
and identifiable ABs in histological sections.233 In a series
of 924 cases of lung cancer, Mollo et al.52 diagnosed
asbestosis by histological examination in 54 of 116 (46.6%)
‘surgical’ cases with an AB concentration w1000 ABs/g
dry lung.

In a case-referent study on AB concentrations in
autopsy lung tissue with allowance for smoking, Mollo
et al.234 found a 4-fold increase in the RR for pulmonary
adenocarcinoma at a lower cut-off count of 1000 ABs/g
dry lung. In a stratified analysis from multiple compar-
isons, the RR was 5.59 for all lung cancers versus referents
and 17.75 for adenocarcinomas versus referents (i.e., RR
y4 for 1000–9999 ABs/g dry lung, with evidence of a
dose–response effect, with higher RRs for counts in excess
of 10 000 ABs/g dry). This study did not detect an
association between asbestos exposure and lung cancer
phenotypes other than adenocarcinoma.

THE AWARD CRITERIA

The AWARD (Adelaide Workshop on Asbestos-Related
Diseases) Criteria225,235 were formulated in October 2000
by a group of 15 Australasian experts in asbestos-related
disorders—including epidemiologists, an industrial hygie-
nist and a medical scientist, occupational and respiratory
physicians, pathologists, and radiologists—to address the
applicability of The Helsinki Criteria to Australasia. The
AWARD Criteria basically endorsed The Helsinki Criteria
as ‘fair and reasonable’ for the attribution of lung cancer
to asbestos, with certain modifications for Australia:

1. Like The Helsinki Criteria, The AWARD Criteria also
accept either clinical or histological asbestosis as a
criterion for attribution of lung cancer to asbestos.

2. The AWARD document 225,235 acknowledged that the
risks of lung cancer for the cohort of Quebec chrysotile
miners/millers and for asbestos textile production (such as
the South Carolina cohort) are not applicable to Australia,
where the majority of asbestos exposures have been mixed
amphibole-chrysotile exposures, or crocidolite-only expo-
sure (the Wittenoom cohort).

3. The AWARD meeting also recognised that the counts
of uncoated amphibole fibres in lung tissue as specified in
The Helsinki Criteria apply to mixed amphibole-chrysotile
exposures only. For amphibole-only exposures (such as
‘virtually pure crocidolite exposure’ for the Wittenoom
cohort), higher lung tissue fibre counts are required to
equate to 25 fibres/mL-years of exposure. For the
Wittenoom cohort, about 220 million crocidolite fibres
longer than 0.4 mm/g dry lung or, in the AWARD
document itself,225,235 a figure of at least 100 million
crocidolite fibres longer than 1mm/g dry lung are necessary
to equate to 25 fibres/mL-years as an average or
approximation.

In 2003, the Australasian Faculty of Occupational
Medicine (AFOM) of The Royal Australasian College of
Physicians addressed this issue independently of the
AWARD group and commented that ‘it is unlikely that
consensus will be reached in the near future on whether
asbestos exposure can cause lung cancer in the absence of
asbestosis’.6 However, ‘if asbestosis is held not to be a

precondition’, the AFOM document6 suggested that an
asbestos-related doubling of risk for lung cancer occurs at
about 21 fibre-years for amphibole-only and mixed
exposures, at 1667 fibre-years for chrysotile mining, and
at 43 fibre-years for ‘pure chrysotile other than mining’.

CRITERIA FOR ATTRIBUTION OF LUNG
CANCER TO ASBESTOS IN GERMANY

In the German prescription on occupational diseases
(Berufskrankheitenverordnung), existing criteria for ascrib-
ing lung cancer to asbestos were supplemented in 1992 by
an estimated cumulative workplace asbestos exposure of at
least 25 fibre-years.48,236 As shown in Fig. 1, a cumulative
exposure of about 25 fibre-years was related to a 2-fold
increased risk of lung cancer mortality in comparison to
the general population, for the three areas of asbestos-
cement, asbestos textile and asbestos insulation
work,177–182 representing the most important patterns of
occupational exposure in Germany. The delimiting value
of 25 fibre-years for compensation of lung cancer was
obtained from the highest KL for each of these three
patterns of exposure,177,181,229 because random errors in
general would depress the slope of the dose-response
line.38,237

Introduction of this new criterion was enabled by a
convention on the magnitude of asbestos exposures at
various workplaces, proposed by the German Berufsgen-
ossenschaften.64 For certain work situations, a catalogue of
fibre concentrations corresponding to the 90th percentile
(about twice the arithmetic mean value) of the measuring
results was compiled,} based on 9974 fibre counts with the
membrane filter method, 1600 konimeter counts and
15 316 gravimetric measurements of the asbestos mass
concentration.

These values are used throughout Germany to calculate
cumulative workplace asbestos exposures relative to the
delimiting value of 25 fibre-years. Following introduction
of these regulations, the number of patients with
compensated lung cancer increased from 223 in 1992 to

}There have been some criticisms over use of the 90th percentile as opposed to
the arithmetic mean (AM)—which corresponds roughly to the 70th percentile
and not the 50th—with an argument that the German system tends to over-
estimate exposures (but see discussion in section ‘Latency intervals between
asbestos exposure and lung cancer’). The factor between the AM and the 90th

percentile value is about 2 overall: it depends upon the geometric standard
deviation (GS) of the logarithmic normal frequency distribution of the
measured values. It is only 1.91 for GS~2, and it increases from 1.55 for
GS~1.5 to 2.24 for GS~3. This difference is thought to be small in
comparison to the uncertainties that surround exposure estimates based on
historical measurements, related to conversion factors used to translate
particle counts and mass measurements into fibre concentrations. In
comparison, if the 50th percentile is used for GS~3, the figure would be
only about half of the AM because it would not adequately consider high
concentration values. It is also worth emphasising that the database for the
BK-Report64 does not deal with a random sample of workplace situations but
a selection where there is routine supervision, and airborne fibre concentra-
tions may be lower than in unsupervised workplaces elsewhere, although the
airborne fibre concentrations were measured in the absence of protective
measures such as dust extraction equipment. In such supervised workplaces,
fibre concentrations in excess of the limit values are normally followed by
measures to reduce exposures—the efficacy of those measures being
evaluated by further measurements—so that action is taken to maintain
exposures at levels lower than those expected for workplaces without such
scrutiny.
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545 in 1994, thereby surpassing the number of mesothe-
liomas (n~350 in 1992 and n~495 in 1994). For 1999,
some 776 cases of lung z laryngeal cancer were classified
as asbestos-related in comparison to 617 mesotheliomas.
This ratio (1.26:1) corresponds to the proportions of excess
lung cancer cases and mesotheliomas observed in cohort
studies (see Table 1).36,238

Further data on the German system of dose estimation
have been reported239 for 3498 male lung cancer cases in
comparison to 3541 population controls, in a pooled
analysis based on two sub-studies240,241 (see also Jöckel
et al.242). A detailed smoking and occupational history
was obtained by a personal standardised interview where
asbestos exposure was assessed on the basis of 17 job-
specific supplementary questionnaires in a semi-automated
fashion. Ever exposure to asbestos after adjustment
for smoking was associated with an ORLCA of 1.41
(95%CI~1.24–1.60), and a clear dose-response relation-
ship with an ORLCA of 1.79 (95%CI~1.39–2.30) was
found for w2500 days of exposure. For a sub-sample of
301 cases and 313 controls, estimates of fibre-years of
exposure based on the convention of the Berufsgenos-
senschaften215 were performed by two experts. In a logistic
regression model adjusted for smoking and stratified for
age and origin of the patients, the ORLCA was associated
with log (fibre-years z 1); 25 fibre-years corresponded to
an ORLCA of 1.99 (95%CI~1.20–3.30). In a two-phase
case-referent study, Pohlabeln et al.243 derived results
‘consistent with a doubling of the lung cancer risk with 25
fibreyears asbestos exposure’.

In an analysis of two German case-referent studies,
Hauptmann et al.89 found that the ORLCA was 1.8
(95%CI~1.2–2.7) for subjects who had worked for 3–7
years in a job with potential exposure to asbestos, and was
2.4 (95%CI~1.7–3.4) for those who worked in similar jobs
for §8 years, in comparison to never-exposed subjects.

ASBESTOS FIBRE CONCENTRATIONS IN LUNG
TISSUE, ESTIMATED CUMULATIVE
EXPOSURE, AND THE RISK OF LUNG CANCER

In The Helsinki Criteria,102 the following lung tissue
concentrations were delineated to identify workers with a
high probability of exposure to asbestos in the workplace:

(a) w1000 ABs/g dry lung (equivalent to w100 ABs/g wet

lung);
(b) w100 000 amphibole fibres w5mm in length/g dry

lung;
(c) w1 000 000 amphibole fibres w1mm in length/g dry

lung;
(d) w1 AB/mL BAL fluid.

Each laboratory should establish its own reference values,
and the median values of those exposed occupationally
should be substantially above the reference values. Besides
other criteria (discussed also in The Helsinki Criteria), a
lung fibre count exceeding this background range should
be sufficient for probabilistic attribution of mesothelioma
to asbestos exposure.

The basis for these concentrations of ABs and asbestos
and amphibole fibres is tabulated in a review by
Tossavainen,17 for lung tissue samples and BAL fluid

from the general population or from patients not exposed
in the workplace. Different fibre definitions, different
measuring methods and different statistical parameters
complicate comparison of these data. In Fig. 2A–C (data
for BAL fluid not shown), the data are presented as the
percentage of measurements below a certain concentration
value according to the following rules:

(i) Geometric mean and median values: v50%
(ii) Arithmetic mean values: v70%
(iii) Upper limit of the range: v100%

If several of these parameters were given for a series of
measurements, they are presented side by side.

With the exception of two series of mesothelioma
patients, the median values of the concentrations of short
and long amphibole fibres and ABs ranged below the limit
values given by The Helsinki Criteria. In most of the
studies, less than 20% of the measured values exceed these
limits. An increased percentage of counts exceeding the
limits is observed for short amphibole fibres among
Australian and, probably, Japanese patients. For ABs,
an increased percentage is observed for one of the French
and the Belgian series, as well as for Canadian patients
living near the Quebec mines.

In a German mesothelioma case-referent study, 15% of
66 hospital referents who underwent lung resections
mainly for lung cancer exceeded the limit value for long
amphibole fibres (lengthw5 mm), in comparison to about
70% of the cases.244,245 The same percentages of measure-
ments above the delimiting value were obtained for short
fibres (length w1mm). AB counts were also available for
147 referents and 66 cases: the limit value of 100 ABs/g wet
lung (>1000 ABs/g dry) was exceeded for 18% of the
referents in comparison to 73% of the cases, and this
percentage for referents diminished to 8.7% when evalua-
tion was restricted to 69 unexposed referents.

In a mesothelioma case-referent study on patients from
Yorkshire,246 the concentration of total amphibole fibres
longer than 0.5 mm was measured. Twenty-two per cent of
122 referents exceeded the limit value in comparison to
80% of 147 cases; when evaluation is restricted to referents
not exposed occupationally to asbestos according to the
judgement of surviving relatives (n~61; Table 4 in Howel
et al.246), the percentage is slightly less than 20% (Fig. 1 in
Howel et al.246). For controls and workers from the textile
factory in South Carolina, fibres were counted at a
magnification of 620 000 without specification of a
minimum fibre length.86 Among 31 controls, the delimiting
value for amphibole fibres w1 mm in length was exceeded
for 9.7% of the tremolite counts, 6.4% of the anthophyllite
counts and 12.9% of the amosite and crocidolite counts. It
may be assumed that some of these counts were obtained
from the same patients.

In a study of 33 patients from Texas with no history of
occupational exposure to asbestos, Dodson et al.247,248

found that all had no more than 20 ABs/g wet lung and 26
had no detectable ABs; chrysotile was undetectable in 19
cases, and 10 of the 33 had no asbestos fibres within the
detection limits of the study (the total uncoated asbestos
fibre burden was in the range of 0–290 000 fibres/g dry, for
fibres w0.5 mm with an aspect ratio of §3:1). Although
amosite and crocidolite fibres were found occasionally,
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they were few in number: anthophyllite (12 of 33 cases)
was almost as likely.

It is also notable that in mesothelioma case-referent
studies,86,245,249–251 increased ORs are found at fibre
concentrations immediately above the delimiting values
for occupational exposure given in The Helsinki Criteria.
In comparison to a reference group for whom the tissue
concentration was less than 50 000 fibres/g dry lung,
Rödelsperger et al.245 found that the OR for mesothelioma
(ORMESO) increased in an almost linear fashion according
to the relationship:

ORMESO~
Concentration of amphibole fibres longer than 5 mm=g dry lung

25 000 fibres=g dry lung

In this study, a significantly increased ORMESO of 4.5
(95%CI~1.1217.9) was observed, even at the low fibre
concentration range between 100 000 and 200 000 fibres
longer than 5mm/g dry lung.

Roggli and Sanders111 studied 234 cases of lung cancer
with some history of asbestos exposure, but with no
quantitation of exposure as fibre-years. For 70 patients
with asbestosis they recorded a median total asbestos fibre
concentration of 2.53 million fibres/g dry for fibres 5mm in
length or more (converted from wet weight figures), which
included a median count of 2.53 million commercial

amphiboles (crocidolite/amosite) and 220 000 non-
commercial amphiboles, and a median count of 270 000
ABs/g dry; although this AB count is well above (18 times)
the upper limit of 5000215 000 ABs specified in The
Helsinki Criteria, the uncoated fibre count is roughly
comparable to the figure of 2 million in The Criteria. The
Helsinki figure of 5 million fibres/g dry (for fibres w1mm
in length) also bears comparison to the geometric mean
fibre concentration of 2.5 million fibres/g dry for Western
Australian asbestosis cases whose exposure occurred other
than at Wittenoom.158,159 The number of ABs in The
Helsinki Criteria is about 23 times above the upper limit of
the range of AB concentrations, and the uncoated fibre count
is almost 79 times above the upper limit for the range of
uncoated total fibres and crocidolite/amosite fibres, reported
for the control group in Roggli and Sanders111 (220 ABs/g
dry and 25 400 fibres/g dry, respectively).

In 1994, Karjalainen et al.109 reported a case-referent
study that examined the relationship between lung fibre
burden and the risk of lung cancer based on 113 surgically
treated lung cancer patients in comparison to 297 autopsy
referents from the Finnish population. Lung tissue fibre
analysis was carried out for fibres longer than 1mm by
scanning electron microscopy (SEM) at a magnification of
65000 and included mainly amphibole fibres. In compar-
ison to a reference group with a tissue concentration of

Fig. 2 (A) Amphibole fibres longer than a minimum value of 0.2–2 mm in lung tissue samples from the general population or from patients not
exposed at the workplace.17 Measurements from Finland and Norway represent asbestos fibres but because of scanning electron microscopy (SEM)
was used at a magnification of 65000, predominantly amphibole fibres were registered. In the German measurements, fibres originally were counted if
they were longer than 0.3 mm but with the magnification (610 000) of this study, only very few fibres shorter than 1 mm were recorded. (B) Asbestos
and amphibole fibres longer than a minimum value of 3–5 mm in lung tissue samples from the general population or from patients not exposed in the
workplace.17 (C) Asbestos bodies in lung tissue samples from the general population or from patients not exposed in the workplace.17.
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less than 1 million fibres/g dry, the ORLCA increased to 1.7
for concentrations in the range 1.0–4.99 million fibres/g dry
and to 5.3 for concentrations of 5.0 million or more fibres/
g dry. Karjalainen et al.109 stated that when two cases of
asbestosis and seven cases of minor ‘histological fibrosis
compatible with asbestosis’ were excluded, an elevated
ORLCA was still associated with asbestos fibre concentra-
tions of 5.0 million or more fibres/g dry lung (age-adjusted
ORLCA~2.8; 95%CI~0.9–8.7; P~0.07) and for asbestos
fibre counts in the range 1.0–4.99 million fibres/g dry
(ORLCA~1.5; 95%CI~0.8–2.9; P~0.19). One criticism
directed at this study is that the results fail to achieve
significance in terms of P values, thereby proving that
‘significance’ lies only with the cases of fibrosis.115 This
objection overlooks the fact that the limit P ƒ0.05 is an
arbitrary statistical convention and that reality lacks sharp
boundaries of this type: what is important in this study is
the trend from a low to a higher ORLCA with transition
from an intermediate fibre count (1.0–4.99 million) to the
higher value (§5.0 million). If one excludes the nine cases
of fibrosis and assumes that seven were in the high fibre
group (§5.0 million fibres/g dry) and two were in the
intermediate fibre group (1.0–4.99 million fibres/g dry),**
one can calculate the crude lung cancer ORs to be 2.85
and 1.8, respectively, as consistent as possible with the age-
adjusted ORs of 2.8 and 1.5 in the original paper; trend
testing then yields x2

1 (trend)~7.2 (Pv0.01). In addition,
it is possible from the published data to recalculate the OR
for adenocarcinoma only, after exclusion of all cases with
any fibrosis: assuming that all were in the high fibre group,
the OR is still significantly elevated for a count
w1.0 million compared with v1.0 million (ORLCA~2.65;
95%CI~1.11–6.26; Pv0.001).1

Much steeper dose–response relationships were obtained
from mesothelioma case-referent studies;86,245,249–251 e.g.,
Rödelsperger et al.245 calculate the mesothelioma OR to be
about 100 when patients with a burden of 2.5 million
amphibole fibres/g dry (for fibres longer than 5 mm) are
compared with the reference group.

In assessing the significance of asbestos lung fibre
burdens for attribution of lung cancer, it should be
emphasised that the ‘controls’ for case-referent studies
represent individuals without the disease in question,
sampled randomly and independently of exposure.29,31

This is a critical necessity for the validity of a case-referent
study. Thus, the ‘control’ group will generally comprise
both exposed and unexposed individuals. In using data
from ‘control’ groups in case-referent studies for assessing
likely lung fibre levels in the unexposed in comparison to
those exposed, only data from the unexposed fraction of
the ‘controls’ should be used.

Estimates of cumulative exposure as fibre-years apply
equally to all types and mixtures of asbestos. In contrast,
fibre analysis of lung tissue applies mainly to amphiboles
because of the lower biopersistence of chrysotile in lung
tissue.54,252,253 Therefore, the concentrations of asbestos
and amphibole fibres that correspond to 25 fibre-years of
exposure are largely dependent on the proportion of
amphiboles in the relevant asbestos-containing materials.

From historical national data on the consumption of the
different types of asbestos and the known composition of
various products (e.g., asbestos-cement products), there is
abundant evidence that chrysotile comprised about
94–95% or more of asbestos consumption, and amphiboles
about 5% or less.54,254,255 However, in some industries—
e.g., workers at the Nottingham gas mask factory256 and
the Wittenoom crocidolite miners/millers in Western
Australia257—the exposures involved a far higher propor-
tion of amphiboles (notably crocidolite for both of these
industries, so that exposure at Wittenoom unaffected by
other exposures was to virtually 100% crocidolite). It
follows that for these workers, much higher tissue
concentrations of amphibole fibres are equivalent to an
exposure of 25 fibre-years than for those exposed to a
small percentage of amphibole fibres during their lives.

Table 6 gives summary estimates of lung tissue concen-
trations of amphibole fibres and ABs that may be related
to a cumulative exposure of 25 fibre-years. As expected,
the concentrations increase according to the percentage of
the amphibole used, so that the smallest amount is
encountered among 38 workers from the South Carolina
textile plant.86

In the South Carolina textile industry, chrysotile
contaminated with less than 1% tremolite was the only
type of asbestos processed as raw material, besides a small
amount of crocidolite yarn. The concentrations of asbestos
fibres of all lengths (without a specified minimum length)
per gram dry lung were compared with individual fibre-
years, which were available for the same patients from an
extensive industrial hygiene survey.260 Roughly 40 million
asbestos fibres/g dry lung correspond to an exposure of 25
fibre-years, but this result is influenced by a high number
of small chrysotile fibres; nevertheless, the quantity of
amphibole fibres may be estimated to be 4.5 million fibres/
g dry lung using geometrical mean values given for the
single types of asbestos (Table 3 in Green et al.86). Figure 3
in this paper represents the relationship between tremolite
as the main type of amphibole fibre and estimated fibre-
years of exposure, and shows concordance with The
Helsinki Criteria.

Somewhat greater amounts of amphiboles may be
expected for the cases and controls in Rödelsperger
et al.194,244 and for the cohort reported by Albin
et al.258,259 However, Rödelsperger244 reported that: ‘A
relationship is demonstrated between asbestos fibre dose
estimated from the interview and concentration of
amphibole fibres from lung tissue analysis. From this a
dose of 25 fibre-years corresponds to an amphibole fibre
concentration of 2 fibres/mg’ (in other words, 2 million
amphibole fibres/g dry lung for fibres longer than 5mm;
abstract and p. 307).

In Rödelsperger’s study on mesothelioma patients,244 25
fibre-years and the count of 2 million uncoated fibres/g dry
lung corresponded roughly to an AB count of 15 000/g dry
lung given in The Helsinki Criteria (see also Thimpont and
De Vuyst233); for obvious reasons, these values could not
be derived for the control patients.

By far the largest amount of amphibole is expected for
90 crocidolite miners/millers from Wittenoom. A strong
correlation between analysis of the lung burden and the
estimate of fibre-years was observed.257,261 For these
workers, concentrations of 21 000 ABs/g wet lung and

**Based upon an assumption that the clinical asbestosis cases were in the
heaviest exposure group and that the mild histological fibrosis cases were
in the intermediate exposure group.
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TABLE 6 Concentrations of amphibole fibres and ABs from fibre analysis of lung tissue, relative to an estimated exposure of 25 fibre-years from occupational histories

Study Patients

Exposure

Lung tissue fibre
analysis

Concentration related to 25 fibre-years

RemarksType of asbestos
Fibre-years

estimate by (ref) Million f/g dry ABs/g wet

258 Swedish asbestos cement
factory: 76 workers

More than 85% chrysotile;
up to 4% crocidolite
until 1966; up to 17%
amosite before 1956

259 TEM; fibres of all lengths Asbestos: 189
Amphibole: 55

Seven mesothelioma cases,
from median values

Asbestos: 96
Amphibole: 9

Sixty-nine other workers,
from median values

86 South Carolina asbestos
textile factory: 54 workers

Chrysotile with v1% tremolite;
very little crocidolite
(difference in consumption
w4000:1)

260 TEM; fibres of all lengths Asbestos: 40
Amphibole: 4.5

See Fig. 1; from geometrical
mean values of Table 3 in
original, the ratio
of amphibole to all
asbestos fibres is y9:1

244 Germany: 66 mesothelioma
cases; 66 and 147*
controls respectively
with lung resection

Mixed, according to
consumption of y94%
chrysotile in Germany

194 TEM; fibres w5 mm in length Amphibole: 2 1500 Sixty-six cases and 66 (147*)
controls: comparison
of different types by
regression analysis

194
261 Wittenoom: 32 miners/millers Almost 100% crocidolite 262 LM 4400

257 Wittenoom: 90 miners/millers Almost 100% crocidolite 262 TEM; length w0.4 mm Crocidolite: 220 21 From geometrical mean
values, Fig. 1 in
original. The AWARD
Criteria specify a
count of 100 million
crocidolite fibres longer
than 1 mm to correspond
to 25 fibres/mL-yr.225

ABs, asbestos bodies; Ref, reference; TEM, transmission electron microscopy.
*ABs only counted by light microscopy, per gram wet lung.
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220 million crocidolite fibres longer than 0.4 mm/g dry lung
(y100 million fibres longer than 1.0 mm)225 correspond to
an exposure of 25 fibre-years. These concentrations are
respectively 20- and 45-fold greater than the AB and fibre
concentrations specified by The Helsinki Criteria. They
support the proposition that the percentage of amphiboles
used in the workplace is crucial if the concentration of
asbestos fibres in the lung tissue forms the basis for
estimation of fibre-years of cumulative exposure.

LUNG CANCER AND THE CLASTOGENICITY
AND MUTAGENICITY OF ASBESTOS

Detailed discussion of the molecular and genetic aberra-
tions inducible by asbestos in experimental animals and
cultured cell lines lies outside the scope of this review (see
references 1, 96, 167, 263–266). However, asbestos is
known to be genotoxic and clastogenic, with the capacity
to induce DNA strand breaks, anaphase-telophase
abnormalities and sister chromatid exchanges in cell
lines in vitro—where fibrosis cannot be implicated—and
free radicals generated from the surface of asbestos fibres
or macrophages are implicated in these aberrations. Both
crocidolite and chrysotile have been shown to disturb cell
division, producing binucleated cells, which may lead to
aneuploidy or polyploidy.267 Asbestos fibres can also
induce oncogene expression—such as c-fos and c-jun

proto-oncogenes—in cultured rodent mesothelial cells.268

Asbestos-related adenocarcinoma of lung is also associated
with p53 and k-ras mutations.96,265,269–272

In a study of 84 male patients with a histological
diagnosis of adenocarcinoma of lung, Nelson et al.272

found a higher prevalence of k-ras mutations in those with
a history of asbestos exposure than in those without, after
adjustment for age and pack-years smoked, and that the
estimated intensity of exposure was greater for the patients
with k-ras mutations than those without. There was no
detectable association with the duration of exposure, but
the time since first exposure was associated with mutation
status; in addition, the association was not dependent on
radiographic evidence of asbestos-related disease. Nelson
et al.272 concluded that their data were suggestive of an
increased likelihood of k-ras codon 12 mutations as a
consequence of asbestos exposure and that ‘this process
occurs independently of the induction of interstitial
fibrosis’.

Wang et al.273 have also reported that chrysotile and
cigarette smoke in solution act synergistically to produce
DNA damage in a dose-dependent fashion and to activate
c-ras in human embryo lung cells as assessed by p21
expression. Jung et al.274 found that amosite and cigarette
smoke each produced an increase in DNA strand breaks
and necrosis in rat bronchiolar epithelial cells in vivo, both
alone and in additive fashion when in combination.

Using a papillomavirus-immortalised human bronchial
epithelial cell line, Hei et al.275 found that a single 7-day
treatment of the cells with chrysotile induced stepwise
transformation, with altered growth kinetics, resistance
to terminal differentiation and anchorage-independent
growth, to produce progressive tumorigenic growth in
nude mice.276 Hei et al.277 also found that treatment of the
same cell line with a-particles to simulate the effects of
radon, induced a similar pattern of apparent neoplastic
transformation in the same cell line. The same group
of researchers278 had shown earlier that chrysotile is

Fig. 3 Relationship between the concentration of tremolite fibres in the lung tissue and the estimate of the fibre-years for 39 textile workers from the
cohort from South Carolina, after Table 5 in Green et al.86.
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mutagenic for cultured mammalian cells—with the pro-
duction of large deletions—and comparable with the
mutagenicity of c-rays.

The fragile histidine triad (FHIT) tumour suppressor
gene located at 3p14.2279–283 appears to represent a site of
genomic fragility relevant to carcinogenesis: FHIT protein
is expressed in most non-neoplastic tissues, and the highest
levels of expression occur in epithelial cells. FHIT appears
to be subject to deletion or loss of heterozygosity (LOH)
by cigarette smoke and asbestos.279,280,282,283 Diminished
expression of FHIT has been recorded in up to 80% of
cigarette smoke-associated lung cancers,279 and in both
asbestos-associated lung cancers (y69%) and non-exposed
cases (y59%) in one study,282 and in y54% of
mesotheliomas283 (Pylkkänen et al.283 suggest that LOH
affecting FHIT can be concealed by normal cells present in
mesotheliomas). Genomic instability affecting FHIT has
also been identified in cases of idiopathic pulmonary
fibrosis.284

GENETIC SUSCEPTIBILITY TO LUNG CANCER

It is well known that genetic factors play a major causal
role in the genesis of some cancers, notably those related
to mutations in tumour suppressor genes or DNA repair
genes, with high penetrance of the mutated gene(s):285,286

such cancers include gastrointestinal cancers among
families with familial adenomatous polyposis (APC
gene), and cancers related to mutations affecting DNA
repair genes, such as hereditary non-polyposis colon
cancer (HNPCC) and xeroderma pigmentosum (XP[A-D]
genes),286 and it has been estimated that genetic abnorm-
alities of this type may account for about 1–4% of all
cancers.286,287

It is also known that in some circumstances there is
an interplay between genetic predisposition to cancer
and environmental factors.286,288 One classical example is
xeroderma pigmentosum (XP), where the mutated DNA
repair genes XP(A-D) produce extreme susceptibility
(w1000-fold above ‘normal’289) to skin cancers (basal
and squamous cell carcinomas and melanoma),286 because
of an impaired capacity to repair DNA damage induced in
the skin by ultraviolet radiation in sunlight; management
of patients with XP includes isolating them from sunlight
to minimise the DNA damage and hence to reduce the
otherwise virtually certain risk of skin cancer.

Delineation of the genetic component for cancers related
to multiple gene variants of low penetrance poses far
greater difficulties than for high-penetrance single-gene
disorders, and familial aggregation of some cancers is
complicated by the fact, that apart from some shared
genes, family members frequently share environmental
factors, including diet, lifestyle, recreations and occupations.

Although lung cancer risk is highly dependent on
environmental factors such as cigarette smoke (and less
commonly asbestos and other occupational/environmental
factors), it is a truism that that only a minority of tobacco
smokers ever develop lung cancer during their lifetimes
(about one in 10287,290), and only a minority of those
exposed to asbestos ever develops lung cancer. Chance
alone might be invoked as the explanation for cancer/
not-cancer—for example the ‘correct’ combination of

mutational events may not occur at all or in the ‘correct’
order, or a mutational event may be lethal to the cell—
however, there is evolving evidence for modulation of
cancer risk by genetic susceptibility/resistance (GS and GR)
factors.287,290–295

In studies based on the Swedish Family-Cancer
Database,296–298{{ the ‘proportion of cancer susceptibility,
accounted for by genetic effects’ was estimated at 14%285

and later at 8%299 for lung cancer, with shared and
childhood environmental components of 9 and 4%,
respectively, and 79% for non-shared environmental
factors.299 A further study on the same database gave
an estimated familial population attributable fraction
(PAF) of y3% for lung cancer, with a familial percentage
proportion of y6% (defined as the percentage of affected
offspring with affected parents).300 A further study on the
Swedish Database also yielded a higher familial risk for
large cell carcinoma and adenocarcinoma of lung
(SIRs~2.29 and 2.18, respectively) than for other
histological types (small cell carcinoma~1.74 and squa-
mous cell carcinoma~1.78).296

Apart from gatekeeper genes such as p53 and k-ras,
a number of studies have focused on polymorphisms
for caretaker genes301—for example, those encoding
the cytochrome p450 superfamily,288,302,303 such as
CYP1A1,302,303 as well as N-acetyltransferase, glutathione
S-transferase M1 (GSTM1), microsomal epoxide hydro-
lase (mEH)290,304 NAD(P)H:quinone oxidoreductase
(609CpT polymorphism)290,305 and myeloperoxidase
(MPO)306—which are involved in the activation or
detoxification of carcinogens,290,307 and on DNA repair
genes290,308 (about 130 DNA repair genes have been
recorded, divisible into base excision repair, nucleotide
excision repair and mismatch repair genes).309 For
example, in relation to DNA repair genes it has also
been reported that polymorphisms affecting exons 10 and
23 of XPD modulate risks for lung cancer among never-
smokers, so that the presence of one or two variant alleles
was associated with an ORLCA of 2.6 for exon 10
(95%CI~1.1–6.5) and 3.2 for exon 23 (95%CI~
1.3–8.0);289 in addition, current or recent smokers had
higher aromatic DNA adduct levels than former/never
smokers, and the same study289 found that subjects with
exon 10 AA and exon 23 CC had significantly higher
aromatic DNA adduct levels than subjects with any other
genotype, with an increased risk of lung cancer.

In all probability, many potential GS/GR genes have yet
to be identified,290 and analysis of the interplay between
multiple GS and GR genes and environmental carcinogens
constitutes a problem of great complexity; nonetheless, it
seems likely that ‘everyone may have a unique combina-
tion of polymorphic traits that modify genetic suscept-
ibility and response to ... carcinogens’,290 especially for
multifactorial diseases such as lung cancer.290 To simplify
matters, the following discussion concentrates mainly on
the MPO gene.

MPO is a lysosomal enzyme found in both neutrophils

{{The largest database of its type in the World, the Swedish Family-
Cancer Database contains data on people born in Sweden after 1931,
including their parents; by 2002, the Database comprised information on
10.2 million individuals across 3.2 million families, with data on more
than 1 million tumours.296–298
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and macrophages, and it catalyses the reaction between
H2O2 and Cl2, generating hypochlorous acid (HOCl)310

and other reactive oxygen species (ROS); MPO is involved
in the metabolism of several DNA-damaging intermediary
factors that include tobacco smoke mutagens, and MPO
appears to contribute to lung carcinogenesis by activation
of procarcinogens such as benzo[a]pyrene intermediates,
4-aminobiphenyl and arylamines.311 The MPO gene is
localised to the long arm of chromosome 17 and comprises
11 introns and 12 exons.

Multiple investigations have evaluated the potential
protective effect of the variant A allele for MPO in
comparison to the wild-type genotype G/G (2463MPO
GpA) on the risk of lung cancer.311–321 Although two
studies316,319 did not detect any significant association
between the A allele in comparison to G/G, most found
that the A allele was associated with up to a 70% reduced
RRLCA/ORLCA at equivalent levels of smoking; in one
study314 the reduced risk was confined to the homozygous
AA polymorphism and not to the heterozygous G/A form,
but others detected a reduced risk for G/A,311,313,317,318,320

and one315 reported the findings as the risk for G/AzA/A
only. Most studies reported the protective effect of the A
allele in terms of RRLCA/ORLCA relative to G/G, but Lu
et al.321 and Schabath et al.322 reported their results as an
increased ORLCA for G/G relative to G/AzA/A. The
proportions of G/G versus G/A and A/A appear not to
differ greatly from lung cancer cases in comparison to
controls: across all studies cited above,311–321 G/G was
found in 62% of controls versus 65% of cases; for G/A and
A/A for controls versus cases, the percentage proportions
were 33 vs 31% and 5 vs 4%; when the two studies that
found no effect of MPO polymorphisms on lung cancer
risk316,319 are removed, the proportions for controls versus
cases become 61 vs 68% for G/G, 29 vs 33% for G/A and 3
vs 6% for A/A.

Evidence for a component of genetic susceptibility for
asbestos-related mesothelioma323–325 and for lung cancer is
much less extensive than the evidence for cigarette smoke-
related lung cancer. Nonetheless, this notion has biological
plausibility,326 and is supported by the following observa-
tions: (i) only a minority of asbestos-exposed individuals,
even those exposed heavily to crocidolite, develop
mesothelioma during their lifetimes327,328 (see preceding
discussion); (ii) familial clusters of asbestos-associated
mesothelioma are well documented;329–341 (iii) one study323

found that patients with mesothelioma have a greater
frequency of non-mesothelioma cancers among their
parents than non-mesothelioma cases; and (iv) genomic
variants have been described in mesothelioma, such as
inactivating mutations of the neurofibromatosis type 2
(NF2) gene342 and simian virus 40 (SV40) transcripts
incorporated into the genome (although the evidence for a
contributory causal role of SV40 in the development of
asbestos-related mesothelioma remains unproven343,344).

So far as we are aware, there are only two reports on
GS/GR for asbestos-associated lung cancer, relative to
polymorphisms for the GSTM1345 and MPO genes.322

Stucker et al.345 found no evidence that the risk of lung
cancer after asbestos exposure differed according to the
GSTM1 genotype, although this study had ‘low statistical
power’.345 Conversely, in a molecular case-referent study,
Schabath et al.322 found that subjects with self-reported

asbestos exposure and with the MPO genotype G/G had
an ORLCA of 1.72 for asbestos exposure compared with no
exposure after controlling for age, gender and smoking,
whereas subjects with a G/AzA/A genotype had a lower
ORLCA of 0.89. Subjects with G/G had an ORLCA of 1.69
for §45 pack-years of smoking (heavy) compared with
v45 (light), whereas the ORLCA for those with G/AzA/A
was v1.0. For GG, the joint effect of asbestos and heavy
smoking in comparison to no asbestos and light smoking
was 2.19, and the analogous ORLCA for G/AzA/A was 1.18.

Given the emerging evidence on GS/GR for lung cancer,
for both cigarette smoke and (to a far lesser extent)
asbestos, and taking into account the complexity of the
multiple genes and polymorphisms implicated so far, it
seems that individuals comprising any population will vary
in their susceptibility to (and risk from) these carcinogens.
Therefore, one can deduce that the risk derived as an
average or mean across entire cohorts/populations will
tend to underestimate the risk for those with a GS profile
(RRGS) and to overestimate risk for those with GR

(RRGR). It also follows that those with the disease in
question are more likely to have GS for that disease and
therefore to be at greater risk than either: (i) those who
are resistant (GR); or (ii) the average/mean risk (i.e.,
RRGSw[RRGSzRRGR]/2), even if the variation in risk
from the mean is only very small.

Assessing the significance of interaction between genetic
and environmental factors in disease causation involves
a new type of epidemiological study, the case-only
study,345,346 in which departure from a purely multi-
plicative model of joint effect can be assessed by
computing the case-only OR (ORC–O), derived for cases
with and without the susceptibility gene and with and
without exposure from a 262 table; if ORCS represents
the OR among control subjects related to exposure and
susceptibility genotype, then:

ORC{O~ ORGE= OREeORGð Þ½ �eORCS

where ORGE, ORG and ORE are conventional case–
control ORs for combined genetic susceptibility plus
exposure, genetic susceptibility, and exposure sepa-
rately.346 Because the genotype and the exposure are
generally independent variables in the source population
from which the cases arise, the expected value of ORCS is
unity; if the joint effect is more than multiplicative, ORC–O

is greater than 1.0, and it is less than 1.0 if the joint effect
is less than multiplicative.346 Applied to the data in
Table III of Schabath et al.322 (asbestos and genotype), the
above analysis gives an ORC–O of 0.96, indicating near-
multiplicativity.

If such findings322 are validated in other analogous
investigations, they would suggest that the asbestos-related
lung cancer risk derived as an average across groups might
be revised upwards for those with a susceptibility
genotype, so that cumulative exposures lower than the
average (e.g., v25 fibres/mL-years) could be accepted as
imposing an OR §2.0, and the risk would be correspond-
ingly revised downward for those with a genetic resistance
profile, with the requirement for a greater cumulative
exposure to impose the same risk. We consider that this
approach to carcinogenesis by environmental factors in
general has a sound theoretical and, to a lesser extent,
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empirical basis, and we expect that molecular epidemio-
logical studies that address these issues will lead to further
refinement of approaches to causation by cigarette smoke,
asbestos, and other environmental carcinogens. None-
theless, we consider that at present it is not possible to
apply existing data on GS/GR for the attribution of lung
cancer to asbestos in the individual patient, or to modify
existing cumulative exposure approaches to causation,
because of: (i) contradictory and inadequate GS/GR data,
even for single gene polymorphisms; (ii) uncertainties
surrounding GS/GR profile effects overall; (iii) inadequate
data on net GS/GR interactivity with asbestos; and, as a
consequence, (iv) unquantifiability of any such effects. We
also emphasise that these theorisings do not detract from
the critical role of the exogenous carcinogens in causation
of the disease:287 in the absence of the carcinogen, it would
be less likely that genetic susceptibility (GS/no-exposure)
would be expressed as a particular cancer at the time of
occurrence of the cancer, than for a GS/exposure situation
(in other words, the carcinogens produce an increment in
risk above ‘background’ GS).

We emphasise that although ‘traditional’ epidemiology
has been highly effective for the detection and quantitation
of the net or average causal effects of various carcinogens
across populations or groups as reflected in cohort or case-
referent studies, it becomes less precise for the quantitation
of causal effects when applied to assessment of causation
in an individual, because of the following factors among
many others:

1. Differential exposures to the carcinogen within the
cohort or within the cases group for case-referent studies
(unless the exposure estimates are individualised or
stratified for different patterns of work and exposure).
(See discussion of the study by Carel et al.,165 p. 529.)

2. Changes over time in exposures and smoking habits
across the cohort/group unless the parameters of exposure/
smoking are evaluated longitudinally over time.

3. Differential clearance of asbestos fibres from broncho-
pulmonary tissues, related to differences in the proportions
of asbestos fibre types for mixed asbestos exposures and
fibre dimensions, and the efficacy of host clearance
mechanisms as influenced by a variety of factors that
include innate and acquired differences in the capacity for
fibre clearance.

4. Differential genetic susceptibility to the carcinogen(s).

In general, these factors will tend to depress unquantifiably
the slope of the dose–response line in comparison to the
real effects for those who have asbestos-associated lung
cancer, and thereby underestimate probability of causation.

EXPOSURE ASSESSMENT: NATIONAL
APPROACHES AND FUTURE DIRECTIONS

The cumulative exposure standard of 25 fibre-years or
more for lung cancer attribution is also applied in
Denmark, and equivalent job histories elsewhere in
Scandinavia, with no requirement for asbestosis.1 Occupa-
tional histories similar to those delineated by The Helsinki
Criteria102 also form the basis for attribution in France

and Belgium.49,233 In Australia, the courts have ruled in
favour of the cumulative exposure model as a basis for
attribution, and similar criteria were also endorsed by the
AWARD Workshop.225,235

Because decision-making on compensation now appears
to favour The Helsinki Criteria approach, construction of
databases such as those described by Burdorf and
Swuste228 or Faserjahre64 will be essential for equitable
compensation of lung cancer due to asbestos, when
evidence of quantified exposure must be based on history.2

The approach in The Netherlands is more qualitative than
the German system, with probabilistic assessments of the
likelihood of different exposure levels. Without such
systems, boards and tribunals will continue to spend
inordinate time evaluating uncertainties over past expo-
sures and conflicting opinions from expert witnesses. The
aim of databased systems of these types is to create a
matrix that defines asbestos exposure by industry,
occupation and time. In association with each value, one
can then assign a level of confidence ranging from:

1. Direct measurement.
2. Interpolated measurement.
3. Measurement in a similar facility.
4. Interpolation from a similar facility.
5. Consensus estimate.
6. Estimate for which no consensus can be reached.

In practice, when there are no direct measurements of
airborne fibre levels in a particular workplace, as is often
the case in nations such as Australia, experts often express
estimated cumulative exposure as a low/high range in
fibre-years, based on: (i) the number and duration of work
shifts which together comprise about 20% of calendar
time; and (ii) published low and high values for airborne
fibre concentrations generated by the same or similar types
of work in other workplaces, and with derivation of a
likely mean estimate.

On the basis of prevailing evidence, the cumulative
exposure model for lung cancer induction by asbestos
appears to conform to modern approaches to assessment
of causality,29,59,221,326,347,348 with coherence of data across
multiple different types of investigation that include dose-
response data from epidemiological studies and case-
referent studies based on lung tissue fibre measurements;
the evidence also encompasses a variety of pathological
observations that include the separate and combined
clastogenic and mutagenic effects of asbestos and tobacco
smoke on cell lines in vitro and on bronchiolar epithelium
in vivo. In terms of generalisability,29 the cumulative
exposure model appears to have explanatory-predictive
value: after the 25 fibres/mL-year standard was introduced
in Germany—where attribution is primarily an adminis-
trative exercise, so that decision-making is less likely to
be skewed than by adversarial court-based systems of
compensation—the excess lung cancer to mesothelioma
ratio has shown close agreement with the same ratio
obtained from multiple epidemiological investigations.

Finally, we emphasise that estimates of cumulative
exposure (25 fibre-years or an equivalent job history) set
forth in The Helsinki Criteria are applicable to amphibole
and asbestos textile exposures and, we believe, mixed
exposures (notably exposures to asbestos-cement and insula-
tion materials that contained chrysotile and amphiboles);
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they are not applicable to the Quebec chrysotile miners/
millers and they may not be appropriate for friction
products manufacture or some other chrysotile-only
exposures, or perhaps mixed exposures where the compo-
sition (i.e. the proportions of airborne fibre types) is
known with precision (virtually never the case for end-use
exposures). The fibre concentrations in lung tissue refer
primarily to the amphibole content related to mixed
exposures; for amphibole-only exposures, higher concen-
trations are required, and asbestos fibre measurements in
lung tissue are unsuitable in general for estimates of
cumulative exposure to chrysotile only. In the future, a
lower cumulative asbestos exposure than say 25 fibres/mL-
years or an equivalent occupational history may be
acceptable for attribution of lung cancer to asbestos
among those with an identifiable genetic susceptibility
profile for lung cancer, and a higher cumulative asbestos
exposure would be required to impose the same lung
cancer risk among those with an identifiable genotype that
confers a measure of protection against the carcinogenic
effects of asbestos. Use of the upper 95th percentile
confidence interval for assessment of risk for some
cancers27 arguably goes some way towards addressing
differences in risk related to a variety of factors including
differential GS/GR, in terms of probabilistic approaches to
the causation of disease in the individual; use of the mean,
based on average exposures with no individualisation of
exposure estimates or consideration of innate suscept-
ibility/resistance factors, does not.
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