6 海外から移流する汚染物質の影響と海外の排出インベントリ

6.1 粒子状物質と越境汚染の関係

春先に中国大陸から飛来してくる黄砂については、日本の SPM 濃度に大きな影響を与え うることは以前から指摘されている(環境省,2005)。特に日本海側の地方や九州地方では影 響が大きく、例えば富山県では、2006 年 4 月には黄砂の飛来により、環境基準を超える S PMが観測された(図 6-1:富山県環境科学センター、2006)。

図 6-1 富山県における黄砂飛来時のSPM濃度推移

黄砂イベント発生時の日本への影響の度合いについては、フィールド調査やシミュレー ションにより種々の研究がなされ報告されている(文末の調査事例リスト参照)。ここでは、 東アジア域の 3 次元シミュレーションモデル(CFORS)による黄砂イベントを含む、越境汚 染のシミュレーション例を表 6-1(1)、粒子状 SO4²を含めた大陸からの硫黄化合物の沈着量 の推定例を表 6-2(2)に整理した。

論文タイトル	Characteristics of Asian aerosol transport simulated with a regional-scale					
	chemical transport model during the ACE-Asia observation					
著者名	S. Satake, I. Uno, T. Takemura, G. R. Carmichael, Y. Tang, D. Streets, N.					
	Sugimoto, A. Shimizu, M. Uematsu, JSeok Han, S. Ohta					
出典	Journal of Geophysical Research, 109, D19S22, 2004.					
概要	ACE-Asia 集中観測期間中の対流圏エアロゾルの輸送と光学的深度が、					
	CFORS 化学輸送モデルを使ってシミュレートされた。その結果、大陸から					
	の移流に伴ういくつかの高濃度事例、エアロゾルの鉛直プロファイルやダス					
	トと硫酸塩輸送の強い相関をなど多く点で観測された特徴が再現された					
シミュレーシ	・ 気象モデルは RAMS を使用					
ョン	・ 計算領域は東アジア全体で水平解像度は 80km					
	・ 排出量データは Streets <i>et al.</i> (2003)を利用。					
	・ 集中観測が行われた ACE-Asia2001(2001 年春)を対象にシミュレーショ					
	ンを実施					
	・ シミュレーションの結果と $ ext{PM}_{10}$ の観測値は良く一致した。(Fig4)					
	硫酸塩、炭素成分を含め、粒子状物質が大陸から日本へ輸送される過程が					
	 排出された炭素成分の多くが、計算領域を越えて輸送されることから、 					
	放射収支に大きな影響を与えうる(Fig.11)					
	a) Mineral dust a) Mineral dust Mass loading in the atmosphere 6.7 Tg (6%)					
	200 a) Gosan Max=390 Max=390 34.4 Tg 9.4 Tg 26.4 Tg simulation domain					
	100 (2/7%) (2/7%) to the East 900 / 1g 9%) Emission to the West 3.30 Trd 2%)					
	0 95 100 105 110 115 120 to the North 15.2 Ta(13%)					
	b) Sulfar (Salfate concentration level is converted into g-SO ₂ .) Mass loading in the atmosphere 0.30 Tg-SO ₂ (4%)					
	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
	93 100 103 110 113 120 Antropogenic (11) to the East 2.27 Tg.SO2(27%) to the West 0.11 Tg.SO2(1%) to the West 0.11 Tg.SO2(1%) to the West 0.11 Tg.SO2(1%)					
	229 Tg-SO_ to the North 1.24 Tg-SO_(15%)					
	0 95 100 105 110 115 120 300					
	Ld) Amami 200					
	100 Anthropogenic I.63 Tg Biomas burning					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	Figure 4. Time variation for simulated total aerosol concentrations (PM_{model}) (by solid line) ($\mu g/m^3$) and for an double outlow are shown by arrows in Tg (Tg-SO ₂ for sulfur					
	observed PM ₁₀ concentrations (µg/m) (open circle and dot line) for (a) Gosan, (b) Rishiri, (c) Sado, and (d) Amami. eycle). Numbers in parentheses under each deposition and outflow indicate the ratio to emission.					

表 6-1(1) 粒子状物質の越境汚染の報告例

論文タイトル	東アジアにおける硫黄化合物のソース・リセプター解析					
	- 地域気象モデルと結合した物質輸送モデルによるシミュレーション -					
著者名	片山学,大原利眞,村野健太郎					
出典	大気環境学会誌,39(4),200-217 (2004)					
概要	地域気象モデル RAMS と結合した物質輸送モデル HYPACT を用いて東ア					
	ジアにおける硫黄化合物の動態をシミュレートし、1995 年 7 月と 12 月にお					
	けるソース・リセプター関係を定量化することにより、日本列島への沈着量					
	の発生源地域別構成とその季節変動を解析した。					
シミュレーシ	・計算領域は、東アジア域を含む東西 4800km、南北 4400km(80km 格子)					
ョン	鉛直23層で上空20kmまでの同一座標系と計算スキームで運用し、RAMS					
	の各種気象パラメータを HYPACT に精緻に与える。(Fig.2)					
	・SO ₂ 排出量は、中国、日本、南北朝鮮、台湾、モンゴルの人為起源は Klimont					
	<i>et al.</i> (2001)による 1995 年推計結果、その他の国と海上人為起源は					
	EDGAR3.2(2003)による 1995 年推計結果、火山起源は藤田ら(1992)					
	の結果を使用。					
	・反応・沈着モデルは、市川ら(1994) 池田(2001)による簡略モデルを、					
	一部改良して使用。					
	・側面・上部境界条件は、ECMWFの全球客観解析データを使用。					
	・全国 6 気象官署と溝畑 (2004)の SO4 ² の測定データとの比較によれば、					
	時間変動などを良く再現して					
	North East A Roof					
	・日本への硫黄沈着量の発生源地					
	域別寄与率は 7 月には火山 North West 1 Fast 1					
	36%、日本 28%、中国 18%、 SE Asia SE Asia Japan					
	朝鮮半島 12%、12月には中国					
	58%、朝鮮半島 17%、日本 13%、					
	火山 8%となり、季節によって Others Others					
	大きく変化する。12 月には越					
	境汚染の寄与率が 75%に達す Fig. 2. Model domain and regional zone for source-recepter analysis by HYPACT. Circles denote the volcance having SO, emis-					
	S. sion.					
L	1					

表 6-1(2) 粒子状物質の越境汚染の報告例

これまでの報告例から、SPMのシミュレーションを行うにあたり、黄砂の影響(黄砂に より環境基準を超過する可能性)を議論するためには、東アジア域からの越境汚染を考慮す ることが必須であるといえる。一方で、黄砂の影響を考慮しないのであれば、夏季につい ては大陸からの移流の影響が小さくなるものの、平均的な濃度レベルには、無視し得ない 影響を与えているものと考えられる。また、冬季のSPM高濃度事例においては、硫黄化 合物の沈着量から推定される大陸からの寄与は大きくなるが、これまでのフィールド調査 の結果からは関東における冬季の高濃度事例の発生原因としては、接地逆転層の形成など ローカルな気象条件による一次排出粒子(主として EC)の滞留や硝酸塩の粒子化によるもの が支配的であると推測される。しかし、冬季についても平均的な濃度レベルを議論するう えでは、越境汚染の影響は大きいものと考えられるため、今後、モデルの計算精度を向上 させていく過程では、後述するような海外の発生源インベントリを用いて、越境汚染につ いてもなんらかの考慮することが必要になるものと判断される。

6.2 オキシダントと越境汚染の関係

近年の日本におけるオキシダント濃度の上昇には、東アジアからのオキシダントまたは その前駆物質の越境汚染も寄与していることが指摘されている(秋元、2000; 大原ら、2003; 若松ら、2004)。表 6-2 に東アジア域からの越境汚染が日本のオキシダント濃度に与える影響についての報告例を示す。

論文タイトル	Surface ozone at four remote island sites and the preliminary assessment of the					
	exceedances of its critical level in Japan					
著者名	P. Pochanart, H. Akimoto, Y. Kinjo, H. Tanimoto					
出典	Atmospheric Environment, 36, 4235 – 4250 (2002)					
概要	日本の4箇所の遠隔サイト(利尻、隠岐、沖縄及び小笠原)における最近の地表					
	オゾンデータの解析結果は、東アジアの人為的排出が日本における大気境界層内の					
	オゾン濃度に明確に影響していることを示している。リージョナルスケールの排出					
	により、人為的に汚染された大陸の空気塊がシベリアやヨーロッパから各サイトに					
	移流する秋季、冬季と春季の期間に、オゾン濃度の上昇が観測されている。ATO40					
	と SUM06 の暴露インデックスを用いたオゾン基準レベルの超過に関する予備的					
	解析では、オゾン閾値が様々な地点や年で超過していた。東アジアにおける人為的					
	排出の増加は、近い将来に状況をより悪化させる可能性がある。					
内容	 リモートサイトのオゾン濃度は、春季に最大、夏季に低下する傾向がみられる 					
	(Fig.3) _°					
	 トラジジェトリー解析の結果、夏季に濃度が低下するのは清浄な海洋からの移 					
	流の影響が大きくなるためと考えられる					
	 一方、夏季以外のオゾン濃度の上昇は大陸からの人為的に汚染された空気塊の 					
	影響を受けている。					
	 対流圏上層からのオゾンの沈降による地表オゾンの濃度への影響はそれほど 					
	大きくはなかった(<7%)。					
	80 80 80 80 0kinawa 1995-1996. 1998					
	70 - 70 - 70 70					
	an reo mar yor ma War yor mar					
	70 Oki 1994–1998 _ 70 Ogasawara 1997–1998					
	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Month Month					
	Fig. 3. Multi-year monthly averaged O_3 seasonal variations at Rishiri, Oki, Okinawa, and Ogasawara. The symbols indicate the average and the whiskers indicate ± 1 standard deviation. The periods of O_3 monitoring varied among sites from 1994 to 2000. The					
	data at most sites were collected for the entire years except at Ogasawara where O_3 was monitored from July 1997 to August 1998.					

表 6-2(1) オキシダントの越境汚染の報告例

論文タイトル	Contribution of regional pollution and long-range transport to the Asia-Pacific					
	region: Analysis of long-term ozonesonde data					
著者名	M. Naja, H. Akimoto					
出典	Journal of Geophysical Research, 109, D21306 (2004)					
概要	札幌、筑波、鹿児島及び那覇における長期間(1970~2002 年)オゾンデータの					
	バックトラジェクトリーに基づく解析が行われた。日本における 1970 年代から					
	1990 年代にかけての、地域的汚染塊のオゾン濃度レベル 11~20% (5~11ppbv)					
	の増加は、1990年代の中国における NOx 排出の大きな増加のためと推測される。					
	地域的汚染オゾンの1970年と1990年間の長期間傾向は、日本とヨーロッパで大					
	きな違いはない。しかしながら、札幌でのユーラシア大気塊における 1990 年代中					
	の下層対流圏の冬季増加傾向(年当り 0.2~0.4ppbv)は、ヨーロッパや北アメリ					
	カからの大陸間輸送によるものと示唆される。					
内容	 トラジェクトリー解析の結果、夏季のつくばでは日本周辺の空気塊の寄与割合 					
	が高い。一方で札幌ではユーラシア大陸からの寄与が大きい(Fig.3)。					
	・ 近年の日本におけるオゾン濃度の上昇は、中国・東アジアからの NOx 排出量					
	の増大によるものと考えられるが、排出量の急激な増加とオゾン濃度の上昇傾					
	向は必ずしも一致していない(Fig.15)。					
	All Months INVENTION DJF AMJJ					
	Boundary Layer (a) Regionally Polluted (China) Lower Troposphere					
	SAP TSB KAG NAH SAP TSB KAG NAH					
	60 (b) Eurasia 60					
	SAP TSB KAG NAH SAP TSB KAG NAH					
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $					
	SAP TSB KAG NAH SAP TSB KAG NAH					
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 60 \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \end{array}$					
	SAP TSB KAG NAH SAP TSB KAG NAH Figure 3. Relative contributions of air masses from (a) regionally polluted. (b) Eurasia. (c) Pacific. and					
	(d) Japan regions at Sapporo (SAP), Tsukuba (CTS), Kagoshima (KAG), and Naha (NAH) in the boundary layer (left column) and lower troposphere (right column). Restults are shown using data for all control of the second se					
	spring/early summer (April–May–June–July (AMJJ), when it is most active). These estimates are made for days with valid ozone measurements.					

表 6-2(2) オキシダントの越境汚染の報告例

論文タイトル	Analysis of the seasonal variation of ozone in the boundary layer in East					
	Asia using the Community Multi-scale Air Quality model: What controls					
	surfacezone levels over Japan ?					
著者名	K. Yamaji, T. Ohara, I. Uno, H. Tanimoto, J. Kurokawa, H. Akimoto					
出典	Atmospheric Environment, 40, 1856 – 1868 (2006)					
概要	東アジアのオゾン濃度について RAMS/CMAQ を使用してシミュレートし					
	た。東アジアにおける地表オゾン分布は、季節ごとの気象条件に応じてダイナ					
	ミックに変化する。東アジアのリージョナルな排出によるオゾン生成の寄与に					
	ついての季節変化を見積もった。					

表 6-2(3) オキシダントの越境汚染の報告例

内容 ・ CMAQ の計算領域は東アジア全域(6240×5440km ²)で、	水平解像度は 80
× 80km	
 排出量データは Streets <i>et al.</i>(2003)の1°×1°のグリッ 	ド排出量を利用。
・ 月別のオゾン濃度分布からは、日本では大陸からの移流か	「弱くなり、清浄
」 な海洋大気の寄与が大きくなるため、濃度が低下する(F	Fig 3).
李に最大となり、中国や韓国では最大 35ppbv に達する。	一方で冬季につ
いては東アジア以外の領域からのオゾンまたは前駆物質の)長距離輸送が寄
与していることが示唆される。また、対流圏上層からのス	t ゾンの沈降の寄
与は小さいと考えられる。(Table 1)。	
90E 120E 150E 90E 120E 150E 90E 1	120E 150E ppbv
45N 4	60
30N	50
	40 30
15N	20
JAN-FEB	
	45N
45N	
30N	30N
	Ja
15N	15N
PULAUG	NOV-DEC
105E 120E 135E 105E 120E 135E 105E 120E 135E 105E	120E 135E
(below 2 km), averaged over 2 months.	rows) in the boundary layer
Table 1	
Table 1 concentrations (C_A and C_B) and eastward (FRU) and upward (FRW) ozone flow rates	
O ₃ concentration $C_{\rm B}/C_{\rm A}$ (%) O ₃ flow rate	(FRW/FRU) (%)
$\begin{array}{ccc} C_{\rm A} \mbox{ (control)} & C_{\rm B} \mbox{ (Asia_emissions)} & {\rm FRU} & {\rm FRW} \\ \mbox{ (ppbv)} & ({\rm ppbv}) & ({\rm molecules s}^{-1}) & ({\rm molecules s}^{-1}) \end{array}$	s ⁻¹)
Jan-Feb 47.1 5.9 12.5 4.36E+28 (13.1) -2.80E+2 Mar-Apr 56.4 12.1 21.4 4.56E+28 (22.9) -1.73E+2	27 (5.2) 6.4 27 (9.4) 3.8
May-Jun 58.1 19.7 34.0 1.96E +28 (3.6.1) -9.09E +2 May-Jun 58.1 29.7 34.0 1.96E +28 (3.6.1) -9.09E +2 May-Jun 58.1 29.7 34.0 1.96E +28 (3.6.1) -9.09E +2 May-Jun 58.1 19.7 34.0 1.96E +28 (3.6.1) -9.09E +28 (3.6.1) -9.00E	26 (16.1) 4.6
Sep-Oct 53.3 16.4 30.7 1.76E +28 (5.8) -7.63E +2	26 (13.1) 4.3
Nov-Dec 50.0 4.8 9.7 4.32E+28 (9.0) -5.42E+2	27 (7.1) 12.5
C_A : ozone concentrations on a latitudinal cross-section (Fig. 1) in the boundary layer (below 2 km). C_B : concent produced by east Asian emissions on the latitudinal cross-section in the boundary layer. C_B/C_A : contrib	ntrations of chemical ozone ution ratios of east Asian
emissions to ozone concentrations on the latitudinal cross-section. FRU: eastward ozone flow rates on a lati boundary layer, numerals in brackets are contribution ratios of east Asian emissions (%). FRW: upward ozo	tudinal cross-section in the one flow rates at top of the
boundary layer over Japan (closed by dotted line in Fig. 1), numerals in brackets are contribution ratios of e	east Asian emissions (%).

これまでの報告例から、日本のオキシダント濃度に与える越境汚染の影響については、 バックグランド濃度を上昇させている要因となっていることは間違いないと判断される。 しかし、この影響の度合いは、地域や季節により異なり、特に夏季については比較的影響 が少ない。また、東アジアからの移流だけではなく、北日本や冬季については、ヨーロッ パなどからの長距離輸送も影響しているものと考えられる。

したがって、オキシダント濃度のシミュレーションを実施するにあたって、年平均値の 議論をする場合や、ある閾値以上の積算濃度(AOT40、SUM06など)を議論する場合、ある いは 60ppb 以上の環境基準達成率を議論する場合は、越境汚染の影響を考慮することは必 須であると判断される。一方で、夏季の都市域における高濃度エピソード(120ppb 以上)の みを計算対象とする場合には、ローカルな気象条件や発生源の状況が重要となり、越境汚 染の影響は相対的に小さくなるものと考えられる。

今年度のテストシミュレーションについては、関東地方を対象としてSPMについては 黄砂の影響を除いた、夏季及び初冬季の高濃度事例、オキシダントについては夏季の高濃 度事例のみを対象とすることから、越境汚染を考慮するためのアジア域からのネスティン グはしないこととした。ただし、今後(次年度以降)については、越境汚染を考慮したシミュ レーションも想定し、次章で参考になると思われる海外の排出インベントリの情報につい て整理した。

6.3 海外の排出インベントリ

大陸からのの越境汚染をシミュレーションで考慮するには、東アジア域を含む排出イン ベントリが必要となる。そこで、これまでに構築された海外の排出インベントリのうち、 今後越境汚染を考慮する上で利用可能と思われるデータについて整理した。

基準年が比較的新しく、東アジア域を含むデータが整備されているインベントリの概要 を表 6-3 に整理した。

発生源	TRACE-P	REAS	EDGAR	EAGrid2000	LTP
工業部門					
民生部門					
輸送部門					
農業					
バイオマス燃焼					
ごみ処分場					
下水処理場					
自然起源	-				
グリッドスケール(最小)	30s × 30s	0.5 ° × 0.5 °	1°×1°	30s × 45s	1°×1°
対象エリア	東アジア	東アジア	全世界	東アジア	日中韓
基準年(最新)	2000	2000	2000	2000	1998

表 6-3(1) 海外のインベントリの概要(対象発生源、グリッドサイズ、対象エリア、基準年)

表 6-3(2) 海外のインベントリの概要(対象物質)

	TRACE-P	REAS	EDGAR	EAGrid	LTP
SO ₂ (SOx)					
NOx					
СО					
NMVOC					
BC			-		*
OC			-		
NH ₃					
その他(温室効果ガス)					-

*PM10,Dust として集計

(1) TRACE-P

TRACE-P および ACE-Asia プロジェクトのデータ解析、シミュレーションモデル の開発のために構築された。作成されたインベントリーは、Sateke *et al.*(2004) 表 6-1(1)や Yamaji *et al.*(2006) 表 6-2(3)でシミュレーションに用いられた。排出量の集 計結果の例を図 6-2 に示す。

出典:

- D.G. Streets, T.C. Bond, G.R. Carmichael, S.D. Fernandes, Q. Fu, D. He, Z. Klimont, S.M. Nelson, N.Y. Tsai, M.Q. Wang, J.-H. Woo, and K.F. Yarber, An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research-Atmospheres, 108, (D21) Art. No. 8809 (2003)
- http://www.cgrer.uiowa.edu/EMISSION_DATA/index_16.htm

Figure 9. Area source emission distributions at 30 min \times 30 min resolution of selected gaseous species: (top left) SO₂, (top right) NO₈, (bottom left) NMVOC, and (bottom right) NH₃. The scale is the same for each species in units of Mg yr⁻¹ per grid cell.

図 6-2 排出量分布の例 (Street et al., 2003)

(2) REAS

地球環境フロンティア研究センターの大気組成変動予測研究プログラムにより、 作成されたインベントリ。一部 1995 年版 EDGAR(後述)のデーベースをリバイスして 集計されている。地球温暖化や大気中微量成分の変動を予測するモデルで利用するこ とを想定。現在、国立環境研でのシミュレーションで使用中。図 6-3 に、NMVOC の 排出量集計結果を示す。

出典

 $[\]cdot \quad http://www.jamstec.go.jp/frsgc/research/d4/emission.htm$

(http://www.jamstec.go.jp/frsgc/research/d4/emission.htm)

(3) EDGAR

ヨーロッパの複数の研究機関 MNP(オランダ)、TNO(オランダ)、RC-IES(イタリア)、MPIC-AC(ドイツ)によるジョイントプロジェクトにより作成された。地球温暖化やオゾン層の破壊などグローバルスケールの大気環境モデルで利用することを想定した全球のグリッド排出量データベース。片山ら(2001) 表 6-1(2)で使用実績がある。

図 6-4 に排出量の集計結果の例を示す。

出典

- http://www.mnp.nl/edgar/model/v32ft2000edgar/
- (4) EAGrid

神成らにより作成された東アジア域のインベントリデータ。当初 1995 年ベースで 集計されていたものが、その後 2000 年ベースに更新されている。国立環境研究所と 京都大学の共同研究により、開発されたアジア太平洋統合評価モデル(AIM)で使用 実績がある他、RAMS/HYPACT による東アジア域における硫黄化合物と窒素酸化物 のソース・リセプター解析に用いられた。 出典

- http://www-iam.nies.go.jp/aim/AIM_workshop/11thAIM/Session9/9-2-AIMAIR2005_Fujiwara
 .pdf
- http://www.suiri.tsukuba.ac.jp/terc_em02/terc_em02_10.pdf
- http://www.iiasa.ac.at/rains/meetings/7thMICS-Asia/papers/kannari.pdf

図 6-4 NOx の排出量集計結果(<u>http://www.mnp.nl/edgar/model/v32ft2000edgar/</u>)

(5) LTP

日中韓3カ国による長距離大気汚染(LTP)専門家会合における国際共同調査への対応のために環境省が平成11年度に整備したインベントリデータ。UNDP(国連開発計画)の東アジア諸国向け排出インベントリー作成マニュアル(ドラフト)に準拠して推計。日本国内の集計結果については、報告書があるが、中国、韓国のデータについては、Webサイトでは公開されていない。

出典:

http://eng.nier.go.kr/eng/index.html

図 6-5 に表 6-3 に整理した、5 つのインベントリのうち、LTP を除いた 4 つについて、中国の排出量(2000 年)の集計結果(NOx、SO2 および VOC)を比較した(LTP については日本以外の排出量推計結果未入手のため)。

図 6-5 より、物質別に比較した場合、NOx についてはインベントリ間の差違は比較的小 さいが、SO₂ と NMVOC については、差が大きい。特に、EAGrid で集計されている NMVOC は、他のインベントリと比較すると推計値は突出して大きくなっている。これは、燃焼系 からの NMVOC の排出係数を中国国内の小規模炉の使用実態を反映して、従来よりも大き な値に設定したためであると考えられる。なお、Street *et al.*(2003)によると中国おける排 出量の推計誤差範囲(95%信頼区間)は、NOx について±23%、SO₂ について±13%、NMVOC については±59%とされており、SO₂ と NMVOC については、誤差範囲を考慮しても差違 が大きいと言える。

図 6-5 NOX・NMVOC の中国における排出量集計結果の比較

大陸からの越境汚染調査事例リスト(本文で取り上げたものを除く)

M. Liu, D.L. Westphal, S. Wang, A. Shimizu, N. Sugimoto, J. Zhou, Y. Chen, A high-resolution numerical study of the Asian dust storms of April 2001, Journal of Geophysical Research, 108, ACE21-1 – ACE21-21 (2003)

包括的なダストエアロゾルモデルが開発され、本モデルを 2001 年 4 月のアジア砂嵐(ゴ ビ砂漠とタクラマカン砂漠起源)の事例に使用したところ、その性能は衛星写真や PM₁₀ の観測値などにより証明された。質量的見積では、75%がアジア砂漠に再び堆積し、20%が 非砂漠地域に堆積し、1.6%が中国と日本海に沈着することが示された。

 I. Uno, G. R. Carmichael, D. G. Streets, Y. Tang, J. J. Yienger, S. Satake, Z. Wang, Jung-Hun Woo, S. Guttikunda, M. Uematsu, K. Matsumoto, H. Tanimoto, K. Yoshioka, T. Iida, Regional chemical weather forecasting system CFORS: Model descriptions and analysis of surface observation at Japaneseisland stations during the ACE-Asia experiment, Journal of Geophysical Research, 108, ACE36-1 – ACE36-17 (2003) CFORS は野外実験計画や観測値の解釈や事後解析の目的で設計された。このシステムは リージョナルな化学輸送モデルや RAMS 内に構築されたオンラインシステムを統合したも のである。CFORS の適用結果は、硫黄酸化物、BC や CO の人為起源汚染物質及びラドン やミネラルダストを含んだ自然構成物の両者の時間変化についての説明に役立つ。総観的 スケールの天気変化は、東アジアの春季における大陸スケールの汚染物質輸送に重要な役 割を演じていることが認められた。

I. Uno, H. Amano, S. Emori, K. Kinoshita, I. Matsui, N. Sugimoto, Trans-Pacific yellow sand transport observed in April 1998: A numerical simulation, Journal of Geophysical Research, 106, 18331 – 18344 (2001)

1998年4月に発生した、アジア大陸から日本と北アメリカへの黄砂輸送事例をシミュレ ートした。地域スケール気象モデルと連動した新オンラインダストトレーサモデルが開発 されこの砂嵐事例に適用した。自然起源のミネラルダストとアジアで放出された人為起源 のトレーサ物質はともに、排出地域は異なっても同時に輸送されることがわかった。

K. Matsumoto, Y. Uyama, T. Hayano, H. Tanimoto, I. Uno, M. Uematsu, Chemical properties and outflow patterns of anthropogenic and dust particles on Rishiri Island during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), Journal of Geophysical Research, 108, ACE34-1 – ACE34-15 (2003)

大陸のエアロゾルの化学特性と輸送メカニズムを解明するため、2001 年の 3~5 月に実施した集中的な測定が行われた。これにより、nss-SO4²、NH4⁺、NO3⁻、nss-Ca²⁺等の動態についての測定データを取得した。

K. Osada, M. kido, H. Iida, K. Matsunaga, Y. Iwasaka, M. Nagatani, H. Nakada, Seasonal variation of free tropospheric aerosol particles at Mt. Tateyama, central Japan, Journal of Geophysical Research, 108, ACE35-1 – ACE35-9 (2003)

中央日本の立山において、1999年1月から2002年11月まで、大気中エアロゾル粒子の 粒径分布とオゾン濃度を測定した。測定結果から、日本近くの黄海上の夏季における大気 の停滞、三宅島のSO2の排出、黄砂などが影響していることがわかった。

M. Takigawa, K. Sudo, H. Akimoto, K. Kita, N. Takegawa, Y. Kondo, M. Takahashi, Estimation of the contribution of intercontinental transport during the PEACE campaign by using a global model, Journal of Geophysical Research, 110, D21313 (2005) 3次元化学輸送モデルを使用して、オゾンとその前駆物質及び非メタン炭化水素の地球的 分布予測システムを新たに開発した。本モデルは、NCEPの気象データ及び毎日の化学種 分布週間予報により運用される。本モデルは PEACE キャンペーンの毎日の飛行計画及び 2002年1月と3~5月の航空機測定に、それぞれ適用された。この結果、汚染物質の大陸 間輸送分布などを再現できることが示された。

O. Wild, P. Pochanart, H. Akimoto, Trans-Eurasian transport of ozone and its precursors, Journal of Geophysical Research, 109, D11302 (2004)

ヨーロッパ及びアジア大陸を横切る大気の長距離輸送は、ヨーロッパと北アメリカ方面 の風上から北東アジアへ相当量のオゾン及び他のオキシダント類をもたらす。ヨーロッパ の前駆物質発生源からのオゾンの形成と輸送についての化学輸送モデルで、ユーラシア大 陸へのインパクトの広がりについて調査した。

P. Pochanart, J. Hirokawa, Y. Kajii, H. Akimoto, M. Nakao, Influence of regional-scale anthropogenic activity in northeast Asia on seasonal variations of surface ozone and carbon monoxide observed at Oki, Japan, Journal of Geophysical Research, 104, 3621 - 3631 (1999)

隠岐(日本)で1994年3月から1996年2月に地表O₃とCOの測定が実施された。ト ラジェクトリー解析などにより、北東アジアの人為的活動に伴う光化学オゾンなどを見積 もったが、光化学オゾンの生成には長距離輸送の前駆物質の排出が非常に重要であるとの 論点を支持することが示された。

G.R. Carmichael, I. Uno, M. J. Phadnis, Y. Zhang, Y. Sunwoo, Tropospheric ozone production and transport in the springtime in east Asia, Journal of Geophysical Research, 103, 10649 - 10671 (1998)

東アジア春季におけるオゾンの輸送と化学について STEM- 地域スケール輸送化学モデ ルを用いて研究した。低気圧の通過に伴う東アジアで強いオゾンの沈降があった 1987 年 5 月 1~15 日の期間を対象として適用した。

M. Fujihara, S. Wakamatsu, K. Yamaguchi, M. Nakao, T. Tatano, T. Sagawa, Annual and seasonal variations in oxidant concentration in Matsue, Japan, Atmospheric Environment, 37, 2725 – 2733 (2003)

1989年1月から1997年12月の間で、西風が卓越する日本海沿岸に位置する松江において、地表オキダント濃度の年々及び季節的傾向を調査した。オキシダント濃度の年々の増加率は、(韓国と中国が風上となる)西風時の方が、(日本が風上となる)南東から南西にかけての風向と比較して、大きくなっていた。これは、松江の西に位置する東アジアの、

特に韓国と中国における NOx 排出量の増加によるものと結論される。

S. Kato, Y.i Kajii, R. Itokazu, J. Hirokawa, S. Koda, Y. Kinjo, Transport of atmospheric carbon monoxide, ozone, and hydrocarbons from Chinese coast to Okinawa island in the Western Pacific during winter, Atmospheric Environment, 38, 2975-2981 (2004)

CO、O₃と炭化水素の測定が、2000年の冬季に南日本の沖縄島で実施された。O₃と散発 的な高濃度 CO 間に負の相関が観測されるなど、観測された空気は、中国沿岸地域から速 い速度で輸送された汚染物質に影響されていることが示唆された。

I. Mori, M. Nishikawa, H. Quan, M. Morita, Estimation of the concentration and chemical composition of kosa aerosols at their origin, Atmospheric Environment, 36, 4569 – 4575 (2002)

黄砂エアロゾルはアジア大陸上で起こる砂嵐によって大気中に巻き上げられたミネラル ダストから成る。黄砂粒子を大気中に巻き上げた強い砂嵐が、1998年4月14から15日に かけて中国の Badain Jaran 砂漠で起こった。その輸送ルート上の中国と日本の7箇所で黄 砂エアロゾルを捕集し、エアロゾルの質量濃度と化学組成濃度を調査した。

T. Ohara, I. Uno, S. Wakamatsu, K. Murano, Numerical simulation of the springtime trans-boundary air pollution in East Asia, Water, Air, and Soil Pollution, 130, 295 – 300 (2001)

1993年4月の事例を対象に、地域気象モデルと化学輸送モデルにより東アジアにおける 越境大気汚染を裏付けるための数値シミュレーションを行った。その結果、以下の点が示 された。(1)硫酸塩エアロゾル、硝酸塩エアロゾル及びオゾンのような大気汚染物質が、総 観的気象条件下でアジア大陸から日本列島に輸送されている。(2)越境大気汚染物質は日本 の都市の大気汚染を増加させている。(3)将来、日本の大気質は開発途上のアジアにおいて 増加する排出により大きく影響を受ける。

M. Zhang, I. Uno, Y. Yoshida, Y. Xu, Z. Wang, H. Akimoto, T. Bates, T. Quinn, A. Bandy,
 B. Blomquist, Transport and transformation of sulfur compounds over East
 Asia during the TRACE-P and ACE-Asia campaigns, Atmospheric
 Environment, 38, 6947 – 6959 (2006)

最近見積もられた東アジアの排出インベントリに基づき、2001 年 2 月 22 日から 5 月 4 日の期間中の東アジアにおける硫黄化合物の輸送と変質について、RAMS 及び Models-3 / CMAQ を用いて調査した。 鵜野伊津志、アジアスケールの越境物質輸送モデリング、大気環境学会誌、38,1 – 12 (2003)

アジアスケールの越境大気汚染の研究、特にモデル研究についてまとめたもの。人為起 源汚染物質の代表としての硫酸塩の化学輸送モデル結果をもとに総観規模の気象変化との 関係、春季の大きな大気環境問題となっている黄砂の輸送モデル開発、さらに化学天気予 報の活用についても簡潔にまためた。

谷本直隆, 大原利眞, 鵜野伊津志, 菅田誠治, 植松光夫, 東アジアにおける炭素粒子動態の モデル解析、大気環境学会誌、39, 229 – 245 (2004)

RAMS/CMAQ によって、ACE-Asia 期間中である 2001 年 4 月の元素状炭素 EC と有機 炭素 OC の動態を解析したもの。EC 及び OC の東アジアにおける時間変動パターンや空間 的分布などの解析を行った。

引用文献

環境省、大気環境モニタリングの在り方に関する検討会、大気環境モニタリングの在り方 について報告書、平成 17 年 3 月

富山県環境科学センター、環境とやま、25、2006年6月

秋元肇、光化学オキシダントの逆襲、大気環境学会誌、35、A48-A51 (2000)

- 大原利眞・坂田智之、光化学オキシダントの全国的な経年変動に関する解析、大気環境学 会誌、38、47-54 (2003)
- 若松伸司編、西日本及び日本海側を中心とした地域における光化学オキシダント濃度等の 経年変動に関する研究、国立環境研究所(2004)