<td>♂ ♂ ♂ ♂ ♂</td>
</tr>
</tbody>
</table>

Versus

candidates comprehensive
Promises and **Challenges** in creating a search engine for E in P

High-throughput assays of E!
Scalable and standard technologies

Big data = big bias!
Confounding; reverse causality
Dense correlational web of E and P
Fragmented and small E-P associations
Influence of time and life-course

Challenge to scale absolute E due to heterogeneity and large dynamic range.

Arjun Manrai
(Yuxia Cui, David Balshaw)

Rappaport et al, *EHP* 2015
Promises and **Challenges** in creating a search engine for E in P

High-throughput assays of $E!
scalable and standard technologies

Big data = big bias!
Confounding; reverse causality
Dense correlational web of E and P

Fragmented and small $E-P$ associations
Influence of time and life-course

Arjun Manrai
(Yuxia Cui, David Balshaw)

Example of *fragmentation*:
Is everything we eat associated with cancer?

50 random ingredients from *Boston Cooking School Cookbook*

Any associated with cancer?

Of 50, 40 studied in cancer risk

Weak statistical evidence:
non-replicated
inconsistent effects
non-standardized

Schoenfeld and Ioannidis, *AJCN* 2012
Are all the **drugs** we take associated with **cancer**?

Systematic assessment of pharmaceutical prescriptions in association with cancer risk: a method to conduct a population-wide medication-wide longitudinal study

Chirag J. Patel, Jianguang Ji, Jan Sundquist, John P.A. Ioannidis & Kristina Sundquist

Associated all (~500) drugs prescribed in **entire** population of Sweden (N=9M) with time to cancer

Assessed 2 modeling techniques (**Cox** and **case-crossover**)

Sci Reports 2016

What drugs are associated with time to cancer?

Too many to be plausible (up to **26%**!)

- **any cancer**: 141 (26%)
- **prostate**: 56 (10%)
- **breast**: 41 (7%)
- **colon**: 14 (3%)

Modest concordance between Cox and case-crossover: **12 out of 141**!

Most correlations small (HR < 1.1); residual confounding?

Sci Reports 2016
Promises and **Challenges** in creating a search engine for E in P

High-throughput assays of E!
scalable and standard technologies

Big data = big bias!
Confounding; reverse causality
Dense correlational web of E and P
Fragmented and small E-P associations
Influence of time and life-course

Arjun Manrai
(Yuxia Cui, David Balshaw)

ARPH 2016
JAMA 2014
JECH 2014

Interdependencies of the **exposome**:
Correlation globes paint a complex view of exposure

for each pair of E:
Spearman ρ
(575 factors: 81,937 correlations)

permuted data to produce
“null ρ”
sought replication in > 1 cohort

Red: positive ρ
Blue: negative ρ
thickness: $|\rho|$

Effective number of variables:
500 (10% decrease)

Pac Symp Biocomput. 2015
JECH. 2015
Does my single association between \(E \) and \(P \) matter?

Does my association between \(E \) and \(P \) matter in the entire possible space of associations?

- which ones to test?
 - all?
 - the ones in blue?

\(E \) times \(P \) possibilities!

how to detect signal from noise?
Scaling up the search in multiple phenotypes: does my single association between E and P matter?

Body Measures
- Body Mass Index
- Height

Blood pressure & fitness
- Systolic BP
- Diastolic BP
- Pulse rate
- VO₂ Max

Metabolic
- Glucose
- LDL-Cholesterol
- Triglycerides

Kidney function
- Creatinine
- Sodium
- Uric Acid

Inflammation
- C-reactive protein
- White blood cell count

Aging
- Telomere length
- Time to death

Liver function
- Aspartate aminotransferase
- Gamma glutamyltransferase

Raj Manrai, Hugues Aschard, JPA Ioannidis, Dennis Bier

Creation of a phenotype-exposure association **map**: A 2-D view of 209 phenotype by 514 exposure associations

Association Size: 504 E exposure and diet indicators × 209 clinical trait phenotypes

Median N: 150-5000 per survey

~83,092 E-P associations!

Significant associations (FDR < 5%)

Adjusted by age, age², sex, race, income
83,092 total associations between E and P
12,237 significant associations (6%, in yellow):
Average association size: <1% for 1SD change in E

EWAS-derived phenotype-exposure association map:
A 2-D view of connections between P and E

R^2: ~1-40% (average of 20%)
EWAS-derived phenotype-exposure association map:
A 2-D view of connections between P and E:
does my correlation matter?
High-throughput data analytics to mitigate analytical challenges of exposome-based research:
Consider **multiplicity of hypotheses** and **correlational web**!

Explicit in number of hypotheses tested

Does my correlation matter?
How does my new correlation compare to the family of correlations?
What is the total variance explained (σ^2_E)?

saturated fatty acids and BMI: 0.5%
does it matter? (i.e., 1.2% is average!)

Bottom line: high-throughput E research will enable **discovery to explain missing variation in P**!

1.) Find elusive E in P and explain variation of disease risk

2.) Consideration of totality of evidence:
Does my correlation matter?

3.) Reproducible research and increase data literacy.
Bottom line: high-throughput E research will enable *discovery to explain missing variation in P*

1.) Find elusive E in P and explain variation of disease risk

2.) Consideration of totality of evidence: Does my correlation matter?

3.) Reproducible research and increase data literacy.
Designing a new children’s study:

(1) Increase sample sizes and make data publicly available

(2) Measure G to discover role of E in P
Designing a new children’s study

(1) Increase sample sizes and make data **publicly available**

![Biobank UK](image1)

N=500,000

Generate wide interest and visibility
Enhance reproducibility (decrease false positives)

![China Kadodre Biobank](image2)

N=500,000

Designing a new children’s study:

(2) Measure G to discover role of E in P

biological function

Gibson, G. *Nature Reviews Genetics* 2008

gene-by-environment interactions

Patel CJ et al, *CEBP* 2017

GWAS and mendelian randomization

In conclusion: Data science inspired approaches to ascertain **exposome** and **genome** will enable biomedical **discovery**.

EWASs in aging: mortality and quantitative traits

Dense **correlations**, **con founding**, reverse causality: how to assess at high dimension?

Mitigate **fragmented** literature of associations.

Understand interacting **G** and **E** for causation.

*Use high-throughput tools and data (e.g., exposome) will enhance discovery of the role of **E** (and **G**) in **P**.*
RagGroup Data Science Team:
2 post-docs, 3 PhD, 2 MS, 1 HS, 2 visiting

PhD: systems biology, integrative genomics
MS: statistics (HSPH)
Post-docs: biology, medicine, and mathematics

Acknowledgements

RagGroup
Nam Pho
Jake Chung
Kajal Claypool
Arjun Manrai
Chirag Lakhani
Adam Brown
Danielle Rasooly
Alan LeGoallec
Sivateja Tangirala

Harvard DBMI
Susanne Churchill
Nathan Palmer
Sophia Mamousette
Sunny Alvear
Michal Preminger

Mentioned Collaborators
Isaac Kohane
John Ioannidis
Dennis Bier
Hugo Aschard

IEA-WCE 2017 symposium
Shoji Nakayama
Junya Kasamatsu
Ministry of Environment (Japan)

NIH Common Fund
Big Data to Knowledge

Chirag J Patel
chirag@hms.harvard.edu
@chiragjp
www.chiragjpgroup.org