

Building a *search engine* to find *environmental factors* associated with *disease and health*

Chirag J Patel IEA-WCE 2017 Symposium Saitama, Japan 8/20/17

department of Biomedical Informatics chirag@hms.harvard.edu @chiragjp www.chiragjpgroup.org

We are great at **G** investigation!

2,940 (as of 6/1/17) 36,066 G-P associations Genome-wide Association Studies (GWAS) https://www.ebi.ac.uk/gwas/

E: ???

Nothing comparable to elucidate *E* influence!

We lack high-throughput methods and data to discover new *E* in *P...*

A similar paradigm for discovery should exist for *E*!

Why?

$\sigma^2_{\rm P} = \sigma^2_{\rm G} + \sigma^2_{\rm E}$

Heritability (H²) is the range of phenotypic variability attributed to genetic variability in a population

Indicator of the proportion of phenotypic differences attributed to **G**.

G estimates for burdensome diseases are **low and variable:** massive opportunity for *high-throughput E discovery*

G estimates for complex traits are **low and variable**: massive opportunity for *high-throughput E discovery*

It took a new paradigm of **GWAS** for discovery: Human Genome Project to **GWAS**

Sequencing of the genome

2001

Characterize common variation

HapMap project: <u>http://hapmap.ncbi.nlm.nih.gov/</u>

2001-current day

Measurement tools

High-throughput variant assay < \$99 for ~1M variants ~2003 (ongoing)

Comprehensive, high-throughput analyses

GWAS

Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls

Wellcome Trust Case Control Consortium*

WTCCC, Nature, 2008.

JAMA 2014 *JECH* 2014

Promises and **Challenges** in creating a search engine for identifying **E** in **P**

Studying the Elusive Environment in Large Scale

JAMA 2014

Informatics and Data Analytics to Support Exposome-Based Discovery for Public Health

ARPH 2016

Placing epidemiological results in the context of multiplicity and typical correlations of exposures

JECH 2014

Promises and **Challenges** in creating a search engine for **E** in **P**

High-throughput E = discovery!

systematic; reproducible multiple hypothesis control prioritization

Arjun Manrai (Yuxia Cui, David Balshaw) ARPH 2016 JAMA 2014 JECH 2014

Examples of *exposome-driven* discovery machinery, or *EWASs*

Gold standard for *breadth* of human exposure information: National Health and Nutrition Examination Survey¹

since the 1960s now biannual: 1999 onwards 10,000 participants per survey

>250 exposures (serum + urine) GWAS chip

>85 quantitative clinical traits (e.g., serum glucose, lipids, body mass index)

Death index linkage (cause of death)

Gold standard for *breadth* of exposure & behavior data: National Health and Nutrition Examination Survey

Nutrients and Vitamins *vitamin D, carotenes*

Drugs statins; aspirin nfectious Agent

Infectious Agents hepatitis, HIV, Staph. aureus

phthalates, bisphenol A

Pesticides and pollutants atrazine; cadmium; hydrocarbons

Physical Activity e.g., steps

What *E* are associated with *aging*: all-cause mortality and telomere length?

> *Int J Epidem* 2013 *Int J Epidem* 2016

Benjamini and Hochberg, J R Stat Soc B 1993

How does multiple testing correction work?

William S Noble

When prioritizing hits from a high-throughput experiment, it is important to correct for random events that falsely appear significant. How is this done and what methods should be used?

Noble, Nature Biotech 2009

EWAS in all-cause mortality: 253 exposure/behavior associations in survival

Int J Epidem 2013

EWAS identifies factors associated with **all-cause mortality**: Volcano plot of 200 associations

452 associations in Telomere Length: Polychlorinated biphenyls associated with longer telomeres?!

median N=3000; N range: 300-7000

 $R^2 \sim 1\%$ Int J Epidem 2016

20 more examples: https://paperpile.com/shared/PtvEae

diabetes preterm birth income blood pressure lipids kidney disease telomere length mortality

It is possible to capture *E* in high-throughput to create biomedical hypotheses using tools such as EWAS

comprehensive

Promises and <u>Challenges</u> in creating a search engine for *E* in *P*

High-throughput assays of E!

scalable and standard technologies

Big data = big bias! Confounding; reverse causality Dense correlational web of *E* and *P* Fragmented and small *E-P* associations Influence of time and life-course

Arjun Manrai (Yuxia Cui, David Balshaw) ARPH 2016 JAMA 2014 JECH 2014

Challenge to scale *absolute E* due to heterogeneity and large dynamic range.

Rappaport et al, EHP 2015

Promises and <u>Challenges</u> in creating a search engine for *E* in *P*

High-throughput assays of E!

scalable and standard technologies

Big data = big bias!

Confounding; reverse causality Dense correlational web of *E* and *P* ragmented and small *E-P* associations Influence of time and life-course

Arjun Manrai (Yuxia Cui, David Balshaw) ARPH 2016 JAMA 2014 JECH 2014

Example of *fragmentation*: Is everything we eat associated with cancer?

50 random ingredients from Boston Cooking School Cookbook

Any associated with cancer?

Of 50, 40 studied in cancer risk

Weak statistical evidence:

non-replicated inconsistent effects non-standardized

Are all the *drugs* we take associated with *cancer*?

Systematic assessment of pharmaceutical prescriptions in association with cancer risk: a method to conduct a populationwide medication-wide longitudinal study

Chirag J. Patel¹, Jianguang Ji², Jan Sundquist², John P.A. Ioannidis³ & Kristina Sundquist²

Associated all (~500) drugs prescribed in entire population of Sweden (N=9M) with time to cancer

Assessed 2 modeling techniques (Cox and case-crossover)

Sci Reports 2016

What drugs are associated with time to cancer? Too **many** to be plausible (up to **26**%!)

any cancer: 141 (26%) *prostate:* 56 (10%) *breast:* 41 (7%) *colon:* 14 (3%) *Modest concordance between Cox and case-crossover:* 12 out of 141!

Most correlations small (HR < 1.1); residual confounding? *Sci Reports 2016*

Promises and <u>Challenges</u> in creating a search engine for *E* in *P*

High-throughput assays of E!

scalable and standard technologies

Big data = big bias!

Confounding; reverse causality Dense correlational web of *E* and *P* Fragmented and small *E-P* associations Influence of time and life-course

Arjun Manrai (Yuxia Cui, David Balshaw) ARPH 2016 JAMA 2014 JECH 2014

Interdependencies of the *exposome*: Correlation globes paint a complex view of exposure

for each pair of **E**: Spearman ρ (575 factors: 81,937 correlations)

permuted data to produce "null ρ" sought replication in > 1 cohort

> Red: positive ρ Blue: negative ρ thickness: |ρ|

Effective number of variables: 500 (10% decrease)

Pac Symp Biocomput. 2015 JECH. 2015 Does my single association between **E** and **P** matter?

Does my association between *E* and *P* matter in the entire possible space of associations?

Scaling up the search in multiple phenotypes: does my single association between E and P matter?

Body Measures Body Mass Index Height <u>Metabolic</u> Glucose LDL-Cholesterol Triglycerides

Blood pressure & fitness Systolic BP Diastolic BP Pulse rate VO₂ Max <u>Kidney function</u> Creatinine Sodium Uric Acid

<u>Aging</u> Telomere length Time to death

Inflammation C-reactive protein white blood cell count

<u>Liver function</u> Aspartate aminotransferase Gamma glutamyltransferase

Raj Manrai, Hugues Aschard, JPA Ioannidis, Dennis Bier

Creation of a phenotype-exposure association *map*: A 2-D view of 209 phenotype by 514 exposure associations

504 *E* exposure and diet indicators × 209 clinical trait phenotypes NHANES 1999-2000, 2001-2002, 2005-2006, ..., 2011-2012 (8) Median N: 150-5000 per survey

~83,092 E-P associations!

significant associations (FDR < 5%) adjusted by age, age², sex, race, income

Raj Manrai, Hugues Aschard, JPA Ioannidis, Dennis Bier

EWAS-derived phenotype-exposure association *map*: A 2-D view of connections between *P* and *E*: *does my correlation matter?*

EWAS-derived phenotype-exposure association *map*: A 2-D view of connections between *P* and *E*: *does my correlation matter?*

exposures

High-throughput data analytics to mitigate analytical challenges of exposome-based research:

Consider *multiplicity of hypotheses* and *correlational web*!

Explicit in number of hypotheses tested

False discovery rate; family-wise error rate; Report database size!

Does my correlation matter?

How does my new correlation compare to the family of correlations? What is the total variance explained(σ^2_{E})?

saturated fatty acids and BMI: 0.5% does it matter? (i.e., 1.2% is average!)

ARPH 2016 JAMA 2014 JECH 2015

> Bottom line: high-throughput *E* research will enable *discovery to explain missing variation in P!*

1.) Find elusive E in P and explain variation of disease risk

2.) Consideration of totality of evidence: Does my correlation matter?

3.) Reproducible research and increase data literacy.

Bottom line: high-throughput *E* research will enable *discovery to explain missing variation in P!*

1.) Find elusive E in P and explain variation of disease risk

2.) Consideration of totality of evidence: Does my correlation matter?

3.) Reproducible research and increase data literacy.

Bottom line: high-throughput *E* research will enable *discovery to explain missing variation in P!*

1.) Find elusive E in P and explain variation of disease risk

2.) Consideration of totality of evidence: Does my correlation matter?

3.) Reproducible research and increase data literacy.

Please contact me for help or project ideas! http://chiragjpgroup.org/exposome-analytics-course

Designing a *new* children's study: (1) Increase sample sizes and make data publicly available (2) Measure *G* to discover role of *E* in *P*

Designing a *new* children's study (1) Increase sample sizes and make data *publicly available*

N=500,000

Generate wide interest and visibility Enhance reproducibility (decrease false positives)

Designing a *new* children's study: (2) Measure *G* to discover role of *E* in *P*

The environmental contribution to gene expression profiles

biological function

Greg Gibson

Gibson, G. Nature Reviews Genetics 2008

Opportunities and Challenges for Environmental Exposure Assessment in Population-Based Studies gene-by-environment interactions

Chring J. Palel, Jacqueime Kerr, Duncan G. Thorpus, Broenier Mahnerpe, Baate Roz, Niargan Chatariye, Marta M Jankowski, Juliata Madari, Margarel R. Karagan, Groberty A McAllister, Leah E. Mechanic, M. Danvier Fally, Christine Ladd-Acosta, Ian A Blair, Susan I. Tellethaum, and Christopher I. Anos

Patel CJ et al, CEBP 2017

VIEWPOINTS

G = E: What GWAS Can Tell Us about the Environment

Suzanne H. Gage^{1,2}, George Davey Smith^{1,3}, Jennifer J. Ware^{1,3}, Jonathan Filnt⁴, Marcua R. Munalò^{1,2}*

Gage S et al. PLoS Genetics 2016

GWAS and mendelian randomization

In conclusion:

Data science inspired approaches to ascertain *exposome* and *genome* will enable biomedical *discovery*

EWASs in aging: mortality and quantitative traits

Dense correlations, confounding, reverse causality, how to assess at high dimension?

Mitigate fragmented literature of associations.

Understand interacting **G** and **E** for causation

Use high-throughput tools and data (e.g., exposome) will enhance discovery of the role of *E* (and *G*) in *P*.

RagGroup Data Science Team: 2 post-docs, 3 PhD, 2 MS, 1 HS, 2 visiting

chirag "the better"

adam

arace

danielle

veran

alan

PhD: systems biology, integrative genomics MS: statistics (HSPH) Post-docs: biology, medicine, and mathematics

Acknowledgements

RagGroup Nam Pho Jake Chung Kajal Claypool Arjun Manrai Chirag Lakhani Adam Brown Danielle Rasooly Alan LeGoallec Sivateja Tangirala

Harvard DBMI Susanne Churchill Nathan Palmer Sophia Mamousette Sunny Alvear Michal Preminger

Mentioned Collaborators

Isaac Kohane John Ioannidis **Dennis Bier** Hugo Aschard

IEA-WCE 2017 symposium Shoji Nakayama Junya Kasamatsu Ministry of Environment (Japan)

Agilent Technologies

DEPARTMENT OF

NIH Common Fund

Biomedical Informatics

Big Data to Knowledge Chirag J Patel chirag@hms.harvard.edu @chiragip www.chiragipgroup.org

National Institute

of Allergy and Infectious Diseases