

図 3-1-3 NO3 濃度及び沈着量、並びに降水量の季節変動 (平成 15~19 年度平均値)

(3) 湿性沈着の長期的傾向

湿性沈着の長期的傾向を把握するため、1991年度(平成3年度)~2007年度(19年度)に 10年以上の調査が実施された地点の結果を用い(有効データのみ)、年降水量、年沈着量及び年平均濃度の全国中央値の変動を検討した。

降水量及びイオン成分沈着量の全国中央値の経年変化を図 3-1-4 に示す。降水量は、1990 年代に増減を繰り返し、2000 年代は横ばいで推移した。nss- SO_4 ²·沈着量は、期間を通して変動があるもののほぼ横ばいであった。 NO_3 ·沈着量は 1990 年代中頃に増加し、それ以降は横ばいで推移した。 NH_4 +及び nss- Ca^2 +沈着量は期間を通して変動があるものの横ばいであった。H+沈着量は 1990 年代半ばから 2000 年度(平成 12 年度)まで増加傾向を示し、その後増減を繰り返した。

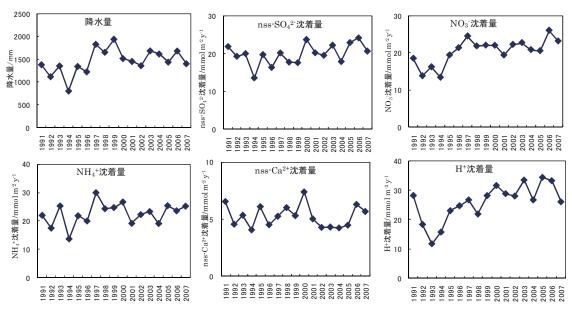


図 3-1-4 降水量及びイオン成分沈着量の全国中央値の経年変化

pH 及びイオン成分濃度の全国中央値の経年変化を図 3-1-5 に示す。pH は年により増減するものの全体として横ばいで推移した。近年 pH が低めの地点については、今後のモニタリング結果に特に注意を払う必要がある。nss- SO_4 2-濃度は 1999 年度(平成 11 年度)まで減少し 2000 年度(12 年度)に増加した後は、横ばいで推移した。 NO_3 -濃度は 2004 年度(16 年度)まで変動はしているもののほぼ横ばいで推移し、2005 年度(17 年度)以降は増加する傾向を示した。 NH_4 +濃度は年により増減はするものの全体として横ばいで推移した。nss- Ca^2 +濃度は 2000 年度(12 年度)に高く、2003 年度(15 年度)及び 2004 年度(16 年度)で低いなど、年により増減するものの全体として横ばいで推移した。

なお、地点別の経年変化については参考資料を参照。

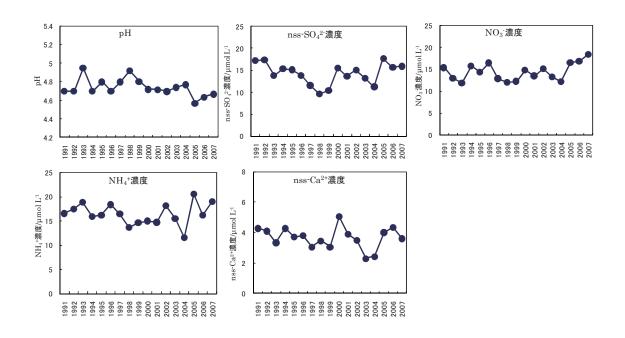


図 3-1-5 pH 及びイオン成分濃度の全国中央値の経年変化

(4) データの精度保証・精度管理 (QA/QC)

湿性沈着モニタリングの精度管理は、湿性沈着モニタリング手引き書(第2版)に基づき、試料の捕集から分析、データの評価に至る手法の統一化を図ることにより確保している。また、酸性雨研究センターによる現地調査及び分析機関間比較調査を実施しているほか、国内センター及び幾つかの試験機関は、WMO、EMEP等の海外のネットワークが実施している分析機関間比較調査に参加し、国際的な比較にも耐えうる精度の確保に努めている。

① 分析機関間比較調査(湿性沈着)

分析機関間比較調査は、分析手法や測定機器の使用条件、測定経験等との関係から問題点を明らかにし、モニタリング精度の向上を図るため、毎年実施している。模擬降水試料2種類(高濃度用及び低濃度用)を各分析機関で分析し、その分析結果について、EANETの精度管理目標値(DQOs: Data Quality Objectives、分析の正確さ: ±15%)によって評価しており2、調査期間中、高濃度試料については約99%、低濃度試料については、約90%の精度が確保されていることが確認できた。

② 酸性雨測定所等の現地調査

精度保証・精度管理活動の一環として、EANET 局は2年に1回、その他の国内局は3年に1回、測定所とその周辺状況及び試験機関について、酸性雨研究センターによる現地調査が実施されており、降水の捕集効率に影響を与える捕集装置の設置状況、周辺の障害物及び発生源の有無の確認、試料捕集手順及び分析操作手順等について調査が行われている。

 2 DQOs の 2 倍まで(±15%~±30%)の分析値にはフラグ E を、DQOs の 2 倍(±30%)を超える分析値にはフラグ X を付けて表している。

3.1.2 乾性沈着モニタリングの結果

(1) 乾性沈着の年平均値の傾向及び季節変動

平成 15 年度から 19 年度における主な測定項目の乾性沈着モニタリング結果について、概要を表 3-1-2 に示す。また、図 3-1-6、図 3-1-7 及び図 3-1-8 には SO_2 、 O_3 及び PM_{10} ・ $PM_{2.5}$ の月平均濃度を月ごとに 5 年間平均した経月変化を示す(その他の項目は参考資料参照)。なお、解析に使用した年間値及び月間値は、有効データ(自動測定機:1 時間値、フィルターパック:2 週間値)の得られた時間が調査対象時間の 70%以上であった値のみである。

[主な測定項目]

- ① 自動測定機
 - SO₂ (12 地点)、NOx* (11 地点)、O₃ (21 地点)、PM₁₀ (11 地点)、PM_{2.5} (3 地点)
- ② フィルターパック法
 - ・粒子状成分濃度 (SO₄²、NO₃·、NH₄+、Ca²⁺) (11 地点)
 - ・ガス状成分濃度 (HNO₃、NH₃) (11 地点)

なお、粒子状成分のうち、 SO_4 2-については湿性沈着と同様に Na+を海塩粒子の指標として用い、海塩粒子に由来しない非海塩性の SO_4 2-を算出して考察の対象とした。

表 3-1-2 主な測定項目の結果

項目	年平均値の傾向、月平均濃度の変化
SO_2	・範囲:<0.1ppb(平成 15、16、19 年度・小笠原)~1.2ppb(17 年度・
(自動測定機)	檮原、19 年度・蟠竜湖、えびの)
	檮原、えびの、蟠竜湖で高く、小笠原で低い傾向。
	・全平均値:0.6ppb
	・月平均濃度の変動:晩秋から春季にかけて濃度が上昇する地点が多く、
	西日本で濃度上昇が大きい。小笠原では年間を通して低濃度で推移。晩
	秋から春季にかけての濃度上昇は、3.1.1(2)で記述した nss-SO ₄ 2-沈着量
	の季節変動と同様に越境汚染の影響と考えられる。
NOx*	・範囲:0.4ppb(15、16、19 年度・小笠原)~4.2ppb(15 年度・蟠竜
(自動測定機)	湖)
	蟠竜湖、伊自良湖で高く、小笠原で低い傾向。
	・全平均値:1.7ppb
	・月平均濃度の変動:西日本や日本海側の地域では秋季から春季にかけて
	濃度が上昇する傾向がみられ、3.1.1(2)で記述した NO3 沈着量の季節変
	動と同様に越境汚染の影響と考えられる。伊自良湖では冬季に濃度が
	低く、利尻、落石岬、八方尾根、辺戸岬では年間を通して変動が小さ
	V _o
O_3	・範囲: 19ppb (17 年度・伊自良湖) ~60ppb (16 年度・赤城、18 年度・
(自動測定機)	八方尾根)
	八方尾根、赤城で高く、伊自良湖、京都八幡で低い傾向。
	・全平均値:39ppb
	・月平均濃度の変動:全体的に春季に濃度が高く、夏季に低く、西日本で
	は秋季にも高くなる傾向。年間を通して標高の高い八方尾根や赤城で濃
	度が高い。春季の濃度上昇は越境汚染の影響と考えられる。
PM_{10}	・範囲:11μg m ⁻³ (15 年度・小笠原)~37μg m ⁻³ (17 年度・辺戸岬)
(自動測定機)	辺戸岬で高く、小笠原、八方尾根で低い傾向。
	・全平均値:22µg m ⁻³
	・月平均濃度の変動:春季に濃度が高い傾向がみられ、秋季にも濃度がや
	や高くなる地点がみられた。春季の濃度上昇は、下欄のエアロゾル中の
	Ca ²⁺ 濃度も春季に高いことから、黄砂の影響を受けていると考えられ
	る。
$PM_{2.5}$	・範囲:7μg m ⁻³ (16 年度・落石岬)~16μg m ⁻³ (17 年度・隠岐)
(自動測定機)	隠岐、落石岬、利尻の順に高い。
	・全平均値:11µg m ⁻³

	・月平均濃度の変動:隠岐は春季に濃度がやや高く、利尻と落石岬は年間
	を通して変動が小さい。
nss-SO ₄ ²⁻	・範囲:0.52μg m ⁻³ (16 年度・小笠原)~6.60μg m ⁻³ (17 年度・蟠竜湖)
(フィルターパック)	蟠竜湖、檮原で高く、小笠原で低い傾向。
	・全平均値:3.56μg m ⁻³
	・月平均濃度の変動:夏季に濃度が高い地点が多い。
NO ₃ -	・範囲:0.11μg m ⁻³ (16 年度・小笠原)~4.08μg m ⁻³ (19 年度・東京)
(フィルターパック)	辺戸岬、蟠竜湖で高く、小笠原、八方尾根で低い傾向。
	東京が最高値であったが、1年間のみの数値である。
	・全平均値:0.87µg m ^{·3}
	・月平均濃度の変動:全体的に春季に濃度が高い傾向
HNO ₃	・範囲:0.03ppb (15、16 年度・小笠原)~0.93ppb(19 年度・東京)
(フィルターパック)	檮原、伊自良湖で高く、小笠原、利尻で低い傾向。
	東京が最高値であったが、1年間のみの数値である。
	・全平均値:0.24ppb
	・月平均濃度の変動:夏季にやや濃度が高い傾向がみられる。小笠原、辺
	戸岬は濃度が低く、変動も少ない。
NH ₄ +	・範囲:0.08μg m ⁻³ (16 年度・小笠原)~1.90μg m ⁻³ (19 年度・東京)
(フィルターパック)	伊自良湖、蟠竜湖、檮原で高く、小笠原、利尻で低い傾向。
	東京が最高値であったが、1年間のみの数値である。
	・全平均値:0.83µg m ⁻³
	・月平均濃度の変動:夏季に濃度が高い地点が多い。
NH_3	・範囲:0.18ppb (15 年度・小笠原)~5.64ppb(19 年度・東京)
(フィルターパック)	伊自良湖、蟠竜湖で高く、利尻、竜飛岬、八方尾根で低い傾向。
	東京が最高値であったが、1年間のみの数値である。
	・全平均値:0.78ppb
	・月平均濃度の変動:春季から夏季に濃度が高い地点が多い。東京は 1
	年間のみの数値であるが、高い濃度で推移している。
Ca ²⁺	・範囲:0.02μg m ⁻³ (16 年度・小笠原)~0.57μg m ⁻³ (19 年度・東京)
(フィルターパック)	辺戸岬で高く、小笠原で低い傾向。
	東京が最高値であったが、1年間のみの数値である。
	・全平均値:0.24μg m ⁻³
	・全平均値:0.24µg m ⁻³ ・月平均濃度の変動:春季にほとんどの地点で濃度が高い傾向がみられ、

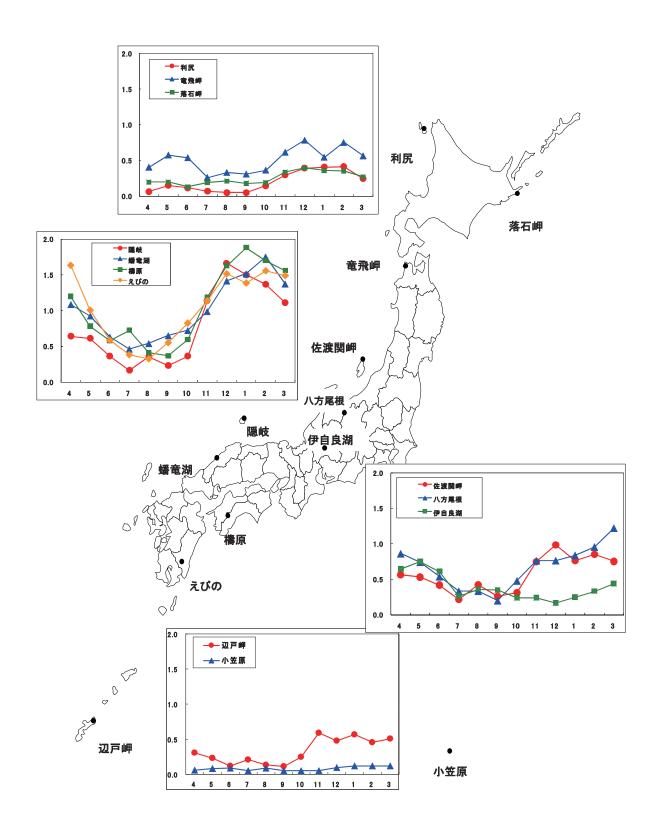


図 3-1-6 SO₂ 濃度の季節変動(単位:ppb、平成 15~19 年度平均)

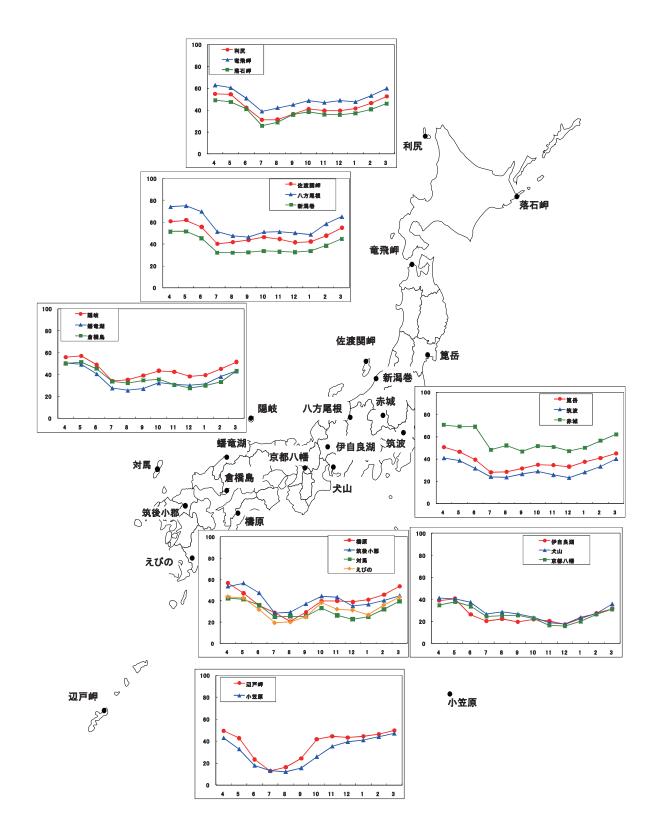


図 3-1-7 O₃ 濃度の季節変動(ppb、平成 15~19 年度平均)